Search results for: solidified floating organic drop microextraction
1894 Geochemical Study of the Bound Hydrocarbon in the Asphaltene of Biodegraded Oils of Cambay Basin
Authors: Sayani Chatterjee, Kusum Lata Pangtey, Sarita Singh, Harvir Singh
Abstract:
Biodegradation leads to a systematic alteration of the chemical and physical properties of crude oil showing sequential depletion of n-alkane, cycloalkanes, aromatic which increases its specific gravity, viscosity and the abundance of heteroatom-containing compounds. The biodegradation leads to a change in the molecular fingerprints and geochemical parameters of degraded oils, thus make source and maturity identification inconclusive or ambiguous. Asphaltene is equivalent to the most labile part of the respective kerogen and generally has high molecular weight. Its complex chemical structure with substantial microporous units makes it suitable to occlude the hydrocarbon expelled from the source. The occluded molecules are well preserved by the macromolecular structure and thus prevented from secondary alterations. They retain primary organic geochemical information over the geological time. The present study involves the extraction of this occluded hydrocarbon from the asphaltene cage through mild oxidative degradation using mild oxidative reagents like Hydrogen Peroxide (H₂O₂) and Acetic Acid (CH₃COOH) on purified asphaltene of the biodegraded oils of Mansa, Lanwa and Santhal fields in Cambay Basin. The study of these extracted occluded hydrocarbons was carried out for establishing oil to oil and oil to source correlation in the Mehsana block of Cambay Basin. The n-alkane and biomarker analysis through GC and GC-MS of these occluded hydrocarbons show similar biomarker imprint as the normal oil in the area and hence correlatable with them. The abundance of C29 steranes, presence of Oleanane, Gammacerane and 4-Methyl sterane depicts that the oils are derived from terrestrial organic matter deposited in the stratified saline water column in the marine environment with moderate maturity (VRc 0.6-0.8). The oil source correlation study suggests that the oils are derived from Jotana-Warosan Low area. The developed geochemical technique to extract the occluded hydrocarbon has effectively resolved the ambiguity that resulted from the inconclusive fingerprint of the biodegraded oil and the method can be also applied in other biodegraded oils as well.Keywords: asphaltene, biomarkers, correlation, mild oxidation, occluded hydrocarbon
Procedia PDF Downloads 1581893 Pioneering Technology of Night Photo-Stimulation of the Brain Lymphatic System: Therapy of Brain Diseases during Sleep
Authors: Semyachkina-Glushkovskaya Oxana, Fedosov Ivan, Blokhina Inna, Terskov Andrey, Evsukova Arina, Elovenko Daria, Adushkina Viktoria, Dubrovsky Alexander, Jürgen Kurths
Abstract:
In modern neurobiology, sleep is considered a novel biomarker and a promising therapeutic target for brain diseases. This is due to recent discoveries of the nighttime activation of the brain lymphatic system (BLS), playing an important role in the removal of wastes and toxins from the brain and contributes neuroprotection of the central nervous system (CNS). In our review, we discuss that night stimulation of BLS might be a breakthrough strategy in a new treatment of Alzheimer’s and Parkinson’s disease, stroke, brain trauma, and oncology. Although this research is in its infancy, however, there are pioneering and promising results suggesting that night transcranial photostimulation (tPBM) stimulates more effectively lymphatic removal of amyloid-beta from mouse brain than daily tPBM that is associated with a greater improvement of the neurological status and recognition memory of animals. In our previous study, we discovered that tPBM modulates the tone and permeability of the lymphatic endothelium by stimulating NO formation, promoting lymphatic clearance of wastes and toxins from the brain tissues. We also demonstrate that tPBM can also lead to angio- and lymphangiogenesis, which is another mechanism underlying tPBM-mediated stimulation of BLS. Thus, photo-augmentation of BLS might be a promising therapeutic target for preventing or delaying brain diseases associated with BLS dysfunction. Here we present pioneering technology for simultaneous tPBM in humans and sleep monitoring for stimulation of BLS to remove toxins from CNS and modulation of brain immunity. The wireless-controlled gadget includes a flexible organic light-emitting diode (LED) source that is controlled directly by a sleep-tracking device via a mobile application. The designed autonomous LED source is capable of providing the required therapeutic dose of light radiation at a certain region of the patient’s head without disturbing of sleeping patient. To minimize patients' discomfort, advanced materials like flexible organic LEDs were used. Acknowledgment: This study was supported by RSF project No. 23-75-30001.Keywords: brain diseases, brain lymphatic system, phototherapy, sleep
Procedia PDF Downloads 721892 Micro-Cantilever Tests on Hydride Blister and Zirconium Matrix of Zircaloy-4 Cladding Tube
Authors: Ho-A Kim, Jae-Soo Noh
Abstract:
During reactor operation, hydride blister can occur in spent nuclear fuel (SNF) claddings, and it could worsen the integrity of the claddings locally. Hydride blister can be critical when a pinch-type load is applied in the process of SNF handling and transportation. Micro-cantilever tests were performed to evaluate the risk of local hydride blister by comparing the fracture toughness of local hydride blister and pre-hydrided Zr alloy matrix of SNF cladding on a microscale. Hydride blister was generated by a gaseous charging procedure to simulate an SNF cladding. Micro-cantilevers and pre-cracks were ion-milled with the Ga+ ion beam of FEI Helios 600 at 30kV acceleration voltage. Micro-cantilever tests were conducted using PI 85 pico-indenter (HYSTRON) with for sided conductive diamond flat tip (1 μm x 1 μm) at a speed of 5 nm/sec. The results show that the hydride blister specimen could be fractured in the elastic deformation region, and the fracture toughness of the hydride blister specimen could drop up to 60% of that of the pre-hydrided Zr alloy matrix. Therefore, local hydride blister can degrade the integrity of SNF cladding, and the effect of hydride blister should be taken into account when evaluating failure criteria of claddings during handling, storage, and transportation of SNF.Keywords: fracture toughness, hydride blister, micro-cantilever test, spent nuclear fuel cladding.
