Search results for: carbon dioxide concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7735

Search results for: carbon dioxide concentration

6145 Mycoflora and Aflatoxin Contamination of Kokoro: A Nigerian Maize Snack

Authors: D. A. Onifade

Abstract:

Kokoro is maize snack which is very popular among poor masses in Nigeria who consume it along with gari(a cassava product) as lunch on a regular basis. In this study, fungal contaminants of kokoro were characterized and its aflatoxin content determined. A total of 30 fungal isolates were obtained from kokoro samples and they belong to 3 different species. Aspergillus flavus had the highest frequency of occurrence of 73.33% while Penicillium species had the lowest (6.66%). Different concentration of aflatoxin B1 was detected in some of the kokoro samples analyzed. Sample D had the highest concentration of 7.25 parts per billion (ppb). The lowest concentration detected was 0.06 ppb in sample P. No aflatoxin G1 and G2 was detected in all the kokoro samples with exception of sample P which contained 2.54 ppb aflatoxin G1.According to international standards some of the kokoro samples are not suitable for human consumption because of high-level aflatoxin which was above the recommended level. Therefore, production of kokoro should be standardized and appropriate packaging materials utilized to prevent the growth of aflatoxigenic fungi. This is to safeguard the health of many poor Nigerians who consume it on a regular basis.

Keywords: kokoro, maize snack, aflatoxin, contamination, mould, Nigeria

Procedia PDF Downloads 327
6144 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 524
6143 Field Study of Chlorinated Aliphatic Hydrocarbons Degradation in Contaminated Groundwater via Micron Zero-Valent Iron Coupled with Biostimulation

Authors: Naijin Wu, Peizhong Li, Haijian Wang, Wenxia Wei, Yun Song

Abstract:

Chlorinated aliphatic hydrocarbons (CAHs) pollution poses a severe threat to human health and is persistent in groundwater. Although chemical reduction or bioremediation is effective, it is still hard to achieve their complete and rapid dechlorination. Recently, the combination of zero-valent iron and biostimulation has been considered to be one of the most promising strategies, but field studies of this technology are scarce. In a typical site contaminated by various types of CAHs, basic physicochemical parameters of groundwater, CAHs and their product concentrations, and microbial abundance and diversity were monitored after a remediation slurry containing both micron zero-valent iron (mZVI) and biostimulation components were directly injected into the aquifer. Results showed that groundwater could form and keep low oxidation-reduction potential (ORP), a neutral pH, and anoxic conditions after different degrees of fluctuations, which was benefit for the reductive dechlorination of CAHs. The injection also caused an obvious increase in the total organic carbon (TOC) concentration and sulfate reduction. After 253 days post-injection, the mean concentration of total chlorinated ethylene (CEE) from two monitoring wells decreased from 304 μg/L to 8 μg/L, and total chlorinated ethane (CEA) decreased from 548 μg/L to 108 μg/L. Occurrence of chloroethane (CA) suggested that hydrogenolysis dechlorination was one of the main degradation pathways for CEA, and also hints that biological dechlorination was activated. A significant increase of ethylene at day 67 post-injection indicated that dechlorination was complete. Additionally, the total bacterial counts increased by 2-3 orders of magnitude after 253 days post-injection. And the microbial species richness decreased and gradually changed to anaerobic/fermentative bacteria. The relative abundance of potential degradation bacteria increased corresponding to the degradation of CAHs. This work demonstrates that mZVI and biostimulation can be combined to achieve the efficient removal of various CAHs from contaminated groundwater sources.

Keywords: chlorinated aliphatic hydrocarbons, groundwater, field study, zero-valent iron, biostimulation

Procedia PDF Downloads 165
6142 The Effects of Inoculation and N Fertilization on Soybean (Glycine max (L.) Merr.) Seed Yield and Protein Concentration under Drought Stress

Authors: Oqba Basal, Andras Szabo

Abstract:

Using mineral fertilization is increasing worldwide, as it is claimed to be majorly responsible for achieving high yields; however, the negative impacts of mineral fertilization on soil and environment are becoming more obvious, with alternative methods being more necessary and applicable, especially with the current climatic changes which have imposed serious abiotic stresses, such as drought. An experiment was made during 2017 growing season in Debrecen, Hungary to investigate the effects of inoculation and N fertilization on the seed yield and protein concentration of the soybean (Glycine max (L.) Merr.) cultivar (Panonia Kincse) under three different irrigation regimes: severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Three N fertilizer rates were applied: no N fertilizer (0 N), 35 kg ha⁻¹ of N fertilizer (35 N) and 105 kg ha⁻¹ of N fertilizer (105 N). Half of the seeds in each treatment was inoculated with Bradyrhizobium japonicum inoculant, and the other half was not inoculated. The results showed significant differences in the seed yield associated with inoculation, irrigation and the interaction between them, whereas there were no significant differences in the seed yield associated with fertilization alone or in interaction with inoculation or irrigation or both. When seeds were inoculated, yield was increased when (35 N) was applied compared to (0 N) but not significantly; however, the high rate of N fertilizer (105 N) reduced the yield to a level even less than (0 N). When seeds were not inoculated, the highest rate of N increased the yield the most compared to the other two N fertilizer rates whenever the drought was present (moderate or severe). Under severe drought stress, inoculation was positively and significantly correlated with yield; however, adding N fertilizer increased the yield of uninoculated plants compared to the inoculated ones, regardless of the rate of N fertilizer. Protein concentration in the seeds was significantly affected by irrigation and by fertilization, but not by inoculation. Protein concentration increased as the N fertilization rate increased, regardless of the inoculation or irrigation treatments; moreover, increasing the N rate reduced the correlation coefficient of protein concentration with the irrigation. It was concluded that adding N fertilizer is not always recommended, especially when seeds are inoculated before being sown; however, it is very important under severe drought stress to sustain yield. Enhanced protein concentrations could be achieved by applying N fertilization, whether the seeds were pre-inoculated or not.

