Search results for: scrap tyre steel fibers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2423

Search results for: scrap tyre steel fibers

923 Effect of Springback Analysis on Influences of the Steel Demoulding Using FEM

Authors: Byeong-Sam Kim, Jongmin Park

Abstract:

The present work is motivated by the industrial challenge to produce complex composite shapes cost-effectively. The model used an anisotropical thermoviscoelastic is analyzed by an implemented finite element solver. The stress relaxation can be constructed by Prony series for the nonlinear thermoviscoelastic model. The calculation of process induced internal stresses relaxation during the cooling stage of the manufacturing cycle was carried out by the spring back phenomena observed from the part containing a cylindrical segment. The finite element results obtained from the present formulation are compared with experimental data, and the results show good correlations.

Keywords: thermoviscoelastic, springback phenomena, FEM analysis, thermoplastic composite structures

Procedia PDF Downloads 358
922 Intermetallic Phases in the Fusion Weld of CP Ti to Stainless Steel

Authors: Juzar Vohra, Ravish Malhotra, Tim Pasang, Mana Azizi, Yuan Tao, Masami Mizutani

Abstract:

In this paper, dissimilar welding of titanium to stainless steels is reported. Laser Beam Welding (LBW) and Gas Tungsten Arc Welding (GTAW) were employed to join CPTi to SS304. The welds were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). FeTi, Ti2Cr and Fe2Ti dendrites are formed along with beta phase titanium matrix. The hardness values of these phases are high which makes them brittle and leading to cracking along the weld pool. However, it is believed that cracking, hence, fracturing of this weld joint is largely due to the difference in thermal properties of the two alloys.

Keywords: dissimilar metals, fusion welding, intermetallics, brittle

Procedia PDF Downloads 495
921 Water Absorption Studies on Natural Fiber Reinforced Polymer Composites

Authors: G. L. Devnani, Shishir Sinha

Abstract:

In the recent years, researchers have drawn their focus on natural fibers reinforced composite materials because of their excellent properties like low cost, lower weight, better tensile and flexural strengths, biodegradability etc. There is little concern however that when these materials are put in moist conditions for long duration, their mechanical properties degrade. Therefore, in order to take maximum advantage of these novel materials, one should have a complete understanding of their moisture or water absorption phenomena. Various fiber surface treatment methods like alkaline treatment, acetylation etc. have also been suggested for reduction in water absorption of these composites. In the present study, a detailed review is done for water absorption behavior of natural fiber reinforced polymer composites, and experiments also have been performed on these composites with varying the parameters like fiber loading etc. for understanding the water absorption kinetics. Various surface treatment methods also performed to reduce the water absorption behavior of these materials and effort is made to develop a proper understanding of water absorption mechanism mathematically and experimentally for full potential utilization of natural fiber reinforced polymer composite materials.

Keywords: alkaline treatment, composites, natural fiber, water absorption

Procedia PDF Downloads 287
920 User-Controlled Color-Changing Textiles: From Prototype to Mass Production

Authors: Joshua Kaufman, Felix Tan, Morgan Monroe, Ayman Abouraddy

Abstract:

Textiles and clothing have been a staple of human existence for millennia, yet the basic structure and functionality of textile fibers and yarns has remained unchanged. While color and appearance are essential characteristics of a textile, an advancement in the fabrication of yarns that allows for user-controlled dynamic changes to the color or appearance of a garment has been lacking. Touch-activated and photosensitive pigments have been used in textiles, but these technologies are passive and cannot be controlled by the user. The technology described here allows the owner to control both when and in what pattern the fabric color-change takes place. In addition, the manufacturing process is compatible with mass-producing the user-controlled, color-changing yarns. The yarn fabrication utilizes a fiber spinning system that can produce either monofilament or multifilament yarns. For products requiring a more robust fabric (backpacks, purses, upholstery, etc.), larger-diameter monofilament yarns with a coarser weave are suitable. Such yarns are produced using a thread-coater attachment to encapsulate a 38-40 AWG metal wire inside a polymer sheath impregnated with thermochromic pigment. Conversely, products such as shirts and pants requiring yarns that are more flexible and soft against the skin comprise multifilament yarns of much smaller-diameter individual fibers. Embedding a metal wire in a multifilament fiber spinning process has not been realized to date. This research has required collaboration with Hills, Inc., to design a liquid metal-injection system to be combined with fiber spinning. The new system injects molten tin into each of 19 filaments being spun simultaneously into a single yarn. The resulting yarn contains 19 filaments, each with a tin core surrounded by a polymer sheath impregnated with thermochromic pigment. The color change we demonstrate is distinct from garments containing LEDs that emit light in various colors. The pigment itself changes its optical absorption spectrum to appear a different color. The thermochromic color-change is induced by a temperature change in the inner metal wire within each filament when current is applied from a small battery pack. The temperature necessary to induce the color change is near body temperature and not noticeable by touch. The prototypes already developed either use a simple push button to activate the battery pack or are wirelessly activated via a smart-phone app over Wi-Fi. The app allows the user to choose from different activation patterns of stripes that appear in the fabric continuously. The power requirements are mitigated by a large hysteresis in the activation temperature of the pigment and the temperature at which there is full color return. This was made possible by a collaboration with Chameleon International to develop a new, customized pigment. This technology enables a never-before seen capability: user-controlled, dynamic color and pattern change in large-area woven and sewn textiles and fabrics with wide-ranging applications from clothing and accessories to furniture and fixed-installation housing and business décor. The ability to activate through Wi-Fi opens up possibilities for the textiles to be part of the ‘Internet of Things.’ Furthermore, this technology is scalable to mass-production levels for wide-scale market adoption.

