Search results for: thermal arc discharge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4359

Search results for: thermal arc discharge

2829 Efficiency Improvement of Ternary Nanofluid Within a Solar Photovoltaic Unit Combined with Thermoelectric Considering Environmental Analysis

Authors: Mohsen Sheikholeslami, Zahra Khalili, Ladan Momayez

Abstract:

Impacts of environmental parameters and dust deposition on the efficiency of solar panel have been scrutinized in this article. To gain thermal output, trapezoidal cooling channel has been attached in the bottom of the panel incorporating ternary nanofluid. To produce working fluid, water has been mixed with Fe₃O₄-TiO₂-GO nanoparticles. Also, the arrangement of fins has been considered to grow the cooling rate of the silicon layer. The existence of a thermoelectric layer above the cooling channel leads to higher electrical output. Efficacy of ambient temperature (Ta), speed of wind (V𝓌ᵢₙ𝒹) and inlet temperature (Tᵢₙ) and velocity (Vin) of ternary nanofluid on performance of PVT has been assessed. As Tin increases, electrical efficiency declines about 3.63%. Increase of ambient temperature makes thermal performance enhance about 33.46%. The PVT efficiency decreases about 13.14% and 16.6% with augment of wind speed and dust deposition. CO₂ mitigation has been reduced about 15.49% in presence of dust while it increases about 17.38% with growth of ambient temperature.

Keywords: photovoltaic system, CO₂ mitigation, ternary nanofluid, thermoelectric generator, environmental parameters, trapezoidal cooling channel

Procedia PDF Downloads 83
2828 Study of Li-Rich Layered Cathode Materials for High-Energy Li-ion Batteries

Authors: Liu Li, Kim Seng Lee, Li Lu

Abstract:

The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. They have attracted a lot of attentions due mainly to their high reversible capacity of more than 250 mAh•g-1 at low charge-discharge current. However several drawbacks still hinder their applications, such as voltage decay caused by an undesired phase transformation during cycling and poor rate capability. To conquer these issues, the authors applied F modification methods on the pristine Li1.2Mn0.54Ni0.13Co0.13O2 to enhance its electrochemical performance.

Keywords: Li-ion battery, Li-rich layered cathode material, phase transformation, cycling stability, rate capability

Procedia PDF Downloads 323
2827 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets

Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew

Abstract:

Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.

Keywords: nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus

Procedia PDF Downloads 351
2826 Synthesis and Characterization of Partially Oxidized Graphite Oxide for Solar Energy Storage Applications

Authors: Ghada Ben Hamad, Zohir Younsi, Fabien Salaun, Hassane Naji, Noureddine Lebaz

Abstract:

The graphene oxide (GO) material has attracted much attention for solar energy applications. This paper reports the synthesis and characterization of partially oxidized graphite oxide (GTO). GTO was obtained by modified Hummers method, which is based on the chemical oxidation of natural graphite. Several samples were prepared with different oxidation degree by an adjustment of the oxidizing agent’s amount. The effect of the oxidation degree on the chemical structure and on the morphology of GTO was determined by using Fourier transform infrared (FT-IR) spectroscopy, Energy Dispersive X-ray Spectroscopy (EDS), and scanning electronic microscope (SEM). The thermal stability of GTO was evaluated by using thermogravimetric analyzer (TGA) in Nitrogen atmosphere. The results indicate high degree oxidation of graphite oxide for each sample, proving that the process is efficient. The GTO synthesized by modified Hummers method shows promising characteristics. Graphene oxide (GO) obtained by exfoliation of GTO are recognized as a good candidate for thermal energy storage, and it will be used as solid shell material in the encapsulation of phase change materials (PCM).

Keywords: modified hummers method, graphite oxide, oxidation degree, solar energy storage

Procedia PDF Downloads 115
2825 Benchmarking of Petroleum Tanker Discharge Operations at a Nigerian Coastal Terminal and Jetty Facilitates Optimization of the Ship–Shore Interface

Authors: Bassey O. Bassey

Abstract:

Benchmarking has progressively become entrenched as a requisite activity for process improvement and enhancing service delivery at petroleum jetties and terminals, most especially during tanker discharge operations at the ship – shore interface, as avoidable delays result in extra operating costs, non-productive time, high demurrage payments and ultimate product scarcity. The jetty and terminal in focus had been operational for 3 and 8 years respectively, with proper operational and logistic records maintained to evaluate their progress over time in order to plan and implement modifications and review of procedures for greater technical and economic efficiency. Regular and emergency staff meetings were held on a team, departmental and company-wide basis to progressively address major challenges that were encountered during each operation. The process and outcome of the resultant collectively planned changes carried out within the past two years forms the basis of this paper, which mirrors the initiatives effected to enhance operational and maintenance excellence at the affected facilities. Operational modifications included a second cargo receipt line designated for gasoline, product loss control at jetty and shore ends, enhanced product recovery and quality control, and revival of terminal–jetty backloading operations. Logistic improvements were the incorporation of an internal logistics firm and shipping agency, fast tracking of discharge procedures for tankers, optimization of tank vessel selection process, and third party product receipt and throughput. Maintenance excellence was achieved through construction of two new lay barges and refurbishment of the existing one; revamping of existing booster pump and purchasing of a modern one as reserve capacity; extension of Phase 1 of the jetty to accommodate two vessels and construction of Phase 2 for two more vessels; regular inspection, draining, drying and replacement of cargo hoses; corrosion management program for all process facilities; and an improved, properly planned and documented maintenance culture. Safety, environmental and security compliance were enhanced by installing state-of-the-art fire fighting facilities and equipment, seawater intake line construction as backup for borehole at the terminal, remediation of the shoreline and marine structures, modern spill containment equipment, improved housekeeping and accident prevention practices, and installation of hi-technology security enhancements, among others. The end result has been observed over the past two years to include improved tanker turnaround time, higher turnover on product sales, consistent product availability, greater indigenous human capacity utilisation by way of direct hires and contracts, as well as customer loyalty. The lessons learnt from this exercise would, therefore, serve as a model to be adapted by other operators of similar facilities, contractors, academics and consultants in a bid to deliver greater sustainability and profitability of operations at the ship – shore interface to this strategic industry.

