Search results for: Adult dataset
896 MicroRNA Differential Profiling in Hepatitis C Patients Undergoing Major Surgeries: Propofol versus Sevoflurane Anesthesia
Authors: Hala Demerdash, Ola M. Zanaty, Emad Eldin Arida
Abstract:
Background: This study investigated the micoRNA expression changes induced by Sevoflurane and Propofol and their effects on liver functions. Patients and methods: The study was designed as randomized controlled study, carried out on 200 adult patients, scheduled for major surgeries under general anesthesia (GA). Patients were randomly divided into four groups; groups SC and PC included chronic hepatitis C (CHC) patients where SC group are patients receiving Sevoflurane, and PC group are patients receiving Propofol anesthesia. While S and P groups included non- hepatitis patients; S group are patients receiving Sevoflurane and P group are patients receiving Propofol. Anesthesia in Group S and SC patients was maintained by sevoflurane, while anesthesia in Group P and PC patients was maintained by propofol infusion. Blood samples were analyzed for PT, PTT and liver enzymes. Serum samples were analyzed for microRNA before and after surgery. Results: Results show miRNA-122 and miRNA-21 were absent in serum of S and P groups in pre-operative samples. However, they were expressed in SC and PC groups. In post-operative samples; miRNA-122 revealed an increased expression in all groups; with more exaggerated response in SC group. On the other hand miRNA-21 revealed increased expression in both SC and PC groups; a slight expression in S group with absent expression in P group. There was a post-operative negative correlation between miR-122 and ALT (r=-0.46) in SC group and (r=-0.411) in PC group and positive correlation between ALT and miR-21 (r=0.335) in SC group and (r=0.379) in PC group. The amount of blood loss was positively correlated with miR-122 (r=0.366) in SC group and (r=0.384) in PC group. Conclusion: Propofol anesthesia is safer than Sevoflurane anesthesia in patients with CHC. Sevoflurane and Propofol anesthesia affect miRNA expression in both CHC and non-hepatitis patients.Keywords: anesthesia, chronic hepatitis C, micoRNA, propofol, sevoflurane
Procedia PDF Downloads 342895 Environmental Controls on the Distribution of Intertidal Foraminifers in Sabkha Al-Kharrar, Saudi Arabia: Implications for Sea-Level Changes
Authors: Talha A. Al-Dubai, Rashad A. Bantan, Ramadan H. Abu-Zied, Brian G. Jones, Aaid G. Al-Zubieri
Abstract:
Contemporary foraminiferal samples sediments were collected from the intertidal sabkha of Al-Kharrar Lagoon, Saudi Arabia, to study the vertical distribution of Foraminifera and, based on a modern training set, their potential to develop a predictor of former sea-level changes in the area. Based on hierarchical cluster analysis, the intertidal sabkha is divided into three vertical zones (A, B & C) represented by three foraminiferal assemblages, where agglutinated species occupied Zone A and calcareous species occupied the other two zones. In Zone A (high intertidal), Agglutinella compressa, Clavulina angularis and C. multicamerata are dominant species with a minor presence of Peneroplis planatus, Coscinospira hemprichii, Sorites orbiculus, Quinqueloculina lamarckiana, Q. seminula, Ammonia convexa and A. tepida. In contrast, in Zone B (middle intertidal) the most abundant species are P. planatus, C. hemprichii, S. orbiculus, Q. lamarckiana, Q. seminula and Q. laevigata, while Zone C (low intertidal) is characterised by C. hemprichii, Q. costata, S. orbiculus, P. planatus, A. convexa, A. tepida, Spiroloculina communis and S. costigera. A transfer function for sea-level reconstruction was developed using a modern dataset of 75 contemporary sediment samples and 99 species collected from several transects across the sabkha. The model provided an error of 0.12m, suggesting that intertidal foraminifers are able to predict the past sea-level changes with high precision in Al-Kharrar Lagoon, and thus the future prediction of those changes in the area.Keywords: Lagoonal foraminifers, intertidal sabkha, vertical zonation, transfer function, sea level
Procedia PDF Downloads 169894 Improving Our Understanding of the in vivo Modelling of Psychotic Disorders
Authors: Zsanett Bahor, Cristina Nunes-Fonseca, Gillian L. Currie, Emily S. Sena, Lindsay D.G. Thomson, Malcolm R. Macleod
Abstract:
Psychosis is ranked as the third most disabling medical condition in the world by the World Health Organization. Despite a substantial amount of research in recent years, available treatments are not universally effective and have a wide range of adverse side effects. Since many clinical drug candidates are identified through in vivo modelling, a deeper understanding of these models, and their strengths and limitations, might help us understand reasons for difficulties in psychosis drug development. To provide an unbiased summary of the preclinical psychosis literature we performed a systematic electronic search of PubMed for publications modelling a psychotic disorder in vivo, identifying 14,721 relevant studies. Double screening of 11,000 publications from this dataset so far established 2403 animal studies of psychosis, with the most common model being schizophrenia (95%). 61% of these models are induced using pharmacological agents. For all the models only 56% of publications test a therapeutic treatment. We propose a systematic review of these studies to assess the prevalence of reporting of measures to reduce risk of bias, and a meta-analysis to assess the internal and external validity of these animal models. Our findings are likely to be relevant to future preclinical studies of psychosis as this generation of strong empirical evidence has the potential to identify weaknesses, areas for improvement and make suggestions on refinement of experimental design. Such a detailed understanding of the data which inform what we think we know will help improve the current attrition rate between bench and bedside in psychosis research.Keywords: animal models, psychosis, systematic review, schizophrenia