Procedia PDF Downloads 1371891 A Novel Approach for Energy Utilisation in a Pyrolysis Plant
Authors: S. Murugan, Bohumil Horak
Abstract:
Pyrolysis is one of the possible technologies to derive energy from waste organic substances. In recent years, pilot level and demonstrated plants have been installed in few countries. The heat energy lost during the process is not effectively utilized resulting in less savings of energy and money. This paper proposes a novel approach to integrate a combined heat and power unit(CHP) and reduce the primary energy consumption in a tyre pyrolysis pilot plant. The proposal primarily uses the micro combined heat and power concept that will help to produce both heat and power in the process.Keywords: pyrolysis, waste tyres, waste plastics, biomass, waste heat
Procedia PDF Downloads 3281890 Reliability of Dry Tissues Sampled from Exhumed Bodies in DNA Analysis
Authors: V. Agostini, S. Gino, S. Inturri, A. Piccinini
Abstract:
In cases of corpse identification or parental testing performed on exhumed alleged dead father, usually, we seek and acquire organic samples as bones and/or bone fragments, teeth, nails and muscle’s fragments. The DNA analysis of these cadaveric matrices usually leads to identifying success, but it often happens that the results of the typing are not satisfactory with highly degraded, partial or even non-interpretable genetic profiles. To aggravate the interpretative panorama deriving from the analysis of such 'classical' organic matrices, we must add a long and laborious treatment of the sample that starts from the mechanical fragmentation up to the protracted decalcification phase. These steps greatly increase the chance of sample contamination. In the present work, instead, we want to report the use of 'unusual' cadaveric matrices, demonstrating that their forensic genetics analysis can lead to better results in less time and with lower costs of reagents. We report six case reports, result of on-field experience, in which eyeswabs and cartilage were sampled and analyzed, allowing to obtain clear single genetic profiles, useful for identification purposes. In all cases we used the standard DNA tissue extraction protocols (as reported on the user manuals of the manufacturers such as QIAGEN or Invitrogen- Thermo Fisher Scientific), thus bypassing the long and difficult phases of mechanical fragmentation and decalcification of bones' samples. PCR was carried out using PowerPlex® Fusion System kit (Promega), and capillary electrophoresis was carried out on an ABI PRISM® 310 Genetic Analyzer (Applied Biosystems®), with GeneMapper ID v3.2.1 (Applied Biosystems®) software. The software Familias (version 3.1.3) was employed for kinship analysis. The genetic results achieved have proved to be much better than the analysis of bones or nails, both from the qualitative and quantitative point of view and from the point of view of costs and timing. This way, by using the standard procedure of DNA extraction from tissue, it is possible to obtain, in a shorter time and with maximum efficiency, an excellent genetic profile, which proves to be useful and can be easily decoded for later paternity tests and/or identification of human remains.Keywords: DNA, eye swabs and cartilage, identification human remains, paternity testing
Procedia PDF Downloads 1091889 Biophysical Assessment of the Ecological Condition of Wetlands in the Parkland and Grassland Natural Regions of Alberta, Canada
Authors: Marie-Claude Roy, David Locky, Ermias Azeria, Jim Schieck
Abstract:
It is estimated that up to 70% of the wetlands in the Parkland and Grassland natural regions of Alberta have been lost due to various land-use activities. These losses include ecosystem function and services they once provided. Those wetlands remaining are often embedded in a matrix of human-modified habitats and despite efforts taken to protect them the effects of land-uses on wetland condition and function remain largely unknown. We used biophysical field data and remotely-sensed human footprint data collected at 322 open-water wetlands by the Alberta Biodiversity Monitoring Institute (ABMI) to evaluate the impact of surrounding land use on the physico-chemistry characteristics and plant functional traits of wetlands. Eight physio-chemistry parameters were assessed: wetland water depth, water temperature, pH, salinity, dissolved oxygen, total phosphorus, total nitrogen, and dissolved organic carbon. Three plant functional traits were evaluated: 1) origin (native and non-native), 2) life history (annual, biennial, and perennial), and 3) habitat requirements (obligate-wetland and obligate-upland). Intensity land-use was quantified within a 250-meter buffer around each wetland. Ninety-nine percent of wetlands in the Grassland and Parkland regions of Alberta have land-use activities in their surroundings, with most being agriculture-related. Total phosphorus in wetlands increased with the cover of surrounding agriculture, while salinity, total nitrogen, and dissolved organic carbon were positively associated with the degree of soft-linear (e.g. pipelines, trails) land-uses. The abundance of non-native and annual/biennial plants increased with the amount of agriculture, while urban-industrial land-use lowered abundance of natives, perennials, and obligate wetland plants. Our study suggests that land-use types surrounding wetlands affect the physicochemical and biological conditions of wetlands. This research suggests that reducing human disturbances through reclamation of wetland buffers may enhance the condition and function of wetlands in agricultural landscapes.Keywords: wetlands, biophysical assessment, land use, grassland and parkland natural regions
Procedia PDF Downloads 3331888 Climate Impact on Spider Mite (Tetranychus Sp. Koch) Infesting Som Plant Leaves (Machilus Bombycina King) and Their Sustainable Management
Authors: Sunil Kumar Ghosh
Abstract:
Som plant (Machilus bombycina King) is an important plant in agroforestry system. It is cultivated in north -east part of India. It is cultivated in agricultural land by the marginal farmers for multi-storeyed cultivation with intercropping. Localized cottage industries are involved with this plant like sericulture industry (muga silk worm cultivation). Clothes are produced from this sericulture industry. Leaves of som plants are major food of muga silk worm ( Antherea assama ). Nutritional value of leaves plays an important role in the larval growth and silk productivity. The plant also has timber value. The plant is susceptible to mite pest (Tetranychus sp.) causes heavy damage to tender leaves. Lower population was recorded during 7th to 38th standard week, during 3rd week of February to 4th week of September and higher population was during 46th to 51st standard week, during 3rd week of November to 3rd week of December and peak population (6.06/3 leaves) was recorded on 46th standard week that is on 3rd week of November. Correlation studies revealed that mite population had a significant negative correlation with temperature and non-significant positive correlation with relative humidity. This indicates that activity of mites population increase with the rise of relative humidity and decrease with the rise of temperature. Tobacco leaf extracts was found most effective against mite providing 40.51% suppression, closely followed by extracts of Spilanthes (39.06% suppression). Extracts of Garlic and extracts of Polygonum plant gave moderate results, recording about 38.10% and 37.78% mite suppression respectively. The polygonum (Polygonum hydropiper) plant (floral parts), pongamia (Pongamia pinnata) leaves, garlic (Allium sativum), spilanthes (Spilanthes paniculata) (floral parts) were extracted in methanol. Synthetic insecticides contaminate plant leaves with the toxic chemicals. Plant extracts are of biological origin having low or no hazardous effect on health and environment and so can be incorporated in organic cultivation.Keywords: Abiotic factors, incidence, botanical extracts, organic cultivation, silk industry