Keywords: drought stress, N fertilization, protein concentration, soybean

Procedia PDF Downloads 154
6141 Modeling the Time Dependent Biodistribution of a 177Lu Labeled Somatostatin Analogues for Targeted Radiotherapy of Neuroendocrine Tumors Using Compartmental Analysis

Authors: Mahdieh Jajroudi

Abstract:

Developing a pharmacokinetic model for the neuroendocrine tumors therapy agent 177Lu-DOTATATE in nude mice bearing AR42J rat pancreatic tumor to investigate and evaluate the behavior of the complex was the main purpose of this study. The utilization of compartmental analysis permits the mathematical differencing of tissues and organs to become acquainted with the concentration of activity in each fraction of interest. Biodistribution studies are onerous and troublesome to perform in humans, but such data can be obtained facilely in rodents. A physiologically based pharmacokinetic model for scaling up activity concentration in particular organs versus time was developed. The mathematical model exerts physiological parameters including organ volumes, blood flow rates, and vascular permabilities; the compartments (organs) are connected anatomically. This allows the use of scale-up techniques to forecast new complex distribution in humans' each organ. The concentration of the radiopharmaceutical in various organs was measured at different times. The temporal behavior of biodistribution of 177Lu labeled somatostatin analogues was modeled and drawn as function of time. Conclusion: The variation of pharmaceutical concentration in all organs is characterized with summation of six to nine exponential terms and it approximates our experimental data with precision better than 1%.

Keywords: biodistribution modeling, compartmental analysis, 177Lu labeled somatostatin analogues, neuroendocrine tumors

Procedia PDF Downloads 368
6140 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea

Authors: Jaehyung Jung, Kiman Kim, Heesang Eum

Abstract:

Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.

Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell

Procedia PDF Downloads 220
6139 Pathogenicity of Entomopathogenic Fungi, Beauveria bassiana Against Red Palm Weevil, (Rhynchophorus ferrugineus)

Authors: Muhammad Mamoon-Ur-Rashid, Gul Rehman

Abstract:

Entomopathogenic fungi are considered effective bio-control agents for the management of a range of insect pests including red palm weevil. The research studies were conducted under laboratory and field conditions against 5th and 6th instars larvae and adults of [Rhynchophorus ferrugineus (Olivier)] at the faculty of Agriculture, Gomal University Dera Ismail Khan (KPK) Pakistan. The 5th instar larvae were used under field conditions whereas, the 6th instar larvae and newly emerged adults were used under lab conditions. Conidial suspensions were used at five different concentrations of 1×10⁴, 1×10⁵, 1×10⁶, 1×10⁷ and 1×10⁸, conidia per ml. The data were recorded on the mortality, total larval duration, weight of larvae, pre-pupal and pupal durations, percent pupal formation, pupal weight, percent adult emergence, and adult longevity (♂ and ♀) of red palm weevil. The B. bassiana had varying degrees of pathogenicity against different developmental stages of red palm weevil. The maximum larval duration (113.40 days) was noted when 5th instar larvae were treated with the maximum concentration (1 × 10⁸) of B. bassiana, whereas; the minimum total larval duration of 87.20 days was recorded on the lowest concentration (1 × 10⁴) of B. bassiana. The maximum pre-pual and pupal durations were noted at the maximum concentration. The maximum life span of adult male and females were noted at the lowest concentration, whereas; the minimum values were noted at the maximum concentration. The earliest mortality of red palm weevil was observed 1-day after treatment at higher concentrations of 1 × 10⁷ and 1 × 10⁸, whereas; it was recorded 3 and 4 days after treatment at lower concentrations of 1 × 10⁵ and 1 × 10⁴. At 10 days after treatment, the entomopathogenic fungus caused > 80% cumulative mortality of 5th and 6th instar larvae and adult weevils at the maximum concentrations which were more than double than those recorded at the lowest concentration. Overall, the 5th instar larvae of red palm weevils were most susceptible to the fungus compared to the 6th instar larvae and adult weevils. Based on current findings, it is suggested that entomopathogenic fungi could be used for the safer management of red palm weevil.