Keywords: benchmarking, optimisation, petroleum jetty, petroleum terminal

Procedia PDF Downloads 362
2824 A quantitative Analysis of Impact of Potential Variables on the Energy Performance of Old and New Buildings in China

Authors: Yao Meng, Mahroo Eftekhari, Dennis Loveday

Abstract:

Currently, there are two types of heating systems in Chinese residential buildings, with respect to the controllability of the heating system, one is an old heating system without any possibility of controlling room temperature and another is a new heating system that provides temperature control of individual rooms. This paper is aiming to evaluate the impact of potential variables on the energy performance of old and new buildings respectively in China, and to explore how the use of individual room temperature control would change occupants’ heating behaviour and thermal comfort in Chinese residential buildings and its impact on the building energy performance. In the study, two types of residential buildings have been chosen, the new building install personal control on the heating system, together with ‘pay for what you use’ tariffs. The old building comprised uncontrolled heating with payment based on floor area. The studies were carried out in each building, with a longitudinal monitoring of indoor air temperature, outdoor air temperature, window position. The occupants’ behaviour and thermal sensation were evaluated by questionnaires. Finally, use the simulated analytic method to identify the impact of influence variables on energy use for both types of buildings.

Keywords: residential buildings, China, design parameters, energy efficiency, simulation analytics method

Procedia PDF Downloads 548
2823 Effect of Rare Earth Elements on Liquidity and Mechanical Properties of Phase Formation Reaction Change in Cast Iron by Cooling Curve Analysis

Authors: S. Y. Park, S. M. Lee, S. H. Lee, K. M. Lim

Abstract:

In this research analyzed the effects that phase formation reaction change in the grey cast iron makes on characteristics of microstructures, liquidity, and mechanical properties through cooling curve when adding rare earth elements (R.E). This research was analyzed with comparison between the case of not adding the rare earth elements (R.E) into the grey cast iron with the standard composition (as 3.3%C-2.1%Si-0.7%Mn-0.1%S) and the case of adding 0.3% rare earth elements (R.E). The thermal analysis parameters have been drawn through eutectic temperature theoretically calculated, recalescence temperature, and undercooling temperature measured from start of eutectic reaction to end of solidification in the cooling curve obtained by thermal analysis to analyze formation behavior of graphite, and the effects by addition of rare earth elements on this have been reviewed. When adding rare earth elements (R.E), the cause of liquidity slowdown was analyzed trough the solidification starting temperature and change of solidification ending temperature. The strength and hardness have been measured to evaluate the mechanical properties, and the sound tensile strength has been evaluated through quality coefficient after measuring relative hardness and normality degree of tensile strength by calculating theoretical tensile strength and theoretical hardness. The change of Pearlite Inter-lamellar Spacing of matrix microstructure and eutectic cell count of macrostructure was measured to analyze the effects of the rare earth elements on the sound tensile strength. The change of eutectic cell count has been clarified through activation of the eutectic reaction, and the cause of pearlite inter-lamellar spacing clarified through eutectoid reaction temperature.

Keywords: cooling curve, element, grey cast iron, thermal analysis, rare earth element

Procedia PDF Downloads 354
2822 Segregation Patterns of Trees and Grass Based on a Modified Age-Structured Continuous-Space Forest Model

Authors: Jian Yang, Atsushi Yagi

Abstract:

Tree-grass coexistence system is of great importance for forest ecology. Mathematical models are being proposed to study the dynamics of tree-grass coexistence and the stability of the systems. However, few of the models concentrates on spatial dynamics of the tree-grass coexistence. In this study, we modified an age-structured continuous-space population model for forests, obtaining an age-structured continuous-space population model for the tree-grass competition model. In the model, for thermal competitions, adult trees can out-compete grass, and grass can out-compete seedlings. We mathematically studied the model to make sure tree-grass coexistence solutions exist. Numerical experiments demonstrated that a fraction of area that trees or grass occupies can affect whether the coexistence is stable or not. We also tried regulating the mortality of adult trees with other parameters and the fraction of area trees and grass occupies were fixed; results show that the mortality of adult trees is also a factor affecting the stability of the tree-grass coexistence in this model.

Keywords: population-structured models, stabilities of ecosystems, thermal competitions, tree-grass coexistence systems

Procedia PDF Downloads 152
2821 BTEX (Benzene, Toluene, Ethylbenzene and Xylene) Degradation by Cold Plasma

Authors: Anelise Leal Vieira Cubas, Marina de Medeiros Machado, Marília de Medeiros Machado

Abstract:

The volatile organic compounds - BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) petroleum derivatives, have high rates of toxicity, which may carry consequences for human health, biota and environment. In this direction, this paper proposes a method of treatment of these compounds by using corona discharge plasma technology. The efficiency of the method was tested by analyzing samples of BTEX after going through a plasma reactor by gas chromatography method. The results show that the optimal residence time of the sample in the reactor was 8 minutes.