Procedia PDF Downloads 290893 The Impact of Food Inflation on Poverty: An Analysis of the Different Households in the Philippines
Authors: Kara Gianina D. Rosas, Jade Emily L. Tong
Abstract:
This study assesses the vulnerability of households to food price shocks. Using the Philippines as a case study, the researchers aim to understand how such shocks can cause food insecurity in different types of households. This paper measures the impact of actual food price changes during the food crisis of 2006-2009 on poverty in relation to their spatial location. Households are classified as rural or urban and agricultural or non-agricultural. By treating food prices and consumption patterns as heterogeneous, this study differs from conventional poverty analysis as actual prices are used. Merging the Family, Income and Expenditure Survey (FIES) with the Consumer Price Index dataset (CPI), the researchers were able to determine the effects on poverty measures, specifically, headcount index, poverty gap, and poverty severity. The study finds that, without other interventions, food inflation would lead to a significant increase in the number of households that fall below the poverty threshold, except for households whose income is derived from agricultural activities. It also finds that much of the inflation during these years was fueled by the rise in staple food prices. Essentially, this paper aims to broaden the economic perspective of policymakers with regard to the heterogeneity of impacts of inflation through analyzing the deeper microeconomic levels of different subgroups. In hopes of finding a solution to lessen the inequality gap of poverty between the rural and urban poor, this paper aims to aid policymakers in creating projects targeted towards food insecurity.Keywords: poverty, food inflation, agricultural households, non-agricultural households, net consumption ratio, urban poor, rural poor, head count index, poverty gap, poverty severity
Procedia PDF Downloads 246892 The Role of Urban Development Patterns for Mitigating Extreme Urban Heat: The Case Study of Doha, Qatar
Authors: Yasuyo Makido, Vivek Shandas, David J. Sailor, M. Salim Ferwati
Abstract:
Mitigating extreme urban heat is challenging in a desert climate such as Doha, Qatar, since outdoor daytime temperature area often too high for the human body to tolerate. Recent studies demonstrate that cities in arid and semiarid areas can exhibit ‘urban cool islands’ - urban areas that are cooler than the surrounding desert. However, the variation of temperatures as a result of the time of day and factors leading to temperature change remain at the question. To address these questions, we examined the spatial and temporal variation of air temperature in Doha, Qatar by conducting multiple vehicle-base local temperature observations. We also employed three statistical approaches to model surface temperatures using relevant predictors: (1) Ordinary Least Squares, (2) Regression Tree Analysis and (3) Random Forest for three time periods. Although the most important determinant factors varied by day and time, distance to the coast was the significant determinant at midday. A 70%/30% holdout method was used to create a testing dataset to validate the results through Pearson’s correlation coefficient. The Pearson’s analysis suggests that the Random Forest model more accurately predicts the surface temperatures than the other methods. We conclude with recommendations about the types of development patterns that show the greatest potential for reducing extreme heat in air climates.Keywords: desert cities, tree-structure regression model, urban cool Island, vehicle temperature traverse
Procedia PDF Downloads 392891 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 153890 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 129889 Physics-Informed Convolutional Neural Networks for Reservoir Simulation
Authors: Jiangxia Han, Liang Xue, Keda Chen
Abstract:
Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation
Procedia PDF Downloads 143888 ALEF: An Enhanced Approach to Arabic-English Bilingual Translation
Authors: Abdul Muqsit Abbasi, Ibrahim Chhipa, Asad Anwer, Saad Farooq, Hassan Berry, Sonu Kumar, Sundar Ali, Muhammad Owais Mahmood, Areeb Ur Rehman, Bahram Baloch
Abstract:
Accurate translation between structurally diverse languages, such as Arabic and English, presents a critical challenge in natural language processing due to significant linguistic and cultural differences. This paper investigates the effectiveness of Facebook’s mBART model, fine-tuned specifically for sequence-tosequence (seq2seq) translation tasks between Arabic and English, and enhanced through advanced refinement techniques. Our approach leverages the Alef Dataset, a meticulously curated parallel corpus spanning various domains to capture the linguistic richness, nuances, and contextual accuracy essential for high-quality translation. We further refine the model’s output using advanced language models such as GPT-3.5 and GPT-4, which improve fluency, coherence, and correct grammatical errors in translated texts. The fine-tuned model demonstrates substantial improvements, achieving a BLEU score of 38.97, METEOR score of 58.11, and TER score of 56.33, surpassing widely used systems such as Google Translate. These results underscore the potential of mBART, combined with refinement strategies, to bridge the translation gap between Arabic and English, providing a reliable, context-aware machine translation solution that is robust across diverse linguistic contexts.Keywords: natural language processing, machine translation, fine-tuning, Arabic-English translation, transformer models, seq2seq translation, translation evaluation metrics, cross-linguistic communication
Procedia PDF Downloads 10887 Streptococcus anginosus Infections; Clinical and Bacteriologic Characteristics: A 6-Year Retrospective Study of Adult Patients in Qatar