Keywords: entomopathogenic nematodes, mortality, red palm weevil, sub-lethal effects

Procedia PDF Downloads 92
6138 Influence of Disintegration of Sida hermaphrodita Silage on Methane Fermentation Efficiency

Authors: Marcin Zielinski, Marcin Debowski, Paulina Rusanowska, Magda Dudek

Abstract:

As a result of sonification, the destruction of complex biomass structures results in an increase in the biogas yield from the conditioned material. First, the amount of organic matter released into the solution due to disintegration was determined. This parameter was determined by changes in the carbon content in liquid phase of the conditioned substrate. The amount of carbon in the liquid phase increased with the prolongation of the sonication time to 16 min. Further increase in the duration of sonication did not cause a statistically significant increase in the amount of organic carbon in the liquid phase. The disintegrated material was then used for respirometric measurements for determination of the impact of the conditioning process used on methane fermentation effectiveness. The relationship between the amount of energy introduced into the lignocellulosic substrate and the amount of biogas produced has been demonstrated. Statistically significant increase in the amount of biogas was observed until sonication of 16 min. Further increase in energy in the conditioning process did not significantly increase the production of biogas from the treated substrate. The biogas production from the conditioned substrate was 17% higher than from the reference biomass at that time. The ultrasonic disintegration method did not significantly affect the observed biogas composition. In all series, the methane content in the produced biogas from the conditioned substrate was similar to that obtained with the raw substrate sample (51.1%). Another method of substrate conditioning was hydrothermal depolymerization. This method consists in application of increased temperature and pressure to substrate. These phenomena destroy the structure of the processed material, the release of organic compounds to the solution, which should lead to increase the amount of produced biogas from such treated biomass. The hydrothermal depolymerization was conducted using an innovative microwave heating method. Control measurements were performed using conventional heating. The obtained results indicate the relationship between depolymerization temperature and the amount of biogas. Statistically significant value of the biogas production coefficients increased as the depolymerization temperature increased to 150°C. Further raising the depolymerization temperature to 180°C did not significantly increase the amount of produced biogas in the respirometric tests. As a result of the hydrothermal depolymerization obtained using microwave at 150°C for 20 min, the rate of biogas production from the Sida silage was 780 L/kg VS, which accounted for nearly 50% increase compared to 370 L/kg VS obtained from the same silage but not depolymerised. The study showed that by microwave heating it is possible to effectively depolymerized substrate. Significant differences occurred especially in the temperature range of 130-150ºC. The pre-treatment of Sida hermaphrodita silage (biogas substrate) did not significantly affect the quality of the biogas produced. The methane concentration was about 51.5% on average. The study was carried out in the framework of the project under program BIOSTRATEG funded by the National Centre for Research and Development No. 1/270745/2/NCBR/2015 'Dietary, power, and economic potential of Sida hermaphrodita cultivation on fallow land'.

Keywords: disintegration, biogas, methane fermentation, Virginia fanpetals, biomass

Procedia PDF Downloads 310
6137 Discrimination between Defective and Non-Defective Coffee Beans Using a Laser Prism Spectrometer

Authors: A. Belay, B. Kebede

Abstract:

The concentration- and temperature-dependent refractive indices of solutions extracted from defective and non-defective coffee beans have been investigated using a He–Ne laser. The refractive index has a linear relationship with the presumed concentration of the coffee solutions in the range of 0.5–3%. Higher and lower values of refractive index were obtained for immature and non-defective coffee beans, respectively. The Refractive index of bean extracts can be successfully used to separate defective from non-defective beans.

Keywords: coffee extract, refractive index, temperature dependence

Procedia PDF Downloads 150
6136 A Compilation of Nanotechnology in Thin Film Solar Cell Devices

Authors: Nurul Amziah Md Yunus, Izhal Abdul Halin, Nasri Sulaiman, Noor Faezah Ismail, Nik Hasniza Nik Aman

Abstract:

Nanotechnology has become the world attention in various applications including the solar cells devices due to the uniqueness and benefits of achieving low cost and better performances of devices. Recently, thin film solar cells such as cadmium telluride (CdTe), copper-indium-gallium-diSelenide (CIGS), copper-zinc-tin-sulphide (CZTS), and dye-sensitized solar cells (DSSC) enhanced by nanotechnology have attracted much attention. Thus, a compilation of nanotechnology devices giving the progress in the solar cells has been presented. It is much related to nanoparticles or nanocrystallines, carbon nanotubes, and nanowires or nanorods structures.

Keywords: nanotechnology, nanocrystalline, nanowires, carbon nanotubes, nanorods, thin film solar cells

Procedia PDF Downloads 627
6135 Soret and Dufour Effect on Variable Viscosity and Thermal Conductivity of an Inclined Magnetic Field with Dissipation in Non-Darcy Porous Medium

Authors: Rasaq A. Kareem, Sulyman O. Salawu

Abstract:

The study of Soret and Dufour effect on variable viscosity and thermal conductivity of an inclined magnetic field with dissipation in non-Darcy porous medium over a continuously stretching sheet for power-law variation in the sheet temperature and concentration are investigated. The viscosity of the fluid flow and thermal conductivity are considered to vary as a function of temperature. The local similarity solutions for different values of the physical parameters are presented for velocity, temperature and concentration. The result shows that variational increase in the values of Soret and Dufour parameters increase the temperature and concentration distribution. Finally, the effects of skin friction, Nusselt and Sherwood numbers which are of physical and engineering interest are considered and discussed.