Procedia PDF Downloads 1391887 Pulse Method for Investigation of Zr-C Phase Diagram at High Carbon Content Domain under High Temperatures
Authors: Arseniy M. Kondratyev, Sergey V. Onufriev, Alexander I. Savvatimskiy
Abstract:
The microsecond electrical pulse heating technique which provides uniform energy input into an investigated specimen is considered. In the present study we investigated ZrC+C carbide specimens in a form of a thin layer (about 5 microns thick) that were produced using a method of magnetron sputtering on insulating substrates. Specimens contained (at. %): Zr–17.88; C–67.69; N–8.13; O–5.98. Current through the specimen, voltage drop across it and radiation at the wavelength of 856 nm were recorded in the experiments. It enabled us to calculate the input energy, specific heat (from 2300 to 4500 K) and resistivity (referred to the initial dimensions of a specimen). To obtain the true temperature a black body specimen was used. Temperature of the beginning and completion of a phase transition (solid–liquid) was measured.Temperature of the onset of melting was 3150 K at the input energy 2.65 kJ/g; temperature of the completion of melting was 3450 K at the input energy 5.2 kJ/g. The specific heat of the solid phase of investigated carbide calculated using our data on temperature and imparted energy, is close to 0.75 J/gК for temperature range 2100–2800 K. Our results are considered together with the equilibrium Zr-C phase diagram.Keywords: pulse heating, zirconium carbide, high temperatures, melting
Procedia PDF Downloads 3231886 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets
Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew
Abstract:
Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.Keywords: nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus
Procedia PDF Downloads 3561885 Fishing Waste: A Source of Valuable Products through Anaerobic Treatments
Authors: Luisa Maria Arrechea Fajardo, Luz Stella Cadavid Rodriguez
Abstract:
Fish is one of the most commercialized foods worldwide. However, this industry only takes advantage of about 55% of the product's weight, the rest is converted into waste, which is mainly composed of viscera, gills, scales and spines. Consequently, if these wastes are not used or disposed of properly, they cause serious environmental impacts. This is the case of Tumaco (Colombia), the second largest producer of marine fisheries on the Colombian Pacific coast, where artisanal fishermen process more than 50% of the commercialized volume. There, fishing waste is disposed primarily in the ocean, causing negative impacts on the environment and society. Therefore, in the present research, a proposal was made to take advantage of fishing waste through anaerobic treatments, through which it is possible to obtain products with high added value from organic waste. The research was carried out in four stages. First, the production of volatile fatty acids (VFA) in semi-continuous 4L reactors was studied, evaluating three hydraulic retention times (HRT) (10, 7 and 5 days) with four organic loading rates (OLR) (16, 14, 12 and 10 gVS/L/day), the experiment was carried out for 150 days. Subsequently, biogas production was evaluated from the solid digestate generated in the VFA production reactors, initially evaluating the biochemical methane potential (BMP) of 4 total solid concentrations (1, 2, 4 and 6% TS), for 40 days and then, with the optimum TS concentration (2 gVS/L/day), 2 HRT (15 and 20 days) in semi-continuous reactors, were evaluated for 100 days. Finally, the integration of the processes was carried out with the best conditions found, a first phase of VFA production from fishing waste and a second phase of biogas production from unrecovered VFAs and unprocessed material Additionally, an VFA membrane extraction system was included. In the first phase, a liquid digestate with a concentration and VFA production yield of 59.04 gVFA/L and 0.527 gVFA/gVS, respectively, was obtained, with the best condition found (HRT:7 days and OLR: 16 gVS/L/día), where acetic acid and isobutyric acid were the predominant acids. In the second phase of biogas production, a BMP of 0.349 Nm3CH4/KgVS was reached, and it was found as best HRT 20 days. In the integration, the isovaleric, butyric and isobutyric acid were the VFA with the highest percentage of extraction, additionally a 106.67% increase in biogas production was achieved. This research shows that anaerobic treatments are a promising technology for an environmentally safe management of fishing waste and presents the basis of a possible biorefinery.Keywords: biogas production, fishing waste, VFA membrane extraction, VFA production
Procedia PDF Downloads 1171884 Assessing the Recycling Potential of Cupriavidus Necator for Space Travel: Production of Single Cell Proteins and Polyhydroxyalkanoates From Organic Waste
Authors: P. Joris, E. Lombard, X. Cameleyre, G. Navarro, A. Paillet, N. Gorret, S. E. Guillouet
Abstract:
Today, on the international space station, multiple supplies are needed per year to supply food and spare parts and to take out waste. But as it is planned to go longer and further into space these supplies will no longer be possible. The astronaut life support system must be able of continuously transform waste into valuable compounds. Two types of production were identified as critical and could be be supplemented by microorganisms. On the one hand, since microgravity causes rapid muscle loss, single cell proteins (SCPs) could be used as protein rich feed or food. On the other hand, having enough building materials to build an advanced habitat will not be possible only by transporting space goods from earth to mars for example. The bacterium Cupriavidus. necator is well known for its ability to produce a large amount of proteins or of polyhydroxyalkanoate biopolymers (PHAs) depending on its implementation. By coupling the life support system to a 3D-printer, astronauts could be supplied with an unlimited amount of building materials. Additionally, based on the design of the life support system, waste streams have been identified: urea from the crew urine and volatile fatty acids (VFAs) from a first stage of organic waste (excrement and food waste) treatment through anaerobic digestion. Thus, the objective of this, within the Spaceship.Fr project, was to demonstrate the feasibility of producing SCPs and PHAs from VFAs and urea in bioreactor. Because life support systems operate continuously as loops, continuous culture experiments were chosen and the effect of the bioreactor dilution rate on biomass composition was investigated. Total transformation of the carbon source into biomass with high SCP or PHA content was achieved in all cases. We will present the transformation performances of VFAs and urea by the bacteria in bioreactor in terms of titers, yields and productivities but also in terms of the quality of SCP and PHA produced, nucleic acid content. We will further discuss the envisioned integration of our process within life support systems.Keywords: life support system, space travel, waste treatment, single cell proteins, polyhydroxyalkanoates, bioreactor
Procedia PDF Downloads 1211883 Caffeic Acid in Cosmetic Formulations: An Innovative Assessment
Authors: Caroline M. Spagnol, Vera L. B. Isaac, Marcos A. Corrêa, Hérida R. N. Salgado
Abstract:
Phenolic compounds are abundant in the Brazilian plant kingdom and they are part of a large and complex group of organic substances. Cinnamic acids are part of this group of organic compounds, and caffeic acid (CA) is one of its representatives. Antioxidants are compounds which act as free radical scavengers and, in other cases, such as metal chelators, both in the initiation stage and the propagation of oxidative process. The tyrosinase, polyphenol oxidase, is an enzyme that acts at various stages of melanin biosynthesis within the melanocytes and is considered a key molecule in this process. Some phenolic compounds exhibit inhibitory effects on melanogenesis by inhibiting the tyrosinase enzymatic activity and therefore has been the subject of studies. However, few studies have reported the effectiveness of these products and their safety. Objectives: To assess the inhibitory activity of tyrosinase, the antioxidant activity of CA and its cytotoxic potential. The method to evaluate the inhibitory activity of tyrosinase aims to assess the reduction transformation of L-dopa into dopaquinone reactions catalyzed by the enzyme. For evaluating the antioxidant activity was used the analytical methodology of DPPH radical inhibition. The cytotoxicity evaluation was carried out using the MTT method (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide), a colorimetric assay which determines the amount of insoluble violet crystals formed by the reduction of MTT in the mitochondria of living cells. Based on the results obtained during the study, CA has low activity as a depigmenting agent. However, it is a more potent antioxidant than ascorbic acid (AA), since a lower amount of CA is sufficient to inhibit 50% of DPPH radical. The results are promising since CA concentration that promoted 50% toxicity in HepG2 cells (IC50=781.8 μg/mL) is approximately 330 to 400 times greater than the concentration required to inhibit 50% of DPPH (IC50 DPPH= 2.39 μg/mL) and ABTS (IC50 ABTS= 1.96 μg/mL) radicals scavenging activity, respectively. The maximum concentration of caffeic acid tested (1140 mg /mL) did not reach 50% of cell death in HaCat cells. Thus, it was concluded that the caffeic acid does not cause toxicity in HepG2 and HaCat cells in the concentrations required to promote antioxidant activity in vitro, and it can be applied in topical products.Keywords: caffeic acid, antioxidant, cytotoxicity, cosmetic
Procedia PDF Downloads 3791882 Isolation of Bacterial Species with Potential Capacity for Siloxane Removal in Biogas Upgrading
Authors: Ellana Boada, Eric Santos-Clotas, Alba Cabrera-Codony, Maria Martin, Lluis Baneras, Frederic Gich
Abstract:
Volatile methylsiloxanes (VMS) are a group of manmade silicone compounds widely used in household and industrial applications that end up on the biogas produced through the anaerobic digestion of organic matter in landfills and wastewater treatment plants. The presence of VMS during the biogas energy conversion can cause damage on the engines, reducing the efficiency of this renewable energy source. Non regenerative adsorption onto activated carbon is the most widely used technology to remove siloxanes from biogas, while new trends point out that biotechnology offers a low-cost and environmentally friendly alternative to conventional technologies. The first objective of this research was to enrich, isolate and identify bacterial species able to grow using siloxane molecules as a sole carbon source: anoxic wastewater sludge was used as initial inoculum in liquid anoxic enrichments, adding D4 (as representative siloxane compound) previously adsorbed on activated carbon. After several months of acclimatization, liquid enrichments were plated onto solid media containing D4 and thirty-four bacterial isolates were obtained. 16S rRNA gene sequencing allowed the identification of strains belonging to the following species: Ciceribacter lividus, Alicycliphilus denitrificans, Pseudomonas aeruginosa and Pseudomonas citronellolis which are described to be capable to degrade toxic volatile organic compounds. Kinetic assays with 8 representative strains revealed higher cell growth in the presence of D4 compared to the control. Our second objective was to characterize the community composition and diversity of the microbial community present in the enrichments and to elucidate whether the isolated strains were representative members of the community or not. DNA samples were extracted, the 16S rRNA gene was amplified (515F & 806R primer pair), and the microbiome analyzed from sequences obtained with a MiSeq PE250 platform. Results showed that the retrieved isolates only represented a minor fraction of the microorganisms present in the enrichment samples, which were represented by Alpha, Beta, and Gamma proteobacteria as dominant groups in the category class thus suggesting that other microbial species and/or consortia may be important for D4 biodegradation. These results highlight the need of additional protocols for the isolation of relevant D4 degraders. Currently, we are developing molecular tools targeting key genes involved in siloxane biodegradation to identify and quantify the capacity of the isolates to metabolize D4 in batch cultures supplied with a synthetic gas stream of air containing 60 mg m⁻³ of D4 together with other volatile organic compounds found in the biogas mixture (i.e. toluene, hexane and limonene). The isolates were used as inoculum in a biotrickling filter containing lava rocks and activated carbon to assess their capacity for siloxane removal. Preliminary results of biotrickling filter performance showed 35% of siloxane biodegradation in a contact time of 14 minutes, denoting that biological siloxane removal is a promising technology for biogas upgrading.Keywords: bacterial cultivation, biogas upgrading, microbiome, siloxanes
Procedia PDF Downloads 2581881 Antibacterial Effects of Some Medicinal and Aromatic Plant Extracts on Pathogenic Bacteria Isolated from Pear Orchards
Authors: Kubilay Kurtulus Bastas
Abstract:
Bacterial diseases are very destructive and cause economic losses on pears. Promising plant extracts for the management of plant diseases are environmentally safe, long-lasting and extracts of certain plants contain alkaloids, tannins, quinones, coumarins, phenolic compounds, and phytoalexins. In this study, bacteria were isolated from different parts of pear exhibiting characteristic symptoms of bacterial diseases from the Central Anatolia, Turkey. Pathogenic bacteria were identified by morphological, physiological, biochemical and molecular methods as fire blight (Erwinia amylovora (39%)), bacterial blossom blast and blister bark (Pseudomonas syringae pv. syringae (22%)), crown gall (Rhizobium radiobacter (1%)) from different pear cultivars, and determined virulence levels of the pathogens with pathogenicity tests. The air-dried 25 plant material was ground into fine powder and extraction was performed at room temperature by maceration with 80% (v/v) methanol/distilled water. The minimum inhibitory concentration (MIC) values were determined by using modified disc diffusion method at five different concentrations and streptomycin sulphate was used as control chemical. Bacterial suspensions were prepared as 108 CFU ml⁻¹ densities and 100 µl bacterial suspensions were spread to TSA medium. Antimicrobial activity was evaluated by measuring the inhibition zones in reference to the test organisms. Among the tested plants, Origanum vulgare, Hedera helix, Satureja hortensis, Rhus coriaria, Eucalyptus globulus, Rosmarinus officinalis, Ocimum basilicum, Salvia officinalis, Cuminum cyminum and Thymus vulgaris showed a good antibacterial activity and they inhibited the growth of the pathogens with inhibition zone diameter ranging from 7 to 27 mm at 20% (w/v) in absolute methanol in vitro conditions. In vivo, the highest efficacy was determined as 27% on reducing tumor formation of R. radiobacter, and 48% and 41% on reducing shoot blight of E. amylovora and P. s. pv. syringae on pear seedlings, respectively. Obtaining data indicated that some plant extracts may be used against the bacterial diseases on pome fruits within sustainable and organic management programs.Keywords: bacteria, eco-friendly management, organic, pear, plant extract