Keywords: BTEX, degradation, cold plasma, ecological sciences

Procedia PDF Downloads 312
2820 Theoretical Approach to Kinetic of Heat Transfer under Irradiation

Authors: Pavlo Selyshchev

Abstract:

A theoretical approach to describe kinetic of heat transfer between an irradiated sample and environment is developed via formalism of the Complex systems and kinetic equations. The irradiated material is a metastable system with non-linear feedbacks, which can give rise to different regimes of buildup and annealing of radiation-induced defects, heating and heat transfer with environment. Irradiation with energetic particles heats the sample and produces defects of the crystal lattice of the sample. The crystal with defects accumulates extra (non-thermal) energy, which is transformed into heat during the defect annealing. Any increase of temperature leads to acceleration of defect annealing, to additional transformation of non-thermal energy into heat and to further growth of the temperature. Thus a non-linear feedback is formed. It is shown that at certain conditions of irradiation this non-linear feedback leads to self-oscillations of the defect density, the temperature of the irradiated sample and the heat transfer between the sample and environment. Simulation and analysis of these phenomena is performed. The frequency of the self-oscillations is obtained. It is determined that the period of the self-oscillations is varied from minutes to several hours depending on conditions of irradiation and properties of the sample. Obtaining results are compared with experimental ones.

Keywords: irradiation, heat transfer, non-linear feed-back, self-oscillations

Procedia PDF Downloads 224
2819 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry

Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim

Abstract:

An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.

Keywords: steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant

Procedia PDF Downloads 305
2818 Modeling the Effects of Leachate-Impacted Groundwater on the Water Quality of a Large Tidal River

Authors: Emery Coppola Jr., Marwan Sadat, Il Kim, Diane Trube, Richard Kurisko

Abstract:

Contamination sites like landfills often pose significant risks to receptors like surface water bodies. Surface water bodies are often a source of recreation, including fishing and swimming, which not only enhances their value but also serves as a direct exposure pathway to humans, increasing their need for protection from water quality degradation. In this paper, a case study presents the potential effects of leachate-impacted groundwater from a large closed sanitary landfill on the surface water quality of the nearby Raritan River, situated in New Jersey. The study, performed over a two year period, included in-depth field evaluation of both the groundwater and surface water systems, and was supplemented by computer modeling. The analysis required delineation of a representative average daily groundwater discharge from the Landfill shoreline into the large, highly tidal Raritan River, with a corresponding estimate of daily mass loading of potential contaminants of concern. The average daily groundwater discharge into the river was estimated from a high-resolution water level study and a 24-hour constant-rate aquifer pumping test. The significant tidal effects induced on groundwater levels during the aquifer pumping test were filtered out using an advanced algorithm, from which aquifer parameter values were estimated using conventional curve match techniques. The estimated hydraulic conductivity values obtained from individual observation wells closely agree with tidally-derived values for the same wells. Numerous models were developed and used to simulate groundwater contaminant transport and surface water quality impacts. MODFLOW with MT3DMS was used to simulate the transport of potential contaminants of concern from the down-gradient edge of the Landfill to the Raritan River shoreline. A surface water dispersion model based upon a bathymetric and flow study of the river was used to simulate the contaminant concentrations over space within the river. The modeling results helped demonstrate that because of natural attenuation, the Landfill does not have a measurable impact on the river, which was confirmed by an extensive surface water quality study.

Keywords: groundwater flow and contaminant transport modeling, groundwater/surface water interaction, landfill leachate, surface water quality modeling

Procedia PDF Downloads 255
2817 Air Breakdown Voltage Prediction in Post-arcing Conditions for Compact Circuit Breakers

Authors: Jing Nan

Abstract:

The air breakdown voltage in compact circuit breakers is a critical factor in the design and reliability of electrical distribution systems. This voltage determines the threshold at which the air insulation between conductors will fail or 'break down,' leading to an arc. This phenomenon is highly sensitive to the conditions within the breaker, such as the temperature and the distance between electrodes. Typically, air breakdown voltage models have been reliable for predicting failure under standard operational temperatures. However, in conditions post-arcing, where temperatures can soar above 2000K, these models face challenges due to the complex physics of ionization and electron behaviour at such high-energy states. Building upon the foundational understanding that the breakdown mechanism is initiated by free electrons and propelled by electric fields, which lead to ionization and, potentially, to avalanche or streamer formation, we acknowledge the complexity introduced by high-temperature environments. Recognizing the limitations of existing experimental data, a notable research gap exists in the accurate prediction of breakdown voltage at elevated temperatures, typically observed post-arcing, where temperatures exceed 2000K.To bridge this knowledge gap, we present a method that integrates gap distance and high-temperature effects into air breakdown voltage assessment. The proposed model is grounded in the physics of ionization, accounting for the dynamic behaviour of free electrons which, under intense electric fields at elevated temperatures, lead to thermal ionization and potentially reach the threshold for streamer formation as Meek's criterion. Employing the Saha equation, our model calculates equilibrium electron densities, adapting to the atmospheric pressure and the hot temperature regions indicative of post-arc temperature conditions. Our model is rigorously validated against established experimental data, demonstrating substantial improvements in predicting air breakdown voltage in the high-temperature regime. This work significantly improves the predictive power for air breakdown voltage under conditions that closely mimic operational stressors in compact circuit breakers. Looking ahead, the proposed methods are poised for further exploration in alternative insulating media, like SF6, enhancing the model's utility for a broader range of insulation technologies and contributing to the future of high-temperature electrical insulation research.