Keywords: Dufour, non-Darcy Flow, Soret, thermal conductivity, variable viscosity

Procedia PDF Downloads 331
6134 Facile Hydrothermal Synthesis of Hierarchical NiO/ZnCo₂O₄ Nanocomposite for High-Energy Supercapacitor Applications

Authors: Fayssal Ynineb, Toufik Hadjersi, Fatsah Moulai, Wafa Achour

Abstract:

Currently, tremendous attention has been paid to the rational design and synthesis of core/shell heterostructures for high-performance supercapacitors. In this study, the hierarchical NiO/ZnCo₂O₄ Core-Shell Nanorods Arrays were successfully deposited onto ITO substrate via a two-step hydrothermal and electrodeposition methods. The effect of the thin carbon layer between NiO and ZnCo₂O₄ in this multi-scale hierarchical structure was investigated. The selection of this structure was based on: (i) a high specific area of pseudo-capacitive NiO to maximize specific capacitance; (ii) an effective NiO-electrolyte interface to facilitate fast charging/discharging; and (iii) conducting carbon layer between ZnCo₂O₄ and NiO enhance the electric conductivity which reduces energy loss, and the corrosion protection of ZnCo₂O₄ in alkaline electrolyte. The obtained results indicate that hierarchical NiO/ZnCo₂O₄ present a high specific capacitance of 63 mF.cm⁻² at a current density of 0.05 mA.cm⁻² higher than that of pristine NiO and ZnCo₂O₄ of 6 and 3 mF.cm⁻², respectively. The carbon layer improves the electrical conductivity among NiO and ZnCo₂O₄ in the hierarchical NiO/C/ZnCo₂O₄ electrode. As well, the specific capacitance drastically increased to reach 125 mF.cm⁻². Moreover, this multi-scale hierarchical structure exhibits superior cycling stability with ~ 95.7 % capacitance retention after 65k cycles. These results indicate that the NiO/C/ZnCo₂O₄ nanocomposite material is an outstanding electrode material for supercapacitors.

Keywords: NiO/C/ZnCo₂O₄, specific capacitance, hydrothermal, supercapacitors

Procedia PDF Downloads 99
6133 Flexural Properties of Carbon/Polypropylene Composites: Influence of Matrix Forming Polypropylene in Fiber, Powder, and Film States

Authors: Vijay Goud, Ramasamy Alagirusamy, Apurba Das, Dinesh Kalyanasundaram

Abstract:

Thermoplastic composites render new opportunities as effective processing technology while crafting newer complications into processing. One of the notable challenges is in achieving thorough wettability that is significantly deterred by the high viscosity of the long molecular chains of the thermoplastics. As a result of high viscosity, it is very difficult to impregnate the resin into a tightly interlaced textile structure to fill the voids present in the structure. One potential solution to the above problem, is to pre-deposit resin on the fiber, prior to consolidation. The current study compares DREF spinning, powder coating and film stacking methods of predeposition of resin onto fibers. An investigation into the flexural properties of unidirectional composites (UDC) produced from blending of carbon fiber and polypropylene (PP) matrix in varying forms of fiber, powder and film are reported. Dr. Ernst Fehrer (DREF) yarns or friction spun hybrid yarns were manufactured from PP fibers and carbon tows. The DREF yarns were consolidated to yield unidirectional composites (UDCs) referred to as UDC-D. PP in the form of powder was coated on carbon tows by electrostatic spray coating. The powder-coated towpregs were consolidated to form UDC-P. For the sake of comparison, a third UDC referred as UDC-F was manufactured by the consolidation of PP films stacked between carbon tows. The experiments were designed to yield a matching fiber volume fraction of about 50 % in all the three UDCs. A comparison of mechanical properties of the three composites was studied to understand the efficiency of matrix wetting and impregnation. Approximately 19% and 68% higher flexural strength were obtained for UDC-P than UDC-D and UDC-F respectively. Similarly, 25% and 81% higher modulus were observed in UDC-P than UDC-D and UDC-F respectively. Results from micro-computed tomography, scanning electron microscopy, and short beam tests indicate better impregnation of PP matrix in UDC-P obtained through electrostatic spray coating process and thereby higher flexural strength and modulus.

Keywords: DREF spinning, film stacking, flexural strength, powder coating, thermoplastic composite

Procedia PDF Downloads 222
6132 Assesments of Some Environment Variables on Fisheries at Two Levels: Global and Fao Major Fishing Areas

Authors: Hyelim Park, Juan Martin Zorrilla

Abstract:

Climate change influences very widely and in various ways ocean ecosystem functioning. The consequences of climate change on marine ecosystems are an increase in temperature and irregular behavior of some solute concentrations. These changes would affect fisheries catches in several ways. Our aim is to assess the quantitative contribution change of fishery catches along the time and express them through four environment variables: Sea Surface Temperature (SST4) and the concentrations of Chlorophyll (CHL), Particulate Inorganic Carbon (PIC) and Particulate Organic Carbon (POC) at two spatial scales: Global and the nineteen FAO Major Fishing Areas divisions. Data collection was based on the FAO FishStatJ 2014 database as well as MODIS Aqua satellite observations from 2002 to 2012. Some data had to be corrected and interpolated using some existing methods. As the results, a multivariable regression model for average Global fisheries captures contained temporal mean of SST4, standard deviation of SST4, standard deviation of CHL and standard deviation of PIC. Global vector auto-regressive (VAR) model showed that SST4 was a statistical cause of global fishery capture. To accommodate varying conditions in fishery condition and influence of climate change variables, a model was constructed for each FAO major fishing area. From the management perspective it should be recognized some limitations of the FAO marine areas division that opens to possibility to the discussion of the subdivision of the areas into smaller units. Furthermore, it should be treated that the contribution changes of fishery species and the possible environment factor for specific species at various scale levels.