Procedia PDF Downloads 3361880 Characterization of Alloyed Grey Cast Iron Quenched and Tempered for a Smooth Roll Application
Authors: Mohamed Habireche, Nacer E. Bacha, Mohamed Djeghdjough
Abstract:
In the brick industry, smooth double roll crusher is used for medium and fine crushing of soft to medium hard material. Due to opposite inward rotation of the rolls, the feed material is nipped between the rolls and crushed by compression. They are subject to intense wear, known as three-body abrasion, due to the action of abrasive products. The production downtime affecting productivity stems from two sources: the bi-monthly rectification of the roll crushers and their replacement when they are completely worn out. Choosing the right material for the roll crushers should result in longer machine cycles, and reduced repair and maintenance costs. All roll crushers are imported from outside Algeria. This results in sometimes very long delivery times which handicap the brickyards, in particular in respecting delivery times and honored the orders made by customers. The aim of this work is to investigate the effect of alloying additions on microstructure and wear behavior of grey lamellar cast iron for smooth roll crushers in brick industry. The base gray iron was melted in an induction furnace with low frequency at a temperature of 1500 °C, in which return cast iron scrap, new cast iron ingot, and steel scrap were added to the melt to generate the desired composition. The chemical analysis of the bar samples was carried out using Emission Spectrometer Systems PV 8050 Series (Philips) except for the carbon, for which a carbon/sulphur analyser Elementrac CS-i was used. Unetched microstructure was used to evaluate the graphite flake morphology using the image comparison measurement method. At least five different fields were selected for quantitative estimation of phase constituents. The samples were observed under X100 magnification with a Zeiss Axiover T40 MAT optical microscope equipped with a digital camera. SEM microscope equipped with EDS was used to characterize the phases present in the microstructure. The hardness (750 kg load, 5mm diameter ball) was measured with a Brinell testing machine for both treated and as-solidified condition test pieces. The test bars were used for tensile strength and metallographic evaluations. Mechanical properties were evaluated using tensile specimens made as per ASTM E8 standards. Two specimens were tested for each alloy. From each rod, a test piece was made for the tensile test. The results showed that the quenched and tempered alloys had best wear resistance at 400 °C for alloyed grey cast iron (containing 0.62%Mn, 0.68%Cr, and 1.09% Cu) due to fine carbides in the tempered matrix. In quenched and tempered condition, increasing Cu content in cast irons improved its wear resistance moderately. Combined addition of Cu and Cr increases hardness and wear resistance for a quenched and tempered hypoeutectic grey cast iron.Keywords: casting, cast iron, microstructure, heat treating
Procedia PDF Downloads 1051879 An Experimental Investigation in Effect of Confining Stress and Matric Suction on the Mechanical Behavior of Sand with Different Fine Content
Authors: S. Asreazad
Abstract:
This paper presents the results that the soil volumetric strain and shear strength are closely related to the confining stress and initial matric suction under constant water content testing on the specimens of unsaturated sand with clay and silt fines contents. The silty sand specimens reached their peak strength after a very small axial strain followed by a post-peak softening towards an ultimate value. The post-peak drop in stress increased by an increment of the suction, while there is no peak strength for clayey sand specimens. The clayey sand shows compressibility and possesses ductile stress-strain behaviour. Shear strength increased nonlinearly with respect to matric suction for both soil types. When suction exceeds a certain range, the effect of suction on shear strength increment weakens gradually. Under the same confining stress, the dilatant tendencies in the silty sand increased under lower values of suction and decreased for higher suction values under the same confining stress. However, the amount of contraction increased with increasing initial suction for clayey sand specimens.Keywords: unsaturated soils, silty sand, clayey sand, triaxial test
Procedia PDF Downloads 3321878 Managing Construction and Demolition Wastes - A Case Study of Multi Triagem, Lda
Authors: Cláudia Moço, Maria Santos, Carlos Arsénio, Débora Mendes, Miguel Oliveira. José Paulo Da Silva
Abstract:
Construction industry generates large amounts of waste all over the world. About 450 million tons of construction and demolition wastes (C&DW) are produced annually in the European Union. C&DW are highly heterogeneous materials in size and composition, which imposes strong difficulties on their management. Directive n.º 2008/98/CE, of the European Parliament and of the Council of 6 November establishes that 70 % of the C&DW have to be recycled by 2020. To evaluate possible applications of these materials, a detailed physical, chemical and environmental characterization is necessary. Multi Triagem, Lda. is a company located in Algarve (Portugal) and was supported by the European Regional Development Fund (grant QREN 30307 Multivalor) to quantify and characterize the received C&DW, in order to evaluate their possible applications. This evaluation, performed in collaboration with the University of Algarve, involves a physical, chemical and environmental detailed characterization of the received C&DW. In this work we report on the amounts, trial procedures and properties of the C&DW received over a period of fifteen month. In this period the company received C&DW coming from 393 different origins. The total amount was 32.458 tons, mostly mixtures containing concrete, masonry/mortar and soil/rock. Most of C&DW came from demodulation constructions and diggings. The organic/inert component, namely metal, glass, wood and plastics, were screened first and account for about 3 % of the received materials. The remaining materials were screened and grouped according to their origin and contents, the latter evaluated by visual inspection. Twenty five samples were prepared and submitted to a detailed physical, chemical and environmental analysis. The C&DW aggregates show lower quality properties than natural aggregates for concrete preparation and unbound layers of road pavements. However, chemical analyzes indicated that most samples are environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds is needed in order to perform a proper screening of the C&DW. C&DW aggregates provide a good alternative to natural aggregates.Keywords: construction and demolition wastes, waste classification, waste composition, waste screening
Procedia PDF Downloads 3511877 Climate Policy Actions for Sustaining International Agricultural Development Projects: The Role of Non-State, Sub-National Stakeholder Engagements, and Monitoring and Evaluation
Authors: EMMANUEL DWAMENA SASU
Abstract:
International climate policy actions require countries under Paris Agreement to design instruments, provide support (financial and technical), and strengthen institutional capacity with tendency to transcending policy formulation to implementation and sustainability. Changes associated with moisture depletion has been a growing phenomenon; especially in developing countries with projected global GDP drop from 7% to 2% between 2005 and 2050. These developments have potential to adversely affect food production in feeding the growing world population, with corresponding rise in global hunger. Incongruously, there is global absence of a harmonized policy direction; capable of providing the required indicators on climate policies for monitoring sustainability of international agricultural development projects. We conduct extensive review and synthesis on existing limitations on global climate policy governance, agricultural food security and sustainability of international agricultural development projects, and conjecture the role of non-state and sub-national climate stakeholder engagements, and monitoring and evaluation strategies for improved climate policy action for sustaining international agricultural development projects.Keywords: climate policy, agriculture, development projects, sustainability
Procedia PDF Downloads 1251876 Controlled Doping of Graphene Monolayer
Authors: Vedanki Khandenwal, Pawan Srivastava, Kartick Tarafder, Subhasis Ghosh
Abstract:
We present here the experimental realization of controlled doping of graphene monolayers through charge transfer by trapping selected organic molecules between the graphene layer and underlying substrates. This charge transfer between graphene and trapped molecule leads to controlled n-type or p-type doping in monolayer graphene (MLG), depending on whether the trapped molecule acts as an electron donor or an electron acceptor. Doping controllability has been validated by a shift in corresponding Raman peak positions and a shift in Dirac points. In the transfer characteristics of field effect transistors, a significant shift of Dirac point towards positive or negative gate voltage region provides the signature of p-type or n-type doping of graphene, respectively, as a result of the charge transfer between graphene and the organic molecules trapped within it. In order to facilitate the charge transfer interaction, it is crucial for the trapped molecules to be situated in close proximity to the graphene surface, as demonstrated by findings in Raman and infrared spectroscopies. However, the mechanism responsible for this charge transfer interaction has remained unclear at the microscopic level. Generally, it is accepted that the dipole moment of adsorbed molecules plays a crucial role in determining the charge-transfer interaction between molecules and graphene. However, our findings clearly illustrate that the doping effect primarily depends on the reactivity of the constituent atoms in the adsorbed molecules rather than just their dipole moment. This has been illustrated by trapping various molecules at the graphene−substrate interface. Dopant molecules such as acetone (containing highly reactive oxygen atoms) promote adsorption across the entire graphene surface. In contrast, molecules with less reactive atoms, such as acetonitrile, tend to adsorb at the edges due to the presence of reactive dangling bonds. In the case of low-dipole moment molecules like toluene, there is a lack of substantial adsorption anywhere on the graphene surface. Observation of (i) the emergence of the Raman D peak exclusively at the edges for trapped molecules without reactive atoms and throughout the entire basal plane for those with reactive atoms, and (ii) variations in the density of attached molecules (with and without reactive atoms) to graphene with their respective dipole moments provides compelling evidence to support our claim. Additionally, these observations were supported by first principle density functional calculations.Keywords: graphene, doping, charge transfer, liquid phase exfoliation
Procedia PDF Downloads 651875 Understanding the Thermal Transformation of Random Access Memory Cards: A Pathway to Their Efficient Recycling
Authors: Khushalini N. Ulman, Samane Maroufi, Veena H. Sahajwalla
Abstract:
Globally, electronic waste (e-waste) continues to grow at an alarming rate. Several technologies have been developed to recover valuable materials from e-waste, however, their efficiency can be increased with a better knowledge of the e-waste components. Random access memory cards (RAMs) are considered as high value scrap for the e-waste recyclers. Despite their high precious metal content, RAMs are still recycled in a conventional manner resulting in huge loss of resources. Our research work highlights the precious metal rich components of a RAM. Inductively coupled plasma (ICP) analysis of RAMs of six different generations have been carried out and the trends in their metal content have been investigated. Over the past decade, the copper content of RAMs has halved and their tin content has increased by 70 %. The stricter environmental laws have facilitated ~96 % drop in the lead content of RAMs. To comprehend the fundamentals of thermal transformation of RAMs, our research provides their detailed kinetic study. This can assist the e-waste recyclers in optimising their metal recovery processes. Thus, understanding the chemical and thermal behaviour of RAMs can open new avenues for efficient e-waste recycling.Keywords: electronic waste, kinetic study, recycling, thermal transformation
Procedia PDF Downloads 1451874 Effect of Amount of Crude Fiber in Grass or Silage to the Digestibility of Organic Matter in Suckler Cow Feeding Systems
Authors: Scholz Heiko, Kuhne Petra, Heckenberger Gerd
Abstract:
Problems during the calving period (December to May) often result in a high body condition score (BCS) at this time. At the end of the grazing period (frequently after early weaning), however, an increase of BCS can often be observed under German conditions. In the last eight weeks before calving, the body condition should be reduced or at least not increased. Rations with a higher amount of crude fiber can be used (rations with straw or late mowed grass silage). Fermentative digestion of fiber is slow and incomplete; that’s why the fermentative process in the rumen can be reduced over a long feeding time. Viewed in this context, feed intake of suckler cows (8 weeks before calving) in different rations and fermentation in the rumen should be checked by taking rumen fluid. Eight suckler cows (Charolais) were feeding a Total Mixed Ration (TMR) in the last eight weeks before calving and grass silage after calving. By the addition of straw (30 % [TMR1] vs. 60 % [TMR2] of dry matter) was varied the amount of crude fiber in the TMR (grass silage, straw, mineral) before calving. After calving of the cow's grass, silage [GS] was fed ad libitum, and the last measurement of rumen fluid took place on the pasture [PS]. Rumen fluid, plasma, body weight, and backfat thickness were collected. Rumen fluid pH was assessed using an electronic pH meter. Volatile fatty acids (VFA), sedimentation, methylene-blue and amount of infusorians were measured. From these 4 parameters, an “index of rumen fermentation” [IRF] in the rumen was formed. Fixed effects of treatment (TMR1, TMR2, GS and PS) and a number of lactations (3-7 lactations) were analyzed by ANOVA using SPSS Version 25.0 (significant by p ≤ 5 %). Rumen fluid pH was significant influenced by variants (TMR 1 by 6.6; TMR 2 by 6.9; GS by 6.6 and PS by 6.9) but was not affected by other effects. The IRF showed disturbed fermentation in the rumen by feeding the TMR 1+2 with a high amount of crude fiber (Score: > 10.0 points) and a very good environment for fermentation during grazing the pasture (Score: 6.9 points). Furthermore, significant differences were found for VFA, methylene blue and the number of infusorians. The use of rations with the high amount of crude fiber from weaning to calving may cause deviations from undisturbed fermentation in the rumen and adversely affect the utilization of the feed in the rumen.Keywords: suckler cow, feeding systems, crude fiber, digestibilty of organic matter
Procedia PDF Downloads 1461873 Three-Dimensional, Non-Linear Finite Element Analysis of Bullet Penetration through Thin AISI 4340 Steel Target Plate