Keywords: air breakdown voltage, high-temperature insulation, compact circuit breakers, electrical discharge, saha equation

Procedia PDF Downloads 79
2816 Traditional Values and Their Adaptation in Social Housing Design: Towards a New Typology and Establishment of 'Airhouse' Standard in Malaysia

Authors: Mohd Firrdhaus Mohd Sahabuddin, Cristina Gonzalez-Longo

Abstract:

Large migration from rural areas to urban areas like Kuala Lumpur has led to some implications for economic, social and cultural development. This high population has placed enormous demand on the existing housing stocks, especially for low-income groups. However, some issues arise, one of which is overheated indoor air temperature. This problem contributes to the high-energy usage that forces huge sums of money to be spent on cooling the house by using mechanical equipment. Therefore, this study focuses on thermal comfort in social housing, and incorporates traditional values into its design to achieve a certain measurement of natural ventilation in a house. From the study, the carbon emission and energy consumption for an air-conditioned house is 67%, 66% higher than a naturally ventilated house. Therefore, this research has come up with a new typology design, which has a large exposed wall area and full-length openings on the opposite walls to increase cross ventilation. At the end of this research, the measurement of thermal comfort for a naturally ventilated building called ‘AirHouse’ has been identified.

Keywords: tropical architecture, natural ventilation, passive design, AirHouse, social housing design

Procedia PDF Downloads 672
2815 An Investigation on Climate Responsive Design Strategies of Apartment Buildings in Athens of the Period 1920-1960s

Authors: Angeliki Chronopoulou, Eleni Alexandrou

Abstract:

This paper thoroughly investigates residential buildings of the period 1920 – 1960 in Athens and evaluates their bioclimatic response and energy performance. A methodology adapted to the specific context of the city is proposed and applied in order to assess and extract results related to the climate analysis of the city of Athens, the general/architectural design and construction characteristics of the apartment buildings constructed during the period 1920 – 1960, the bioclimatic strategies applied on them, and the achieved thermal comfort based on questionnaires answered by their users. The results of the current study indicate that the residential architecture of that period in the city of Athens is adapted to an extend to the local climate with various climate responsive strategies. As an outcome of the analysis, the most frequently applied depending on the period of construction are presented. For this reason, the examined period is divided into 3 sub – periods: 1st period 1920s – 1930s (late neoclassicism & eclecticism), 2nd period 1930s – 1940s (modernism), 3rd period 1940s – 1960s (postwar modernism).

Keywords: Athens, climatic design strategies, residential buildings, middle war and post war architecture, thermal comfort

Procedia PDF Downloads 96
2814 The Genotoxic Effect of Coal Fly Ash of Thermal Power Plant on Raphanus sativus L. (Radish)

Authors: Patel Kailash P, Patel Parimal M

Abstract:

The effect of coal fly ash treatment on the chromosomes of Raphanus sativus L. was investigated. The seeds of Raphanus sativusL. were placed in petri dishes in three replicates and allowed to germinate for five days in different concentration of coal fly ash solution. The root was treated with the diluted, semidiluted, and concentrated solution of fly ash while the control group had distilled water.The total aberration were examined. The mitotic index was calculated and the results were statically evaluated by the analysis of variance 5% significant level. The mitotic index decreased as the concentration increased. The highest mitotic index value was diluted fly ash solution while the least was concentrated fly ash treatment. The results show the most frequent chromosomal abnormalities observed included: chromatid bridge, c-mitosis, and stickiness. Concentrated fly ash solution is much more genotoxic than semidiluted fly ash solution, as it induced more aberrations having percentage abnormalities for the highest concentration tested. Increased fly ash pollution can lead to some irreversible cytogenetic effect in plants. The study is an attempt to corroborate the toxic effect of coal fly ash of thermal power plant on the chromosome of plants. These results will be useful in environmental monitoring of the cytotoxicity of coal fly ash.

Keywords: coal fly-ash, genotoxic, cytogenetic, mitotic index, Raphanus sativus L.

Procedia PDF Downloads 307
2813 A Study of New Window Typology for Palestinian Residential Building for More Sustainable Building

Authors: Nisreen Ardda

Abstract:

Fenestrations are one of the main building envelope elements that play an important role in home social-ecological l factors. They play a vital role in providing natural lighting and ventilation, visual, thermal, and acoustical comfort, and also provide weather-tightness, privacy, a feeling of openness. In most home buildings, fenestrations are controlled manually by the occupants, which significantly impacts occupants' comfort and energy use. Culture plays a central role in the Palestinians window operation behavior. Improved windows design that provides the desired privacy while maintaining the appropriate function of fenestration (natural lighting, thermal comfort, and visual openness) is becoming a necessity. Therefore, this paper proposes a window typology to achieve the social and environmental factors in residential buildings in the West Bank. The window typology and reference building were designed in Rivet 2021, and natural ventilation was carried out in Design Builder 4.3.0.039. The results showed that the proposed typology provides the desired privacy and the feeling of openness without compromising natural ventilation as the existing window did.