Authors: Adila Shaukat, Hussam Al Soub, Muna Al Maslamani, Abdullatif Al Khal
Abstract:
Background: The aim of this study was to assess clinical presentation and antimicrobial susceptibility of Streptococcus (S.) anginosus group infections in Hamad General Hospital, a tertiary care hospital in the state of Qatar, which is a multinational community. The S. anginosus group is a subgroup of viridans streptococci that consist of 3 different species: S. anginosus, S. constellatus, and S. intermedius. Although a part of the human bacteria flora, they have potential to cause suppurative infections. Method: We studied a total of 101 patients with S. anginosus group infections from January 2006 until March 2012 by reviewing medical records and identification of organisms by VITEK 2 and MALDI-TOF. Results: The most common sites of infection were skin and soft tissue, intra-abdominal, and bacteremia (28.7%, 24.8%, and 22.7%, respectively). Abscess formation was seen in approximately 30% of patients. Streptococcus constellatus was the most common isolated species (40%) followed by S. anginosus(30%) and S. intermedius(7%). In 23% of specimens, the species was unidentified. The most common type of specimen for organism isolation was blood followed by pus and tissue (50%, 22%, and 8%, respectively). Streptococcus constellatus was more frequently associated with abdominal and skin and soft tissue infections than the other 2 species, whereas S. anginosus was isolated more frequently from blood. All isolates were susceptible to penicillin, ceftriaxone, and vancomycin. Susceptibility to erythromycin and clindamycin was also good, reaching 91% and 95%, respectively. Forty percent of patients needed surgical drainage along with antibiotic therapy. Conclusions: Identification of S. anginosus group to species level is helpful in clinical practice because different species exhibit different pathogenic potentials.Keywords: abscess, bacterial infection, bacteremia, Streptococcus anginosus
Procedia PDF Downloads 143886 Early versus Late Percutaneous Tracheostomy in Critically Ill Adult Mechanically Ventilated Patients
Authors: Kamel Abd Elaziz Mohamed, Ahmed Yehia Mousa, Ahmed Samir ElSawy, Adel Mohamed Saleem
Abstract:
Introduction: Critically ill patients frequently require tracheostomy to simplify long term air way management. While tracheostomy indications have remained unchanged, the timing of elective tracheostomy for the ventilated patient has been questioned. Aim of the work: This study was performed to compare the differences between early and late percutaneous dilatational tracheostomy (PDT) regarding, mechanical ventilation duration (MVD), length of ICU stay, length of hospital stay, incidence of ventilator associated pneumonia and hospital outcome. Patients and methods: Forty patients who met the inclusion criteria were randomly divided into early PDT who had the tracheostomy within the first 10 days of mechanical ventilation (MV) and the late PDT who had the tracheostomy after 10 days of MV. On admission, demographic data and Acute Physiology and Chronic ill Health II and GCS were collected. The duration of mechanical ventilation, ICU length of stay (LOS) and hospital LOS were all calculated. Results: Total of 40 patients were randomized to either early PDT (n= 20) or late PDT (n= 20). There were no significant differences between both groups regarding demographic data or the scores: APACHE II (22.75± 7 vs 24.35 ± 8) and GCS (6.10 ±2 vs 7.10 ± 2.71). An early PDT showed fewer complications vs late procedure, however it was insignificant. There were significant differences between the two groups regarding mean (MVD) which was shorter in early PDT than the late PDT group (32.2± 10.5) vs (20.6 ± 13 days; p= 0.004). Mean ICU stay was shorter in early PDT than late PDT (21 .0± 513.4) vs (40.15 ±12.7 days; p 6 0.001). Mean hospital stay was shorter in early PDT than late PDT (34.60± 18.37) vs (55.60± 25.73 days; p=0.005). Patients with early PDT suffered less sepsis and VAP than late PDT, there was no difference regarding the mortality rate between the two groups. Conclusion: Early PDT is recommended for patients who require prolonged tracheal intubation in the ICU as outcomes like the duration of mechanical ventilation length of ICU stay and hospital stay were significantly shorter in early tracheostomy.Keywords: intensive care unit, early PDT, late PDT, intubation
Procedia PDF Downloads 600885 Mapping of Geological Structures Using Aerial Photography
Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash
Abstract:
Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures
Procedia PDF Downloads 686884 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning
Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah
Abstract:
Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning
Procedia PDF Downloads 33883 Analysing Trends in Rice Cropping Intensity and Seasonality across the Philippines Using 14 Years of Moderate Resolution Remote Sensing Imagery
Authors: Bhogendra Mishra, Andy Nelson, Mirco Boschetti, Lorenzo Busetto, Alice Laborte
Abstract:
Rice is grown on over 100 million hectares in almost every country of Asia. It is the most important staple crop for food security and has high economic and cultural importance in Asian societies. The combination of genetic diversity and management options, coupled with the large geographic extent means that there is a large variation in seasonality (when it is grown) and cropping intensity (how often it is grown per year on the same plot of land), even over relatively small distances. Seasonality and intensity can and do change over time depending on climatic, environmental and economic factors. Detecting where and when these changes happen can provide information to better understand trends in regional and even global rice production. Remote sensing offers a unique opportunity to estimate these trends. We apply the recently published PhenoRice algorithm to 14 years of moderate resolution remote sensing (MODIS) data (utilizing 250m resolution 16 day composites from Terra and Aqua) to estimate seasonality and cropping intensity per year and changes over time. We compare the results to the surveyed data collected by International Rice Research Institute (IRRI). The study results in a unique and validated dataset on the extent and change of extent, the seasonality and change in seasonality and the cropping intensity and change in cropping intensity between 2003 and 2016 for the Philippines. Observed trends and their implications for food security and trade policies are also discussed.Keywords: rice, cropping intensity, moderate resolution remote sensing (MODIS), phenology, seasonality