Authors: Abhishek Soni, A. Kumaraswamy, M. S. Mahesh
Abstract:
Bullet penetration in steel plate is investigated with the help of three-dimensional, non-linear, transient, dynamic, finite elements analysis using explicit time integration code LSDYNA. The effect of large strain, strain-rate and temperature at very high velocity regime was studied from number of simulations of semi-spherical nose shape bullet penetration through single layered circular plate with 2 mm thickness at impact velocities of 500, 1000, and 1500 m/s with the help of Johnson Cook material model. Mie-Gruneisen equation of state is used in conjunction with Johnson Cook material model to determine pressure-volume relationship at various points of interests. Two material models viz. Plastic-Kinematic and Johnson- Cook resulted in different deformation patterns in steel plate. It is observed from the simulation results that the velocity drop and loss of kinetic energy occurred very quickly up to perforation of plate, after that the change in velocity and changes in kinetic energy are negligibly small. The physics behind this kind of behaviour is presented in the paper.Keywords: AISI 4340 steel, ballistic impact simulation, bullet penetration, non-linear FEM
Procedia PDF Downloads 2081872 Water Soluble Chitosan Derivatives via the Freeze Concentration Technique
Authors: Senem Avaz, Alpay Taralp
Abstract:
Chitosan has been an attractive biopolymer for decades, but its processibility is lowered by its poor solubility, especially in physiological pH values. Freeze concentrated reactions of Chitosan with several organic acids including acrylic, citraconic, itaconic, and maleic acid revealed improved solubility and morphological properties. Solubility traits were assessed with a modified ninhydrin test. Chitosan derivatives were characterized by ATR-FTIR and morphological characteristics were determined by SEM. This study is a unique approach to chemically modify Chitosan to enhance water solubility.Keywords: chitosan, freeze concentration, frozen reactions, ninhydrin test, water soluble chitosan
Procedia PDF Downloads 4311871 AI Predictive Modeling of Excited State Dynamics in OPV Materials
Authors: Pranav Gunhal., Krish Jhurani
Abstract:
This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling
Procedia PDF Downloads 1181870 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies
Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann
Abstract:
Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)
Procedia PDF Downloads 3621869 Contemplating Charge Transport by Modeling of DNA Nucleobases Based Nano Structures
Authors: Rajan Vohra, Ravinder Singh Sawhney, Kunwar Partap Singh
Abstract:
Electrical charge transport through two basic strands thymine and adenine of DNA have been investigated and analyzed using the jellium model approach. The FFT-2D computations have been performed for semi-empirical Extended Huckel Theory using atomistic tool kit to contemplate the charge transport metrics like current and conductance. The envisaged data is further evaluated in terms of transmission spectrum, HOMO-LUMO Gap and number of electrons. We have scrutinized the behavior of the devices in the range of -2V to 2V for a step size of 0.2V. We observe that both thymine and adenine can act as molecular devices when sandwiched between two gold probes. A prominent observation is a drop in HLGs of adenine and thymine when working as a device as compared to their intrinsic values and this is comparative more visible in case of adenine. The current in the thymine based device exhibit linear increase with voltage in spite of having low conductance. Further, the broader transmission peaks represent the strong coupling of electrodes to the scattering molecule (thymine). Moreover, the observed current in case of thymine is almost 3-4 times than that of observed for adenine. The NDR effect has been perceived in case of adenine based device for higher bias voltages and can be utilized in various future electronics applications.Keywords: adenine, DNA, extended Huckel, thymine, transmission spectra
Procedia PDF Downloads 1561868 Integrated Approach Towards Safe Wastewater Reuse in Moroccan Agriculture
Authors: Zakia Hbellaq
Abstract:
The Mediterranean region is considered a hotbed for climate change. Morocco is a semi-arid Mediterranean country facing water shortages and poor water quality. Its limited water resources limit the activities of various economic sectors. Most of Morocco's territory is in arid and desert areas. The potential water resources are estimated at 22 billion m3, which is equivalent to about 700 m3/inhabitant/year, and Morocco is in a state of structural water stress. Strictly speaking, the Kingdom of Morocco is one of the “very riskiest” countries, according to the World Resources Institute (WRI), which oversees the calculation of water stress risk in 167 countries. The surprising results of the Institute (WRI) rank Morocco as one of the riskiest countries in terms of water scarcity, ranking 3.89 out of 5, thus occupying the 23rd place out of a total of 167 countries, which indicates that the demand for water exceeds the available resources. Agriculture with a score of 3.89 is most affected by water stress from irrigation and places a heavy burden on the water table. Irrigation is an unavoidable technical need and has undeniable economic and social benefits given the available resources and climatic conditions. Irrigation, and therefore the agricultural sector, currently uses 86% of its water resources, while industry uses 5.5%. Although its development has undeniable economic and social benefits, it also contributes to the overfishing of most groundwater resources and the surprising decline in levels and deterioration of water quality in some aquifers. In this context, REUSE is one of the proposed solutions to reduce the water footprint of the agricultural sector and alleviate the shortage of water resources. Indeed, wastewater reuse, also known as REUSE (reuse of treated wastewater), is a step forward not only for the circular economy but also for the future, especially in the context of climate change. In particular, water reuse provides an alternative to existing water supplies and can be used to improve water security, sustainability, and resilience. However, given the introduction of organic trace pollutants or, organic micro-pollutants, the absorption of emerging contaminants, and decreasing salinity, it is possible to tackle innovative capabilities to overcome these problems and ensure food and health safety. To this end, attention will be paid to the adoption of an integrated and attractive approach, based on the reinforcement and optimization of the treatments proposed for the elimination of the organic load with particular attention to the elimination of emerging pollutants, to achieve this goal. , membrane bioreactors (MBR) as stand-alone technologies are not able to meet the requirements of WHO guidelines. They will be combined with heterogeneous Fenton processes using persulfate or hydrogen peroxide oxidants. Similarly, adsorption and filtration are applied as tertiary treatment In addition, the evaluation of crop performance in terms of yield, productivity, quality, and safety, through the optimization of Trichoderma sp strains that will be used to increase crop resistance to abiotic stresses, as well as the use of modern omics tools such as transcriptomic analysis using RNA sequencing and methylation to identify adaptive traits and associated genetic diversity that is tolerant/resistant/resilient to biotic and abiotic stresses. Hence, ensuring this approach will undoubtedly alleviate water scarcity and, likewise, increase the negative and harmful impact of wastewater irrigation on the condition of crops and the health of their consumers.Keywords: water scarcity, food security, irrigation, agricultural water footprint, reuse, emerging contaminants