Keywords: window design, passive design, sustainable built environment, building material

Procedia PDF Downloads 181
2812 Creeping Control Strategy for Direct Shift Gearbox Based on the Investigation of Temperature Variation of the Wet Clutch

Authors: Biao Ma, Jikai Liu, Man Chen, Jianpeng Wu, Liyong Wang, Changsong Zheng

Abstract:

Proposing an appropriate control strategy is an effective and practical way to address the overheat problems of the wet multi-plate clutch in Direct Shift Gearbox under the long-time creeping condition. To do so, the temperature variation of the wet multi-plate clutch is investigated firstly by establishing a thermal resistance model for the gearbox cooling system. To calculate the generated heat flux and predict the clutch temperature precisely, the friction torque model is optimized by introducing an improved friction coefficient, which is related to the pressure, the relative speed and the temperature. After that, the heat transfer model and the reasonable friction torque model are employed by the vehicle powertrain model to construct a comprehensive co-simulation model for the Direct Shift Gearbox (DSG) vehicle. A creeping control strategy is then proposed and, to evaluate the vehicle performance, the safety temperature (250 ℃) is particularly adopted as an important metric. During the creeping process, the temperature of two clutches is always under the safety value (250 ℃), which demonstrates the effectiveness of the proposed control strategy in avoiding the thermal failures of clutches.

Keywords: creeping control strategy, direct shift gearbox, temperature variation, wet clutch

Procedia PDF Downloads 130
2811 Numerical Modeling of Phase Change Materials Walls under Reunion Island's Tropical Weather

Authors: Lionel Trovalet, Lisa Liu, Dimitri Bigot, Nadia Hammami, Jean-Pierre Habas, Bruno Malet-Damour

Abstract:

The MCP-iBAT1 project is carried out to study the behavior of Phase Change Materials (PCM) integrated in building envelopes in a tropical environment. Through the phase transitions (melting and freezing) of the material, thermal energy can be absorbed or released. This process enables the regulation of indoor temperatures and the improvement of thermal comfort for the occupants. Most of the commercially available PCMs are more suitable to temperate climates than to tropical climates. The case of Reunion Island is noteworthy as there are multiple micro-climates. This leads to our key question: developing one or multiple bio-based PCMs that cover the thermal needs of the different locations of the island. The present paper focuses on the numerical approach to select the PCM properties relevant to tropical areas. Numerical simulations have been carried out with two softwares: EnergyPlusTM and Isolab. The latter has been developed in the laboratory, with the implicit Finite Difference Method, in order to evaluate different physical models. Both are Thermal Dynamic Simulation (TDS) softwares that predict the building’s thermal behavior with one-dimensional heat transfers. The parameters used in this study are the construction’s characteristics (dimensions and materials) and the environment’s description (meteorological data and building surroundings). The building is modeled in accordance with the experimental setup. It is divided into two rooms, cells A and B, with same dimensions. Cell A is the reference, while in cell B, a layer of commercial PCM (Thermo Confort of MCI Technologies) has been applied to the inner surface of the North wall. Sensors are installed in each room to retrieve temperatures, heat flows, and humidity rates. The collected data are used for the comparison with the numerical results. Our strategy is to implement two similar buildings at different altitudes (Saint-Pierre: 70m and Le Tampon: 520m) to measure different temperature ranges. Therefore, we are able to collect data for various seasons during a condensed time period. The following methodology is used to validate the numerical models: calibration of the thermal and PCM models in EnergyPlusTM and Isolab based on experimental measures, then numerical testing with a sensitivity analysis of the parameters to reach the targeted indoor temperatures. The calibration relies on the past ten months’ measures (from September 2020 to June 2021), with a focus on one-week study on November (beginning of summer) when the effect of PCM on inner surface temperatures is more visible. A first simulation with the PCM model of EnergyPlus gave results approaching the measurements with a mean error of 5%. The studied property in this paper is the melting temperature of the PCM. By determining the representative temperature of winter, summer and inter-seasons with past annual’s weather data, it is possible to build a numerical model of multi-layered PCM. Hence, the combined properties of the materials will provide an optimal scenario for the application on PCM in tropical areas. Future works will focus on the development of bio-based PCMs with the selected properties followed by experimental and numerical validation of the materials. 1Materiaux ´ a Changement de Phase, une innovation pour le B ` ati Tropical

Keywords: energyplus, multi-layer of PCM, phase changing materials, tropical area

Procedia PDF Downloads 90
2810 Analysis of SCR-Based ESD Protection Circuit on Holding Voltage Characteristics

Authors: Yong Seo Koo, Jong Ho Nam, Yong Nam Choi, Dae Yeol Yoo, Jung Woo Han

Abstract:

This paper presents a silicon controller rectifier (SCR) based ESD protection circuit for IC. The proposed ESD protection circuit has low trigger voltage and high holding voltage compared with conventional SCR ESD protection circuit. Electrical characteristics of the proposed ESD protection circuit are simulated and analyzed using TCAD simulator. The proposed ESD protection circuit verified effective low voltage ESD characteristics with low trigger voltage and high holding voltage.