Keywords: fisheries-catch, FAO FishStatJ, MODIS Aqua, sea surface temperature (SST), chlorophyll, particulate inorganic carbon (PIC), particulate organic carbon (POC), VAR, granger causality

Procedia PDF Downloads 484
6131 Molecular Dynamics Analysis onI mpact Behaviour of Carbon Nanotubes and Graphene Sheets

Authors: Sajjad Seifoori

Abstract:

Impact behavior of striker on graphene sheet and carbon nanotube is investigated based on molecular dynamics (MD) simulations. A MD simulation is conducted to obtain the maximum dynamic deflections of a square and rectangular single-layered graphene sheets (SLGSs) with various values of side-length and striker parameter. Effect of (i) chirality, (ii) graphene side-length and nanotube length, (iii) striker mass on the maximum dynamic deflections of graphene and nanotube are investigated. The effect of different types of boundary condition on the maximum dynamic deflections is studied for zigzag and armchair SWCNTs with various aspect ratios (Length/Diameter).

Keywords: impact, molecular dynamic, graphene, spring mass

Procedia PDF Downloads 329
6130 Biosorption of Phenol onto Water Hyacinth Activated Carbon: Kinetics and Isotherm Study

Authors: Manoj Kumar Mahapatra, Arvind Kumar

Abstract:

Batch adsorption experiments were carried out for the removal of phenol from its aqueous solution using water hyancith activated carbon (WHAC) as an adsorbent. The sorption kinetics were analysed using pseudo-first order kinetics and pseudo-second order model, and it was observed that the sorption data tend to fit very well in pseudo-second order model for the entire sorption time. The experimental data were analyzed by the Langmuir and Freundlich isotherm models. Equilibrium data fitted well to the Freundlich model with a maximum biosorption capacity of 31.45 mg/g estimated using Langmuir model. The adsorption intensity 3.7975 represents a favorable adsorption condition.

Keywords: adsorption, isotherm, kinetics, phenol

Procedia PDF Downloads 446
6129 Effect of Thermal Radiation and Chemical Reaction on MHD Flow of Blood in Stretching Permeable Vessel

Authors: Binyam Teferi

Abstract:

In this paper, a theoretical analysis of blood flow in the presence of thermal radiation and chemical reaction under the influence of time dependent magnetic field intensity has been studied. The unsteady non linear partial differential equations of blood flow considers time dependent stretching velocity, the energy equation also accounts time dependent temperature of vessel wall, and concentration equation includes time dependent blood concentration. The governing non linear partial differential equations of motion, energy, and concentration are converted into ordinary differential equations using similarity transformations solved numerically by applying ode45. MATLAB code is used to analyze theoretical facts. The effect of physical parameters viz., permeability parameter, unsteadiness parameter, Prandtl number, Hartmann number, thermal radiation parameter, chemical reaction parameter, and Schmidt number on flow variables viz., velocity of blood flow in the vessel, temperature and concentration of blood has been analyzed and discussed graphically. From the simulation study, the following important results are obtained: velocity of blood flow increases with both increment of permeability and unsteadiness parameter. Temperature of the blood increases in vessel wall as Prandtl number and Hartmann number increases. Concentration of the blood decreases as time dependent chemical reaction parameter and Schmidt number increases.

Keywords: stretching velocity, similarity transformations, time dependent magnetic field intensity, thermal radiation, chemical reaction

Procedia PDF Downloads 92
6128 Optimization of Platinum Utilization by Using Stochastic Modeling of Carbon-Supported Platinum Catalyst Layer of Proton Exchange Membrane Fuel Cells

Authors: Ali Akbar, Seungho Shin, Sukkee Um

Abstract:

The composition of catalyst layers (CLs) plays an important role in the overall performance and cost of the proton exchange membrane fuel cells (PEMFCs). Low platinum loading, high utilization, and more durable catalyst still remain as critical challenges for PEMFCs. In this study, a three-dimensional material network model is developed to visualize the nanostructure of carbon supported platinum Pt/C and Pt/VACNT catalysts in pursuance of maximizing the catalyst utilization. The quadruple-phase randomly generated CLs domain is formulated using quasi-random stochastic Monte Carlo-based method. This unique statistical approach of four-phase (i.e., pore, ionomer, carbon, and platinum) model is closely mimic of manufacturing process of CLs. Various CLs compositions are simulated to elucidate the effect of electrons, ions, and mass transport paths on the catalyst utilization factor. Based on simulation results, the effect of key factors such as porosity, ionomer contents and Pt weight percentage in Pt/C catalyst have been investigated at the represented elementary volume (REV) scale. The results show that the relationship between ionomer content and Pt utilization is in good agreement with existing experimental calculations. Furthermore, this model is implemented on the state-of-the-art Pt/VACNT CLs. The simulation results on Pt/VACNT based CLs show exceptionally high catalyst utilization as compared to Pt/C with different composition ratios. More importantly, this study reveals that the maximum catalyst utilization depends on the distance spacing between the carbon nanotubes for Pt/VACNT. The current simulation results are expected to be utilized in the optimization of nano-structural construction and composition of Pt/C and Pt/VACNT CLs.