Procedia PDF Downloads 306882 Impact of Adolescent Smoking on the Behaviour, Academic and Health Aspects in Qatar
Authors: Abdelsalam Gomaa, Mahjabeen Ramzan, Tooba Ali Akbar, Huma Nadeem
Abstract:
The use of tobacco and the health risks linked to it are well known in this day and age due to the presence of easily available information through the internet. The media is a powerful platform that is used by many anti-smoking awareness campaigns to reach their target audience; yet, it has been found that adolescents are taking up smoking every passing day. Half of this smoking population of youngsters resides in Asia alone, which includes Qatar, the focus country of this study. As smoking happens to be one of the largest avoidable causes of serious diseases like cancers and heart problems, children are taking up smoking at an alarming rate everywhere including Qatar. Importance of the health of the citizens of Qatar is one of the pillars of the Qatar vision 2030, which is to ensure a healthy population, both physically and mentally. Since the youth makes up a significant percentage of the population and in order to achieve the health objectives of the Qatar vision 2030, it is essential to ensure the health and well-being of this part of the population of the country as they are the future of Qatar. Children, especially boys who tend to be more aggressive by nature, are highly likely to develop behavioral and health issues due to smoking at an early age. Research conducted around the world has also emphasized on this association between the smokers developing a bad behaviour as well as poor social communication skills. However, due to lack of research into this association, very little is known about the extent to which smoking impacts the children’s academics, health and behaviour. Moreover, a study of this nature has not yet been conducted in Qatar previously as most of the studies focus on adult smokers and ways to minimize the number of smoking habits in universities and workplaces. This study solely focuses on identifying a relationship between smoking and its impacts on the adolescents by conducting a research on different schools across Qatar.Keywords: adolescents, modelling techniques, Qatar, smoking
Procedia PDF Downloads 246881 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network
Authors: Parisa Mansour
Abstract:
Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence
Procedia PDF Downloads 65880 Gross Anatomical and Ultra Structural Microscopic Studies on the Nose of the Dromedary Camel (Camelus Dromederius)
Authors: Mahmoud S Gewaily, Atif Hasan, Mohamed Kassab, Ali A. Mansour
Abstract:
The current study was carried out on the nose of seventeenth healthy adult camels. Specimens were collected from slaughter houses then fixed, dissected and photographed. For ultra structural studies, fresh samples were fixed in different fixatives and prepared for examination by light, scanning and electron microscopes. Grossly, nose of the camel had narrow nostrils, slit like in outline. In the nasal cavity, the nasal vestibule was narrow and has scanty dorsal and lateral cartilaginous support. The Nasal conchae (dorsal, middle and ventral) enclosed the dorsal, middle conchal sinuses and no ventral conchal sinus; instead there was recess and bull a. The ethmoidal conchae (8 in number) were noticeably fewer than in the other domestic animals like ox and horse. The olfactory mucosa was restricted to a small area covering the caudal parts of the ethmoidal conchae. The lining epithelium of the nasal cavity changes gradually from stratified squamous epithelium in the nasal vestibule to pseudo stratified columnar ciliated in the respiratory region and finally, olfactory epithelium covering the caudal parts of the ethmoidal conchae. In the dromedary camel, a special feature was the presence of dense and relatively long hair covering the nostrils and the rostral part of the nasal vestibule. In conclusion, the anatomical features of the nose of the dromedary camel, especially in its rostral parts enable this animal to breathe properly in the sandy dry weather.Keywords: camel nose, anatomy, dromedary camel, nasal vestibule
Procedia PDF Downloads 439879 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences
Authors: C. Xavier Mendieta, J. J McArthur
Abstract:
Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions
Procedia PDF Downloads 306878 Educational Experience, Record Keeping, Genetic Selection and Herd Management Effects on Monthly Milk Yield and Revenues of Dairy Farms in Southern Vietnam
Authors: Ngoc-Hieu Vu
Abstract:
A study was conducted to estimate the record keeping, genetic selection, educational experience, and farm management effect on monthly milk yield per farm, average milk yield per cow, monthly milk revenue per farm, and monthly milk revenue per cow of dairy farms in the Southern region of Vietnam. The dataset contained 5448 monthly record collected from January 2013 to May 2015. Results showed that longer experience increased (P < 0.001) monthly milk yields and revenues. Better educated farmers produced more monthly milk per farm and monthly milk per cow and revenues (P < 0.001) than lower educated farmers. Farm that kept records on individual animals had higher (P < 0.001) for monthly milk yields and revenues than farms that did not. Farms that used hired people produced the highest (p < 0.05) monthly milk yield per farm, milk yield per cow and revenues, followed by farms that used both hire and family members, and lowest values were for farms that used family members only. Farms that used crosses Holstein in herd were higher performance (p < 0.001) for all traits than farms that used purebred Holstein and other breeds. Farms that used genetic information and phenotypes when selecting sires were higher (p < 0.05) for all traits than farms that used only phenotypes and personal option. Farms that received help from Vet, organization staff, or government officials had higher monthly milk yield and revenues than those that decided by owner. These findings suggest that dairy farmers should be training in systematic, must be considered and continuous support to improve farm milk production and revenues, to increase the likelihood of adoption on a sustainable way.Keywords: dairy farming, education, milk yield, Southern Vietnam
Procedia PDF Downloads 332877 Complex Management of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy
Authors: Fahad Almehmadi, Abdullah Alrajhi, Bader K. Alaslab, Abdullah A. Al Qurashi, Hattan A. Hassani
Abstract:
Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is an uncommon, inheritable cardiac disorder characterized by the progressive substitution of cardiac myocytes by fibro-fatty tissues. This pathologic substitution predisposes patients to ventricular arrhythmias and right ventricular failure. The underlying genetic defect predominantly involves genes encoding for desmosome proteins, particularly plakophilin-2 (PKP2). These aberrations lead to impaired cell adhesion, heightening the susceptibility to fibrofatty scarring under conditions of mechanical stress. Primarily, ARVD/C affects the right ventricle, but it can also compromise the left ventricle, potentially leading to biventricular heart failure. Clinical presentations can vary, spanning from asymptomatic individuals to those experiencing palpitations, syncopal episodes, and, in severe instances, sudden cardiac death. The establishment of a diagnostic criterion specifically tailored for ARVD/C significantly aids in its accurate diagnosis. Nevertheless, the task of early diagnosis is complicated by the disease's frequently asymptomatic initial stages, and the overall rarity of ARVD/C cases reported globally. In some cases, as exemplified by the adult female patient in this report, the disease may advance to terminal stages, rendering therapies like Ventricular Tachycardia (VT) ablation ineffective. This case underlines the necessity for increased awareness and understanding of ARVD/C to aid in its early detection and management. Through such efforts, we aim to decrease morbidity and mortality associated with this challenging cardiac disorder.Keywords: ARVD/C, cardiology, interventional cardiology, cardiac electrophysiology
Procedia PDF Downloads 63876 Exploring the Process of Cultivating Tolerance: The Case of a Pakistani University
Authors: Uzma Rashid, Mommnah Asad
Abstract:
As more and more people fall victim to the intolerance that has become a plague globally, academicians are faced with the herculean task of sowing the roots for more tolerant individuals. Being the multilayered task that it is, promoting an acceptance of diversity and pushing an agenda to push back hate requires efforts on multiple levels. Not only does the curriculum need to be in line with such goals, but teachers also need to be trained to cater to the sensitivities surrounding conversations of tolerance and diversity. In addition, institutional support needs to be there to provide conducive conditions for a diversity driven learning process to take place. In reality, teachers have to struggle with forwarding ideas about diversity and tolerance which do not sound particularly risky to be shared but given the current socio-political and religious milieu, can put the teacher in a difficult position and can make the task exponentially challenging. This paper is based on an auto-ethnographic account of teaching undergraduate and graduate courses at a private university in Pakistan. These courses were aimed at teaching tolerance to adult learners through classes focused on key notions pertaining to religion, culture, gender, and society. Authors’ classroom experiences with the students in these courses indicate a marked heightening of religious sensitivities that can potentially threaten a teacher’s life chances and become a hindrance in deep, meaningful conversations, thus lending a superficiality to the whole endeavor. The paper will discuss in detail the challenges that this teacher dealt with in the process, how those were addressed, and locate them in the larger picture of how tolerance can be materialized in current times in the universities in Pakistan and in similar contexts elsewhere.Keywords: tolerance, diversity, gender, Pakistani Universities
Procedia PDF Downloads 157875 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 134874 Mothers and Daughters’ Relationships: The Gender Dialectic in Cross Cultural Comparison
Authors: Ronit Reuven Even Zahav
Abstract:
Context: Mother-daughter relationships are crucial in shaping women's identities, yet research on these relationships during cross-cultural transitions is limited. Research aim: To explore and compare adult mother-daughter relationships among Ethiopian, Russian, and Israeli groups, focusing on gender and ethnicity. Methodology: Qualitative study with 87 participants, included 37 mother-daughter dyads, and 13 mothers, using semi-structured interviews on various themes related to the relationships. Findings: Revealed three relationship patterns among the groups, highlighting differences in sharing, expectations, and stress, with Ethiopian mothers showing distinct characteristics. Theoretical importance: Highlights the impact of intercultural transitions and societal status on mother-daughter relationships, contributing to understanding the gender dialectic. Data collection: Through semi-structured interviews that were thematically coded and analyzed for similarities and differences, providing insights into the relationships. Question addressed: Explored how mother-daughter relationships are influenced by gender, ethnicity, and cross-cultural transitions. Conclusion: Stresses the significance of comprehending the effects of intercultural transitions and social exclusion on mother-daughter relationships, emphasizing the gender dialectic and women's societal status. Cultural aspects of mother-daughter relationships such as sharing and closeness in context of gender expectations of similarity and difference in relationships emphasize the need for a gender-informed tool and contribute to the development of a gender-informed tool that can help comprehend and address inequalities and promote empowerment in mother-daughter relationships within diverse cultural groups.Keywords: gender dialectic, diversity, mother-daughter relationships, gender informed perspectives
Procedia PDF Downloads 17873 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms
Authors: Bliss Singhal
Abstract:
Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression
Procedia PDF Downloads 82872 The Right of Pregnant Girls to Remain in School: Conflicting Human Rights
Authors: Ronelle Prinsloo
Abstract:
Teenage pregnancy in South African schools is a growing concern. In South Africa, many young female learners end their schooling permanently, not because they have completed their studies, but due to pregnancy. The admission policy of public schools is determined by the governing body of such a school, and this policy can determine that a pregnant leaner may not attend school during pregnancy and for a certain period after the birth of the child. This can be seen as an infringement of the rights of the teenage mother to be allowed to attend school. It can also be argued that this conflicts with the best interest of the child as well as the rights of the governing body to determine policy in accordance with the mandate as given to them by the parents and community served by the school. A pregnant learner can argue that the admission policy of a school is discriminatory if it does not allow the pregnant learner to continue her schooling. She may also argue that she is being unfairly discriminated against based on gender because in many instances, the baby’s father is still allowed to go to school. The Constitution (Constitution of the Republic of South Africa, Act 108 of 1996), provides in section 9, that everyone is equal before the law; it goes on to provide that equality includes the full and equal enjoyment of all rights and freedoms and provides those grounds on which one may not be discriminated against including, gender, sex, and pregnancy. Schools should be encouraged to re-enroll students if they have a support system available to assist with the necessary childcare when they attend school. To dramatically increase the number of young people enrolled in alternative pathways such as Further Education and Training or Adult Basic Education and Training must be provided. In addition, alternative systems must offer viable exit opportunities for participants by cohering with further education and economic opportunities.Keywords: admission policy, Constitution of South Africa, human rights, teenage pregnancy
Procedia PDF Downloads 69871 Perceived Structural Empowerment and Work Commitment among Intensive Care nurses in SMC
Authors: Ridha Abdulla Al Hammam
Abstract:
Purpose: to measure the extent of perceived structural empowerment and work commitment the intensive care unit in SMC have in their work place. Background: nurses’ access to power structures (information, recourses, opportunity, and support) directly influences their productivity, retention, and job satisfaction. Exploring nurses’ level and sources of work commitment (affective, normative, and continuance) is very essential to guide nursing leaders making decisions to improve work environment to facilitate effective nursing care. Both concepts (Structural Empowerment and Work Commitment) were never investigated in our critical care unit. Methods: a sample of 50 nurses attained from the Intensive Care Unit (Adult). Conditions for Workplace Effectiveness Questionnaire and Three-Component Model Employee Commitment Survey were used to measure the two concepts respectively. The study is quantitative, descriptive, and correlational in design. Results: the participants reported moderate structural empowerment provided by their work place (M=15 out of 20). The sample perceived high access to opportunity mainly through gaining more skills (M=4.45 out of 5) where the rest power structures were perceived with moderate accessibility. The participants’ affective commitment (M=5.6 out of 7) to work in the ICU overweighed their normative and continuance commitment (M=5.1, M=4.9 out of 7) implying a stronger emotional connection with their unit. Strong positive and significant correlations were observed between the participants’ structural empowerment scores and all work commitment sources. Conclusion: these results provided an insight on aspects of work environment that need to be fostered and improved in our intensive care unit which have a direct linkage to nurses’ work commitment and potentially to their quality of care they provide.Keywords: structural empowerment, commitment, intensive care, nurses
Procedia PDF Downloads 287870 Evaluating the Effectiveness of Combined Psychiatric and Psychotherapeutic Care versus Psychotherapy Alone in the Treatment of Depression and Anxiety in Cancer Patients
Authors: Nathen A. Spitz, Dennis Martin Kivlighan III, Arwa Aburizik
Abstract:
Background and Purpose: Presently, there is a paucity of naturalistic studies that directly compare the effectiveness of psychotherapy versus concurrent psychotherapy and psychiatric care for the treatment of depression and anxiety in cancer patients. Informed by previous clinical trials examining the efficacy of concurrent approaches, this study sought to test the hypothesis that a combined approach would result in the greatest reduction of depression and anxiety symptoms. Methods: Data for this study consisted of 433 adult cancer patients, with 252 receiving only psychotherapy and 181 receiving concurrent psychotherapy and psychiatric care at the University of Iowa Hospitals and Clinics. Longitudinal PHQ9 and GAD7 data were analyzed between both groups using latent growth curve analyses. Results: After controlling for treatment length and provider effects, results indicated that concurrent care was more effective than psychotherapy alone for depressive symptoms (γ₁₂ = -0.12, p = .037). Specifically, the simple slope for concurrent care was -0.25 (p = .022), and the simple slope for psychotherapy alone was -0.13 (p = .006), suggesting that patients receiving concurrent care experienced a greater reduction in depressive symptoms compared to patients receiving psychotherapy alone. In contrast, there were no significant differences between psychotherapy alone and concurrent psychotherapy and psychiatric care in the reduction of anxious symptoms. Conclusions: Overall, as both psychotherapy and psychiatric care may address unique aspects of mental health conditions, in addition to potentially providing synergetic support to each other, a combinatorial approach to mental healthcare for cancer patients may improve outcomes.Keywords: psychiatry, psychology, psycho-oncology, combined care, psychotherapy, behavioral psychology
Procedia PDF Downloads 118869 Legume and Nuts Consumption in Relation to Depression and Anxiety in Iranian Adults
Authors: Ahmad Esmaillzadeh, Javad Anjom-Shoae, Omid Sadeghi,
Abstract:
Background: Although considerable research has been devoted to the link between consumption of legume and nuts and metabolic abnormalities, few studies have examined legume and nuts consumption in relation to psychological disorders. Objective: The current study aimed to examine the association of legume and nuts consumption with depression, anxiety and psychological distress in Iranian adults. Methods: This cross-sectional study was carried out among 3172 adult participants aged 18-55 years. Assessment of legume and nuts consumption was conducted using a validated dish-based 106-item semi-quantitative food frequency questionnaire. The Iranian validated version of Hospital Anxiety and Depression Scale (HADS) was used to examine psychological health. Scores of 8 or more on either subscale in the questionnaire were considered to indicate the presence of depression or anxiety. Data on psychological distress were collected through the use of General Health Questionnaire (GHQ), in which the score of 4 or more was considered as having psychological distress. Results: Mean age of participants was 36.5±7.9 years. Compared with the lowest quintile, men in the highest quintile of legume and nuts consumption had lower odds of anxiety; such that after adjusting for potential confounding variables, men in the top quintile of legume and nuts consumption were 66% less likely to be anxious than those in the bottom quintile (OR: 0.34; 95% CI: 0.14-0.82). Such relationship was not observed among women. We failed to find any significant association between legume plus nuts consumption and depression or psychological distress after adjustment for potential confounders. Conclusion: We found that consumption of legume and nuts was associated with lower odds of anxiety in men, but not in women. No significant association was seen between consumption of legume and nuts and odds of depression or psychological disorder. Further prospective studies are required to confirm these findings.Keywords: anxiety, depression, legumes, nuts, psychological distress
Procedia PDF Downloads 182868 DUSP16 Inhibition Rescues Neurogenic and Cognitive Deficits in Alzheimer's Disease Mice Models
Authors: Huimin Zhao, Xiaoquan Liu, Haochen Liu
Abstract:
The major challenge facing Alzheimer's Disease (AD) drug development is how to effectively improve cognitive function in clinical practice. Growing evidence indicates that stimulating hippocampal neurogenesis is a strategy for restoring cognition in animal models of AD. The mitogen-activated protein kinase (MAPK) pathway is a crucial factor in neurogenesis, which is negatively regulated by Dual-specificity phosphatase 16 (DUSP16). Transcriptome analysis of post-mortem brain tissue revealed up-regulation of DUSP16 expression in AD patients. Additionally, DUSP16 was involved in regulating the proliferation and neural differentiation of neural progenitor cells (NPCs). Nevertheless, whether the effect of DUSP16 on ameliorating cognitive disorders by influencing NPCs differentiation in AD mice remains unclear. Our study demonstrates an association between DUSP16 SNPs and clinical progression in individuals with mild cognitive impairment (MCI). Besides, we found that increased DUSP16 expression in both 3×Tg and SAMP8 models of AD led to NPC differentiation impairments. By silencing DUSP16, cognitive benefits, the induction of AHN and synaptic plasticity, were observed in AD mice. Furthermore, we found that DUSP16 is involved in the process of NPC differentiation by regulating c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, the increased DUSP16 may be regulated by the ETS transcription factor (ELK1), which binds to the promoter region of DUSP16. Loss of ELK1 resulted in decreased DUSP16 mRNA and protein levels. Our data uncover a potential regulatory role for DUSP16 in adult hippocampal neurogenesis and provide a possibility to find the target of AD intervention.Keywords: alzheimer's disease, cognitive function, DUSP16, hippocampal neurogenesis