Keywords: electro-static discharge (ESD), silicon controlled rectifier (SCR), holding voltage, protection circuit

Procedia PDF Downloads 374
2809 Different Ergonomic Exposures and Infrared Thermal Temperature on Low Back

Authors: Sihao Lin

Abstract:

Objectives: Infrared thermography (IRT) has been little documented in the objective measurement of ergonomic exposure. We aimed to examine the association between different ergonomic exposures and low back skin temperature measured by IRT. Methods: A total of 114 subjects among sedentary students, sports students and cleaning workers were selected as different ergonomic exposure levels. Low back skin temperature was measured by infrared thermography before and post ergonomic exposure. Ergonomic exposure was assessed by Quick Exposure Check (QEC) and quantitative scores were calculated on the low back. Multiple regressions were constructed to examine the possible associations between ergonomic risk exposures and the skin temperature over the low back. Results: Compared to the two student groups, clean workers had significantly higher ergonomic exposure scores on the low back. The low back temperature variations were different among the three groups. The temperature decreased significantly among students with ergonomic exposure (P < 0.01), while it increased among cleaning workers. With adjustment of confounding, the post-exposure temperature and the temperature changes after exposure showed a significantly negative association with ergonomic exposure scores. For maximum temperature, one increasing ergonomic score decreased -0.23◦C (95% CI -0.37, -0.10) of temperature after ergonomic exposure over the low back. Conclusion: There was a significant association between ergonomic exposures and infrared thermal temperature over low back. IRT could be used as an objective assessment of ergonomic exposure on the low back.

Keywords: ergonomic exposure, infrared thermography, musculoskeletal disorders, skin temperature, low back

Procedia PDF Downloads 97
2808 Flexible Coupling between Gearbox and Pump (High Speed Machine)

Authors: Naif Mohsen Alharbi

Abstract:

This paper present failure occurred on flexible coupling installed at oil anf gas operation. Also it presents maintenance ideas implemented on the flexible coupling installed to transmit high torque from gearbox to pump. Basically, the machine train is including steam turbine which drives the pump and there is gearbox located in between for speed reduction. investigation are identifying the root causes, solving and developing the technology designs or bad actor. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implement a improvement. Objective: The main objectives of the investigation are identifying the root causes, solving and developing the technology designs or bad actor. Ultimately, fulfilling the operation productivity, also ensuring better technology, quality and design by solutions. This report provides the study intentionally for continues operation optimization, utilize the advanced opportunity and implemet improvement. Method: The method used in this project was a very focused root cause analysis procedure that incorporated engineering analysis and measurements. The analysis method extensively covers the measuring of the complete coupling dimensions. Including the membranes thickness, hubs, bore diameter and total length, dismantle flexible coupling to diagnose how deep the coupling has been affected. Also, defining failure modes, so that the causes could be identified and verified. Moreover, Vibration analysis and metallurgy test. Lastly applying several solutions by advanced tools (will be mentioned in detail). Results and observation: Design capacity: Coupling capacity is an inadequate to fulfil 100% of operating conditions. Therefore, design modification of service factor to be at least 2.07 is crucial to address this issue and prevent recurrence of similar scenario, especially for the new upgrading project. Discharge fluctuation: High torque flexible coupling encountered during the operation. Therefore, discharge valve behaviour, tuning, set point and general conditions revaluated and modified subsequently, it can be used as baseline for upcoming Coupling design project. Metallurgy test: Material of flexible coupling membrane (discs) tested at the lab, for a detailed metallurgical investigation, better material grade has been selected for our operating conditions,

Keywords: high speed machine, reliabilty, flexible coupling, rotating equipment

Procedia PDF Downloads 64
2807 Effect of Injection Pressure and Fuel Injection Timing on Emission and Performance Characteristics of Karanja Biodiesel and its Blends in CI Engine

Authors: Mohan H., C. Elajchet Senni

Abstract:

In the present of high energy consumption in every sphere of life, renewable energy sources are emerging as alternative to conventional fuels for energy security, mitigating green house gas emission and climate change. There has been a world wide interest in searching for alternatives to petroleum derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar, injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But, high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar ,Injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Various performance, combustion and emission characteristics such as thermal efficiency, and brake specific fuel consumption, maximum cylinder pressure, instantaneous heat release, cumulative heat release with respect to crank angle, ignition lag, combustion duration, HC, NOx, CO, exhaust temperature and smoke intensity were measured.

Keywords: karanja oil, injection pressure, injection timing, karanja oil methyl ester

Procedia PDF Downloads 282
2806 Computational Analysis of Variation in Thrust of Oblique Detonation Ramjet Engine With Adaptive Inlet

Authors: Aditya, Ganapati Joshi, Vinod Kumar

Abstract:

IN THE MODERN-WARFARE ERA, THE PRIME REQUIREMENT IS A HIGH SPEED AND MACH NUMBER. WHEN THE MISSILES STRIKE IN THE HYPERSONIC REGIME THE OPPONENT CAN DETECT IT WITH THE ANTI-DEFENSE SYSTEM BUT CAN NOT STOP IT FROM CAUSING DAMAGE. SO, TO ACHIEVE THE SPEEDS OF THIS LEVEL THERE ARE TWO ENGINES THAT ARE AVAILABLE WHICH CAN WORK IN THIS REGION ARE RAMJET AND SCRAMJET. THE PROBLEM WITH RAMJET STARTS TO OCCUR WHEN MACH NUMBER EXCEEDS 4 AS THE STATIC PRESSURE AT THE INLET BECOMES EQUAL TO THE EXIT PRESSURE. SO, SCRAMJET ENGINE DEALS WITH THIS PROBLEM AS IT NEARLY HAS THE SAME WORKING BUT HERE THE FLOW IS NOT MUCH SLOWED DOWN AS COMPARED TO RAMJET IN THE DIFFUSER BUT IT SUFFERS FROM THE PROBLEMS SUCH AS INLET BUZZ, THERMAL CHOCKING, MIXING OF FUEL AND OXIDIZER, THERMAL HEATING, AND MANY MORE. HERE THE NEW ENGINE IS DEVELOPED ON THE SAME PRINCIPLE AS THE SCRAMJET ENGINE BUT BURNING HAPPENS DUE TO DETONATION INSTEAD OF DEFLAGRATION. THE PROBLEM WITH THE ENGINE STARTS WHEN THE MACH NUMBER BECOMES VARIABLE AND THE INLET GEOMETRY IS FIXED AND THIS LEADS TO INLET SPILLAGE WHICH WILL AFFECT THE THRUST ADVERSELY. SO, HERE ADAPTIVE INLET IS MADE OF SHAPE MEMORY ALLOYS WHICH WILL ENHANCE THE INLET MASS FLOW RATE AS WELL AS THRUST.

Keywords: detonation, ramjet engine, shape memory alloy, ignition delay, shock-boundary layer interaction, eddy dissipation, asymmetric nozzle

Procedia PDF Downloads 99
2805 Non-Centrifugal Cane Sugar Production: Heat Transfer Study to Optimize the Use of Energy

Authors: Fabian Velasquez, John Espitia, Henry Hernadez, Sebastian Escobar, Jader Rodriguez

Abstract:

Non-centrifuged cane sugar (NCS) is a concentrated product obtained through the evaporation of water contain from sugarcane juice inopen heat exchangers (OE). The heat supplied to the evaporation stages is obtained from the cane bagasse through the thermochemical process of combustion, where the thermal energy released is transferred to OE by the flue gas. Therefore, the optimization of energy usage becomes essential for the proper design of the production process. For optimize the energy use, it is necessary modeling and simulation of heat transfer between the combustion gases and the juice and to understand the major mechanisms involved in the heat transfer. The main objective of this work was simulated heat transfer phenomena between the flue gas and open heat exchangers using Computational Fluid Dynamics model (CFD). The simulation results were compared to field measured data. Numerical results about temperature profile along the flue gas pipeline at the measurement points are in good accordance with field measurements. Thus, this study could be of special interest in design NCS production process and the optimization of the use of energy.

Keywords: mathematical modeling, design variables, computational fluid dynamics, overall thermal efficiency

Procedia PDF Downloads 122
2804 Numerical Investigation of Phase Change Materials (PCM) Solidification in a Finned Rectangular Heat Exchanger

Authors: Mounir Baccar, Imen Jmal

Abstract:

Because of the rise in energy costs, thermal storage systems designed for the heating and cooling of buildings are becoming increasingly important. Energy storage can not only reduce the time or rate mismatch between energy supply and demand but also plays an important role in energy conservation. One of the most preferable storage techniques is the Latent Heat Thermal Energy Storage (LHTES) by Phase Change Materials (PCM) due to its important energy storage density and isothermal storage process. This paper presents a numerical study of the solidification of a PCM (paraffin RT27) in a rectangular thermal storage exchanger for air conditioning systems taking into account the presence of natural convection. Resolution of continuity, momentum and thermal energy equations are treated by the finite volume method. The main objective of this numerical approach is to study the effect of natural convection on the PCM solidification time and the impact of fins number on heat transfer enhancement. It also aims at investigating the temporal evolution of PCM solidification, as well as the longitudinal profiles of the HTF circling in the duct. The present research undertakes the study of two cases: the first one treats the solidification of PCM in a PCM-air heat exchanger without fins, while the second focuses on the solidification of PCM in a heat exchanger of the same type with the addition of fins (3 fins, 5 fins, and 9 fins). Without fins, the stratification of the PCM from colder to hotter during the heat transfer process has been noted. This behavior prevents the formation of thermo-convective cells in PCM area and then makes transferring almost conductive. In the presence of fins, energy extraction from PCM to airflow occurs at a faster rate, which contributes to the reduction of the discharging time and the increase of the outlet air temperature (HTF). However, for a great number of fins (9 fins), the enhancement of the solidification process is not significant because of the effect of confinement of PCM liquid spaces for the development of thermo-convective flow. Hence, it can be concluded that the effect of natural convection is not very significant for a high number of fins. In the optimum case, using 3 fins, the increasing temperature of the HTF exceeds approximately 10°C during the first 30 minutes. When solidification progresses from the surfaces of the PCM-container and propagates to the central liquid phase, an insulating layer will be created in the vicinity of the container surfaces and the fins, causing a low heat exchange rate between PCM and air. As the solid PCM layer gets thicker, a progressive regression of the field of movements is induced in the liquid phase, thus leading to the inhibition of heat extraction process. After about 2 hours, 68% of the PCM became solid, and heat transfer was almost dominated by conduction mechanism.