Keywords: catalyst layer, platinum utilization, proton exchange membrane fuel cell, stochastic modeling

Procedia PDF Downloads 121
6127 Zero Valent Iron Algal Biocomposite for the Removal of Crystal Violet from Aqueous Solution: Box-Behnken Optimization and Fixed Bed Column Studies

Authors: M. Jerold, V. Sivasubramanian

Abstract:

In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite a marine algal based biosorbent was used for the removal of simulated crystal violet (CV) in batch and continuous fixed bed operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. The effect of various column parameters like bed depth (3, 6 and 9 cm), flow rate (5, 10 and 15 mL/min) and influent CV concentration (5, 10 and 15 mg/L) were investigated. The exhaustion time increased with increase of bed depth, influent CV concentration and decrease of flow rate. Adam-Bohart, Thomas and Yoon-Nelson models were used to predict the breakthrough curve and to evaluate the model parameters. Out of these models, Thomas and Yoon-Nelson models well described the experimental data. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater.

Keywords: algae, biosorption, zero-valent, dye, wastewater

Procedia PDF Downloads 196
6126 Co-Composting of Poultry Manure with Different Organic Amendments

Authors: M. E. Silva, I. Brás

Abstract:

To study the influence of different organic amendments on the quality of poultry manure compost, three pilot composting trials were carried out with different mixes: poultry manure/carcasse meal/ashes/grape pomace (Pile 1), poultry manure/ cellulosic sludge (Pile 2) and poultry manure (Pile 3). For all piles, wood chips were applied as bulking agent. The process was monitored, over time, by evaluating standard physical and chemical parameters, such as, pH, electric conductivity, moisture, organic matter and ash content, total carbon and total nitrogen content, carbon/nitrogen ratio (C/N) and content in mineral elements. Piles 1 and 2 reached a thermophilic phase, however having different trends. Pile 1 reached this phase earlier than Pile 2. For both, the pH showed a slight alkaline character and the electric conductivity was lower than 2 mS/cm. Also, the initial C/N value was 22 and reached values lower than 15 at the end of composting process. The total N content of the Pile 1 increased slightly during composting, in contrast with the others piles. At the end of composting process, the phosphorus content ranged between 54 and 236 mg/kg dry matter, for Pile 2 and 3, respectively. Generally, the Piles 1 and 3 exhibited similar heavy metals content. This study showed that organic amendments can be used as carbon source, given that the final composts presented parameters within the range of those recommended in the 2nd Draft of EU regulation proposal (DG Env.A.2 2001) for compost quality.

Keywords: co-composting, compost quality, organic ammendment, poultry manure

Procedia PDF Downloads 305
6125 A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods

Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Sun Ho Ko, Hyun Kyung Yoon, Hong Gun Kim, Lee Ku Kwac

Abstract:

The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated. the reality is, however, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside. to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, Interlaminar Shear Strength test. The Interlaminar Shear Strength test result confirmed that the newly proposed three lamination methods, i.e. the Roll, Half and Zigzag laminations, presented more excellent strengths compared to the conventional Ply lamination. The interlaminar shear strength in the roll method with relatively dense fiber distribution was approximately 1.75% higher than that in the existing ply lamination method, and in the half method, it was approximately 0.78% higher.

Keywords: carbon fiber reinforced plastic(CFRP), pre-impregnation, laminating method, interlaminar shear strength (ILSS)

Procedia PDF Downloads 372
6124 Development of a Combustible Gas Detector with Two Sensor Modules to Enable Measuring Range of Low Concentration

Authors: Young Gyu Kim, Sangguk Ahn, Gyoutae Park, Hiesik Kim

Abstract:

In the gas industrial fields, there are many problems to detect extremely small amounts of combustible gas (CH₄) if a conventional semiconductor is used. Those reasons are that measuring is difficult at the low concentration level, the stabilization time is long, and an initial response time is slow. In this study, we propose a method to solve these issues using two specific sensors to overcome the circumstances of temperature and humidity. This idea is to combine a catalytic and a semiconductor type sensor and to utilize every advantage from every sensor’s characteristic. In order to achieve the goal, we reduced fluctuations of a gas sensor for temperature and humidity by applying designed circuits for sensing temperature and humidity. And we induced the best calibration line of gas sensors through adjusting a weight value corresponding to changeable patterns of temperature and humidity after their data are previously acquired and stored. We proposed and developed the gas leak detector using two sensor modules, which is first operated by a semiconductor sensor for measuring small gas quantities and second a catalytic type sensor is detected if measuring range of the first sensor is beyond. We conclusively verified characteristics of sharp sensitivity and fast response time against even at lower gas concentration level through experiments other than a conventional gas sensor. We think that our proposed idea is very useful if another gas leak is developed to enable measuring extremely small quantities of toxic and flammable gases.

Keywords: gas sensor, leak detector, lower concentration, and calibration

Procedia PDF Downloads 240
6123 Urban Greenery in the Greatest Polish Cities: Analysis of Spatial Concentration

Authors: Elżbieta Antczak

Abstract:

Cities offer important opportunities for economic development and for expanding access to basic services, including health care and education, for large numbers of people. Moreover, green areas (as an integral part of sustainable urban development) present a major opportunity for improving urban environments, quality of lives and livelihoods. This paper examines, using spatial concentration and spatial taxonomic measures, regional diversification of greenery in the cities of Poland. The analysis includes location quotients, Lorenz curve, Locational Gini Index, and the synthetic index of greenery and spatial statistics tools: (1) To verify the occurrence of strong concentration or dispersion of the phenomenon in time and space depending on the variable category, and, (2) To study if the level of greenery depends on the spatial autocorrelation. The data includes the greatest Polish cities, categories of the urban greenery (parks, lawns, street greenery, and green areas on housing estates, cemeteries, and forests) and the time span 2004-2015. According to the obtained estimations, most of cites in Poland are already taking measures to become greener. However, in the country there are still many barriers to well-balanced urban greenery development (e.g. uncontrolled urban sprawl, poor management as well as lack of spatial urban planning systems).