Procedia PDF Downloads 72867 Reducing the Risk of Alcohol Relapse after Liver-Transplantation
Authors: Rebeca V. Tholen, Elaine Bundy
Abstract:
Background: Liver transplantation (LT) is considered the only curative treatment for end-stage liver disease Background: Liver transplantation (LT) is considered the only curative treatment for end-stage liver disease (ESLD). The effects of alcoholism can cause irreversible liver damage, cirrhosis and subsequent liver failure. Alcohol relapse after transplant occurs in 20-50% of patients and increases the risk for recurrent cirrhosis, organ rejection, and graft failure. Alcohol relapse after transplant has been identified as a problem among liver transplant recipients at a large urban academic transplant center in the United States. Transplantation will reverse the complications of ESLD, but it does not treat underlying alcoholism or reduce the risk of relapse after transplant. The purpose of this quality improvement project is to implement and evaluate the effectiveness of a High-Risk Alcoholism Relapse (HRAR) Scale to screen and identify patients at high-risk for alcohol relapse after receiving an LT. Methods: The HRAR Scale is a predictive tool designed to determine the severity of alcoholism and risk of relapse after transplant. The scale consists of three variables identified as having the highest predictive power for early relapse including, daily number of drinks, history of previous inpatient treatment for alcoholism, and the number of years of heavy drinking. All adult liver transplant recipients at a large urban transplant center were screened with the HRAR Scale prior to hospital discharge. A zero to two ordinal score is ranked for each variable, and the total score ranges from zero to six. High-risk scores are between three to six. Results: Descriptive statistics revealed 25 patients were newly transplanted and discharged from the hospital during an 8-week period. 40% of patients (n=10) were identified as being high-risk for relapse and 60% low-risk (n=15). The daily number of drinks were determined by alcohol content (1 drink = 15g of ethanol) and number of drinks per day. 60% of patients reported drinking 9-17 drinks per day, and 40% reported ≤ 9 drinks. 50% of high-risk patients reported drinking ≥ 25 years, 40% for 11-25 years, and 10% ≤ 11 years. For number of inpatient treatments for alcoholism, 50% received inpatient treatment one time, 20% ≥ 1, and 30% reported never receiving inpatient treatment. Findings reveal the importance and value of a validated screening tool as a more efficient method than other screening methods alone. Integration of a structured clinical tool will help guide the drinking history portion of the psychosocial assessment. Targeted interventions can be implemented for all high-risk patients. Conclusions: Our findings validate the effectiveness of utilizing the HRAR scale to screen and identify patients who are a high-risk for alcohol relapse post-LT. Recommendations to help maintain post-transplant sobriety include starting a transplant support group within the organization for all high-risk patients. (ESLD). The effects of alcoholism can cause irreversible liver damage, cirrhosis and subsequent liver failure. Alcohol relapse after transplant occurs in 20-50% of patients, and increases the risk for recurrent cirrhosis, organ rejection, and graft failure. Alcohol relapse after transplant has been identified as a problem among liver transplant recipients at a large urban academic transplant center in the United States. Transplantation will reverse the complications of ESLD, but it does not treat underlying alcoholism or reduce the risk of relapse after transplant. The purpose of this quality improvement project is to implement and evaluate the effectiveness of a High-Risk Alcoholism Relapse (HRAR) Scale to screen and identify patients at high-risk for alcohol relapse after receiving a LT. Methods: The HRAR Scale is a predictive tool designed to determine severity of alcoholism and risk of relapse after transplant. The scale consists of three variables identified as having the highest predictive power for early relapse including, daily number of drinks, history of previous inpatient treatment for alcoholism, and the number of years of heavy drinking. All adult liver transplant recipients at a large urban transplant center were screened with the HRAR Scale prior to hospital discharge. A zero to two ordinal score is ranked for each variable, and the total score ranges from zero to six. High-risk scores are between three to six. Results: Descriptive statistics revealed 25 patients were newly transplanted and discharged from the hospital during an 8-week period. 40% of patients (n=10) were identified as being high-risk for relapse and 60% low-risk (n=15). The daily number of drinks were determined by alcohol content (1 drink = 15g of ethanol) and number of drinks per day. 60% of patients reported drinking 9-17 drinks per day, and 40% reported ≤ 9 drinks. 50% of high-risk patients reported drinking ≥ 25 years, 40% for 11-25 years, and 10% ≤ 11 years. For number of inpatient treatments for alcoholism, 50% received inpatient treatment one time, 20% ≥ 1, and 30% reported never receiving inpatient treatment. Findings reveal the importance and value of a validated screening tool as a more efficient method than other screening methods alone. Integration of a structured clinical tool will help guide the drinking history portion of the psychosocial assessment. Targeted interventions can be implemented for all high-risk patients. Conclusions: Our findings validate the effectiveness of utilizing the HRAR scale to screen and identify patients who are a high-risk for alcohol relapse post-LT. Recommendations to help maintain post-transplant sobriety include starting a transplant support group within the organization for all high-risk patients.Keywords: alcoholism, liver transplant, quality improvement, substance abuse
Procedia PDF Downloads 116