Procedia PDF Downloads 1611867 Intensification of Wet Air Oxidation of Landfill Leachate Reverse Osmosis Concentrates
Authors: Emilie Gout, Mathias Monnot, Olivier Boutin, Pierre Vanloot, Philippe Moulin
Abstract:
Water is a precious resource. Treating industrial wastewater remains a considerable technical challenge of our century. The effluent considered for this study is landfill leachate treated by reverse osmosis (RO). Nowadays, in most developed countries, sanitary landfilling is the main method to deal with municipal solid waste. Rainwater percolates through solid waste, generating leachates mostly comprised of organic and inorganic matter. Whilst leachate ages, its composition varies, becoming more and more bio-refractory. RO is already used for landfill leachates as it generates good quality permeate. However, its mains drawback is the production of highly polluted concentrates that cannot be discharged in the environment or reused, which is an important industrial issue. It is against this background that the study of coupling RO with wet air oxidation (WAO) was set to intensify and optimize processes to meet current regulations for water discharge in the environment. WAO is widely studied for effluents containing bio-refractory compounds. Oxidation consists of a destruction reaction capable of mineralizing the recalcitrant organic fraction of pollution into carbon dioxide and water when complete. WAO process in subcritical conditions requires a high-energy consumption, but it can be autothermic in a certain range of chemical oxygen demand (COD) concentrations (10-100 g.L⁻¹). Appropriate COD concentrations are reached in landfill leachate RO concentrates. Therefore, the purpose of this work is to report the performances of mineralization during WAO on RO concentrates. The coupling of RO/WAO has shown promising results in previous works on both synthetic and real effluents in terms of organic carbon (TOC) reduction by WAO and retention by RO. Non-catalytic WAO with air as oxidizer was performed in a lab-scale stirred autoclave (1 L) on landfill leachates RO concentrates collected in different seasons in a sanitary landfill in southern France. The yield of WAO depends on operating parameters such as total pressure, temperature, and time. Compositions of the effluent are also important aspects for process intensification. An experimental design methodology was used to minimize the number of experiments whilst finding the operating conditions achieving the best pollution reduction. The simulation led to a set of 18 experiments, and the responses to highlight process efficiency are pH, conductivity, turbidity, COD, TOC, and inorganic carbon. A 70% oxygen excess was chosen for all the experiments. First experiments showed that COD and TOC abatements of at least 70% were obtained after 90 min at 300°C and 20 MPa, which attested the possibility to treat RO leachate concentrates with WAO. In order to meet French regulations and validate process intensification with industrial effluents, some continuous experiments in a bubble column are foreseen, and some further analyses will be performed, such as biological oxygen demand and study of gas composition. Meanwhile, other industrial effluents are treated to compare RO-WAO performances. These effluents, coming from pharmaceutical, petrochemical, and tertiary wastewater industries, present different specific pollutants that will provide a better comprehension of the hybrid process and prove the intensification and feasibility of the process at an industrial scale. Acknowledgments: This work has been supported by the French National Research Agency (ANR) for the Project TEMPO under the reference number ANR-19-CE04-0002-01.Keywords: hybrid process, landfill leachates, process intensification, reverse osmosis, wet air oxidation
Procedia PDF Downloads 1371866 Self-Determination and Mental Disorders: Phenomenological Approach
Authors: Neringa Bagdonaite
Abstract:
Background: The main focus of this paper is to explore how self-determination interplays in suicidal and addictive context leading one to autonomously choose self-destructive addictive behaviour or suicidal intentions. Methods: Phenomenological descriptions of the experiential structure of self-determination in addiction and suicidal mental life are used. The phenomenological method describes structures of mental life from the first-person-perspective, with a focus on how an experienced object is given in a subject’s conscious experience. Results: A sense of self-determination in the context of suicidal and addictive behaviour is possibly impaired. In the context of suicide, it's proposed that suicide is always experienced at least minimally self-determined, as it's the last freely discovered self-efficient behaviour, in terms of radically changing one's desperate mental state. Suicide can never be experienced as fully self-determined because no future retrospective re-evaluation of behaviour is possible. Understanding self-determination in addiction is challenging because addicts perceive themselves and experience situations differently depending on: (I) their level of intoxication; (II) whether the situation is in the moment or in retrospect; and (III) the goals set out in that situation. Furthermore, within phenomenology addiction is described as an embodied custom, which‘s acquired and established while performing 'psychotropic technique'. The main goal of performing such a technique is to continue 'floating in an indifference state' or being 'comfortably numb'. Conclusions: Based on rich phenomenological descriptions of the studied phenomenon, this paper draws on the premise that to experience self-determination in both suicide and addiction, underlying desperate or negative emotional states are needed. Such underlying desperate or negative mental life experiences are required for one to pre-reflectively evaluate suicide or addictive behaviours as positive, relieving or effective in terms of changing one's emotional states. Such pre-reflective positive evaluations serve as the base for the continuation of behaviour and later are identified reflectively.Keywords: addiction, phenomenology, self-determination, self-effectivity, suicide
Procedia PDF Downloads 1601865 A Preliminary Report of HBV Full Genome Sequencing Derived from Iranian Intravenous Drug Users
Authors: Maryam Vaezjalali, Koroush Rahimian, Maryam Asli, Tahmineh Kandelouei, Foad Davoodbeglou, Amir H. Kashi
Abstract:
Objectives: The present study was conducted to assess the HBV molecular profiles including genotypes, subgenotypes, subtypes & mutations in hepatitis B genes. Materials/Patients and Methods: This study was conducted on 229 intravenous drug users who referred to three Drop- in-Centers and a hospital in Tehran. HBV DNA was extracted from HBsAg positive serum samples and amplified by Nested PCR. HBV genotype, subgenotypes, subtype and genes mutation were determined by direct sequencing. Phylogenetic tree was constructed using neighbor- joining (NJ) method. Statistical analyses were carried out by SPSS 20. Results: HBV DNA was found in 3 HBsAg positive cases. Phylogenetic tree of derived HBV DNAs showed the existence of genotype D (subgenotype D1, subtype ayw2). Also immune escape mutations were determined in S gene. Conclusion: There were a few variations and genotypes and subtypes among infected intravenous drug users. This study showed the predominance of genotype D among intravenous drug users. Our study concurs with other reports from Iran, that all showing currently only genotype D is the only detectable genotype in Iran.Keywords: drug users, genotype, HBV, phylogenetic tree
Procedia PDF Downloads 326