Keywords: greenery, urban areas, regional spatial diversification and concentration, spatial taxonomic measure

Procedia PDF Downloads 286
6122 Temperature Control and Comfort Level of Elementary School Building with Green Roof in New Taipei City, Taiwan

Authors: Ying-Ming Su, Mei-Shu Huang

Abstract:

To mitigate the urban heat island effect has become a global issue facing the challenge of climate change. Through literature reviews, plant photosynthesis can reduce the carbon dioxide and mitigate the urban heat island effect relatively. Because there are not enough open space and park, green roof has become an important policy in Taiwan. We selected elementary school buildings in northern New Taipei City as research subjects since elementary school is asked priority to build green roof and important educational place to promote green roof concept. Testo 175-H1 recording device was used to record the temperature and humidity difference between roof surface and interior space below roof with and without green roof for the long-term. We also use questionnaire to investigate the awareness of comfort level of green roof and sensation of teachers and students of the elementary school. The results indicated the temperature of roof without greening was higher than that with greening about 2°C. But sometimes during noontime, the temperature of green roof was higher than that of non-green roof related to the character of the accumulation and dissipation of heat of greening probably. The temperature of interior space below green roof was normally lower than that without green roof about 1°C showed that green roof could lower the temperature. The humidity of the green roof was higher than the one without greening also indicated that green roof retained water better. Teachers liked to combine green roof concept in the curriculum, students wished all classes can take turns to maintain the green roof. Teachers and students that school had integrated green roof concept in the curriculum were more willing to participate in the maintenance work of green roof. Teachers and students who may access and touch the green roof can be more aware of the green roof benefit. We suggest architect to increase the accessibility and visibility of green roof, such as a part of the activity space. This idea can be a reference of the green roof curriculum design.

Keywords: comfort level, elementary school, green roof, heat island effect

Procedia PDF Downloads 416
6121 Flow Performance of Hybrid Cement Based Mortars

Authors: Z. Abdollahnejad, M. Kheradmand, F. Pacheco Torgal

Abstract:

The workability of hybrid alkaline cements is a field of knowledge that still needs further research efforts. This paper reports experimental results of 32 hybrid cement mixes regarding the joint effect of sodium hydroxide concentration, the use of a commercial superplasticizer and a biopolymer on the flow and compressive strength performance. The results show that the use of commercial admixtures led to a slightly increase in the flow of mortars with lower sodium hydroxide concentration.

Keywords: waste reuse, fly ash, waste glass, hybrid cement, biopolymer, polycarboxylate, flow

Procedia PDF Downloads 307
6120 Destruction of Colon Cells by Nanocontainers of Ferromagnetic

Authors: Lukasz Szymanski, Zbigniew Kolacinski, Grzegorz Raniszewski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza, Karolina Przybylowska-Sygut, Ireneusz Majsterek, Zbigniew Kaminski, Justyna Fraczyk, Malgorzata Walczak, Beata Kolasinska, Adam Bednarek, Joanna Konka

Abstract:

The aim of this work is to investigate the influence of electromagnetic field from the range of radio frequencies on the desired nanoparticles for cancer therapy. In the article, the development and demonstration of the method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nanocontainers. The methodology of the production carbon - ferromagnetic nanocontainers (FNCs) includes: The synthesis of carbon nanotubes, chemical, and physical characterization, increasing the content of a ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. The ferromagnetic nanocontainers were synthesised in CVD and microwave plasma system. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Pristine ferromagnetic carbon nanotubes are not suitable for application in medicine and biotechnology. Appropriate functionalization of ferromagnetic carbon nanotubes allows to receiving materials useful in medicine. Finally, a product contains folic acids on the surface of FNCs. The folic acid is a ligand of folate receptors – α which is overexpressed on the surface of epithelial tumours cells. It is expected that folic acids will be recognized and selectively bound by receptors presented on the surface of tumour cells. In our research, FNCs were covalently functionalized in a multi-step procedure. Ferromagnetic carbon nanotubes were oxidated using different oxidative agents. For this purpose, strong acids such as HNO3, or mixture HNO3 and H2SO4 were used. Reactive carbonyl and carboxyl groups were formed on the open sides and at the defects on the sidewalls of FNCs. These groups allow further modification of FNCs as a reaction of amidation, reaction of introduction appropriate linkers which separate solid surface of FNCs and ligand (folic acid). In our studies, amino acid and peptide have been applied as ligands. The last step of chemical modification was reaction-condensation with folic acid. In all reaction as coupling reagents were used derivatives of 1,3,5-triazine. The first trials in the device for hyperthermal RF generator have been done. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz. Obtained functionalized nanoparticles enabled to reach the temperature of denaturation tumor cells in given frequencies.