Keywords: heat transfer enhancement, front solidification, PCM, natural convection

Procedia PDF Downloads 183
2803 Wearable System for Prolonged Cooling and Dehumidifying of PPE in Hot Environments

Authors: Lun Lou, Jintu Fan

Abstract:

While personal protective equipment (PPE) prevents the healthcare personnel from exposing to harmful surroundings, it creates a barrier to the dissipation of body heat and perspiration, leading to severe heat stress during prolonged exposure, especially in hot environments. It has been found that most of the existed personal cooling strategies have limitations in achieving effective cooling performance with long duration and lightweight. This work aimed to develop a lightweight (<1.0 kg) and less expensive wearable air cooling and dehumidifying system (WCDS) that can be applied underneath the protective clothing and provide 50W mean cooling power for more than 5 hours at 35°C environmental temperature without compromising the protection of PPE. For the WCDS, blowers will be used to activate an internal air circulation inside the clothing microclimate, which doesn't interfere with the protection of PPE. An air cooling and dehumidifying chamber (ACMR) with a specific design will be developed to reduce the air temperature and humidity inside the protective clothing. Then the cooled and dried air will be supplied to upper chest and back areas through a branching tubing system for personal cooling. A detachable ice cooling unit will be applied from the outside of the PPE to extract heat from the clothing microclimate. This combination allows for convenient replacement of the cooling unit to refresh the cooling effect, which can realize a continuous cooling function without taking off the PPE or adding too much weight. A preliminary thermal manikin test showed that the WCDS was able to reduce the microclimate temperature inside the PPE averagely by about 8°C for 60 minutes when the environmental temperature was 28.0 °C and 33.5 °C, respectively. Replacing the ice cooling unit every hour can maintain this cooling effect, while the longest operation duration is determined by the battery of the blowers, which can last for about 6 hours. This unique design is especially helpful for the PPE users, such as health care workers in infectious and hot environments when continuous cooling and dehumidifying are needed, but the change of protective clothing may increase the risk of infection. The new WCDS will not only improve the thermal comfort of PPE users but can also extend their safe working duration.

Keywords: personal thermal management, heat stress, ppe, health care workers, wearable device

Procedia PDF Downloads 75
2802 Application of Mobile Aluminium Light Structure Housing System in Sustainable Building Process

Authors: Wang Haining, Zhang Hong

Abstract:

In China, rapid urbanization needs more and more buildings constructed for the growing population in cities. With the help of the methodology which contains investigation, contrastive analysis, design based on component with BIM and experiment before real construction, this research based on mobile light structure system, trying to the sustainable problems partly in present China by systematic study. The system cannot replace the permanent heavy structure completely. So the goal is the improvement of the whole building system by the addition of light structure. This house system uses modularized envelopes and standardized connections, which are pre-fabricated and assembled in factories and transported like containers. Aluminum is used as the structural material in this system, and inorganic thermal insulation material used in the envelope, which have high fireproof properties. The relationship between manufactory and construction of the system is progressive hierarchy. They exist as First Industrial, Second Industrial, Third Industrial and Site Assembly Stage. It could maximize the land usage capacity by fully exploit the area where normal permanent architecture can't take advantage of. Not only the building system itself especially the thermal isolated materials used and active solar photovoltaic system equipped can save energy, but also the way of product development is sustainable.

Keywords: aluminum house, light Structure, rapid assembly, repeat construction

Procedia PDF Downloads 490
2801 Professionalism and Responsible Journalism in Nigeria

Authors: Shamsu Abdu Dauda

Abstract:

Mass Media have come to be identified as important agents of development all over the world, especially in conflict situations. In the North-eastern Nigeria, where the insurgency has plagued the population for more than a decade now, mass media as important stakeholders are also expected to showcase a high level of social responsibility in reconstructing, rebuilding, and reengineering the crises-ravaged people in the region. However, the intuition of the mass media can only discharge such important responsibility if they upheld professionalism and responsible journalism. This paper observes that professionalism and responsible journalism practice cannot be attained where there is no responsible media education, which is a basic requirement for transforming the region.

Keywords: media education, professionalism, responsible journalism, North-eastern Nigeria

Procedia PDF Downloads 71
2800 Numerical and Experimental Studies on the Characteristic of the Air Distribution in the Wind-Box of a Circulating Fluidized Bed Boiler

Authors: Xiaozhou Liu, Guangyu Zhu, Yu Zhang, Hongwei Wu

Abstract:

The wind-box is one of the important components of a Circulating Fluidized Bed (CFB) boiler. The uniformity of air flow in the wind-box of is very important for highly efficient operation of the CFB boiler. Non-uniform air flow distribution within the wind-box can reduce the boiler's thermal efficiency, leading to higher energy consumptions. An effective measure to solve this problem is to install an air flow distributing device in the wind-box. In order to validate the effectiveness of the air flow distributing device, visual and velocity distribution uniformity experiments have been carried out under five different test conditions by using a 1:64 scale model of a 220t/hr CFB boiler. It has been shown that the z component of flow velocity remains almost the same at control cross-sections of the wind-box, with a maximum variation of less than 10%. Moreover, the same methodology has been carried out to a full-scale 220t/hr CFB boiler. The hot test results depict that the thermal efficiency of the boiler has increased from 85.71% to 88.34% when tested with an air flow distributing device in place, which is equivalent to a saving of 5,000 tons of coal per year. The economic benefits of this energy-saving technology have been shown to be very significant, which clearly demonstrates that the technology is worth applying and popularizing.

Keywords: circulating fluidized bed, CFB, wind-box, air flow distributing device, visual experiment, velocity distribution uniformity experiment, hot test

Procedia PDF Downloads 173