Keywords: cancer colon cells, carbon nanotubes, hyperthermia, ligands

Procedia PDF Downloads 313
6119 The Impact of Air Pollution on Health and the Environment: The Case of Cement Beni-Saf, Western Algeria

Authors: N. Hachemi, I. Benmehdi, O. Hasnaoui

Abstract:

The air like water is an essential element for living beings. Each day, a man breathes about 20m3 of air. It originally consists of a set of gas whose presence and concentrations correspond to the needs of life. This study focuses on air pollution by smoke and dust emitted from the chimney of the cement works of Beni Saf, pathological and their impact on the environment. Dust of the cement plant are harmless to permissible levels for living organisms, but the two combined phenomena namely the release of dust and aridity of the climate, which severely marked area of Beni Saf; have contributed adverse effects in on human health and the degradation of vegetation cover and species especially weakened by environmental stress. The most visible impact is certainly the deposition of dust on the surrounding areas of the cement factory, and seriously affecting the aesthetics of the landscape. Health problems are more important inside and outside the factory. Among the diseases notable caused by the cement works are: deafness, heart disease, asthma and mental. The dust of the cement works is mainly composed of fine particles of limestone, clay, free lime, silicates and also loaded of the gases such as carbon dioxide gas CO2. The accumulation of this gas in the atmosphere is directly involved in the phenomenon of increasing of greenhouse effect. Some gases, for example, are directly toxic. They can change the climate, changing precipitation types and become a greater source of stress by drought, etc. The environment also suffers from air pollution indirectly; it is more precisely the acid rain. They are produced by the combustion of non-metals in air. Acid rain has consequences for contaminating the soil, weakening the flora, fauna and acidifies lakes. Finally, the pollution problems are multiple and specific dust. It can worsen and change, it has reached epidemic proportions quantitatively and qualitatively disturbing and unpredictable.

Keywords: atmospheric pollution, cement, dust, environment

Procedia PDF Downloads 337
6118 Precious and Rare Metals in Overburden Carbonaceous Rocks: Methods of Extraction

Authors: Tatyana Alexandrova, Alexandr Alexandrov, Nadezhda Nikolaeva

Abstract:

A problem of complex mineral resources development is urgent and priority, it is aimed at realization of the processes of their ecologically safe development, one of its components is revealing the influence of the forms of element compounds in raw materials and in the processing products. In view of depletion of the precious metal reserves at the traditional deposits in the XXI century the large-size open cast deposits, localized in black shale strata begin to play the leading role. Carbonaceous (black) shales carry a heightened metallogenic potential. Black shales with high content of carbon are widely distributed within the scope of Bureinsky massif. According to academician Hanchuk`s data black shales of Sutirskaya series contain generally PGEs native form. The presence of high absorptive towards carbonaceous matter gold and PGEs compounds in crude ore results in decrease of valuable components extraction because of their sorption into dissipated carbonaceous matter.

Keywords: сarbonaceous rocks, bitumens, precious metals, concentration, extraction

Procedia PDF Downloads 246
6117 Properties of Epoxy Composite Reinforced with Amorphous and Crystalline Silica from Rice Husk

Authors: Norul Hisham Hamid, Amir Affan, Ummi Hani Abdullah, Paridah Md. Tahir, Khairul Akmal Azhar, Rahmat Nawai, W. B. H. Wan Sulwani Izzati

Abstract:

The dimensional stability and static bending properties of epoxy composite reinforced with amorphous and crystalline silica were investigated. The amorphous and crystalline silica was obtained by the precipitation method from carbonisation process of the rice husk at a temperature of 600 °C and 1000 °C for 7 hours respectively. The epoxy resin was mixed with 5%, 10% and 15% concentrations of amorphous and crystalline silica. The mixture was stirred for 10 minutes and cured at 28 °C for 72 hours and oven dried at 80 °C for 72 hours. The scanning electron microscope image showed the silica sized of 10-30nm was obtained. The water absorption and thickness swelling of epoxy/amorphous silica composite was not significantly different with silica concentration ranged from 0.08% to 0.09% and 0.17% to 0.20% respectively. The maximum modulus of rupture (85 MPa) and modulus of elasticity (3284 MPa) were achieved for 10% silica concentration. For epoxy/crystalline silica composite; the water absorption and thickness swelling were also not significantly different with silica concentration, ranged from 0.08% to 0.11% and 0.16% to 0.18% respectively. The maximum modulus of rupture (47.9 MPa) and modulus of elasticity (2760 MPa) were achieved for 10% silica concentration. Overall, the water absorption and thickness swelling were almost identical for epoxy composite made from either amorphous or crystalline silica. The epoxy composite made from amorphous silica was stronger than crystalline silica.

Keywords: epoxy, composite, dimensional stability, static bending, silica

Procedia PDF Downloads 215
6116 Container Chaos: The Impact of a Casual Game on Learning and Behavior

Authors: Lori L. Scarlatos, Ryan Courtney

Abstract:

This paper explores the impact that playing a casual game can have on a player's learning and subsequent behavior. A casual mobile game, Container Chaos, was created to teach undergraduate students about the carbon footprint of various disposable beverage containers. Learning was tested with a short quiz, and behavior was tested by observing which beverage containers players choose when offered a drink and a snack. The game was tested multiple times, under a variety of different circumstances. Findings of these tests indicate that, with extended play over time, players can learn new information and sometimes even change their behavior as a result. This has implications for how other casual games can be used to teach concepts and possibly modify behavior.

Keywords: behavior, carbon footprint, casual games, environmental impact, material sciences

Procedia PDF Downloads 160