Keywords: activation, appearance, color, manufacturing

Procedia PDF Downloads 278
919 Quality Improvement of the Sand Moulding Process in Foundries Using Six Sigma Technique

Authors: Cindy Sithole, Didier Nyembwe, Peter Olubambi

Abstract:

The sand casting process involves pattern making, mould making, metal pouring and shake out. Every step in the sand moulding process is very critical for production of good quality castings. However, waste generated during the sand moulding operation and lack of quality are matters that influences performance inefficiencies and lack of competitiveness in South African foundries. Defects produced from the sand moulding process are only visible in the final product (casting) which results in increased number of scrap, reduced sales and increases cost in the foundry. The purpose of this Research is to propose six sigma technique (DMAIC, Define, Measure, Analyze, Improve and Control) intervention in sand moulding foundries and to reduce variation caused by deficiencies in the sand moulding process in South African foundries. Its objective is to create sustainability and enhance productivity in the South African foundry industry. Six sigma is a data driven method to process improvement that aims to eliminate variation in business processes using statistical control methods .Six sigma focuses on business performance improvement through quality initiative using the seven basic tools of quality by Ishikawa. The objectives of six sigma are to eliminate features that affects productivity, profit and meeting customers’ demands. Six sigma has become one of the most important tools/techniques for attaining competitive advantage. Competitive advantage for sand casting foundries in South Africa means improved plant maintenance processes, improved product quality and proper utilization of resources especially scarce resources. Defects such as sand inclusion, Flashes and sand burn on were some of the defects that were identified as resulting from the sand moulding process inefficiencies using six sigma technique. The courses were we found to be wrong design of the mould due to the pattern used and poor ramming of the moulding sand in a foundry. Six sigma tools such as the voice of customer, the Fishbone, the voice of the process and process mapping were used to define the problem in the foundry and to outline the critical to quality elements. The SIPOC (Supplier Input Process Output Customer) Diagram was also employed to ensure that the material and process parameters were achieved to ensure quality improvement in a foundry. The process capability of the sand moulding process was measured to understand the current performance to enable improvement. The Expected results of this research are; reduced sand moulding process variation, increased productivity and competitive advantage.

Keywords: defects, foundries, quality improvement, sand moulding, six sigma (DMAIC)

Procedia PDF Downloads 194
918 Tribological Behavior of Hybrid Nanolubricants for Internal Combustion Engines

Authors: José M. Liñeira Del Río, Ramón Rial, Khodor Nasser, María J.G. Guimarey

Abstract:

The need to develop new lubricants that offer better anti-friction and anti-wear performance in internal combustion vehicles is one of the great challenges of lubrication in the automotive field. The addition of nanoparticles has emerged as a possible solution and, combined with the lubricating power of ionic liquids, may become one of the alternatives to reduce friction losses and wear of the contact surfaces in the conditions to which tribo-pairs are subjected, especially in the contact of the piston rings and the cylinder liner surface. In this study, the improvement in SAE 10W-40 engine oil tribological performance after the addition of magnesium oxide (MgO) nanoadditives and two different phosphonium-based ionic liquids (ILs) was investigated. The nanoparticle characterization was performed by means of transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The tribological properties, friction coefficients and wear parameters of the formulated oil modified with 0.01 wt.% MgO and 1 wt.% ILs compared with the neat 10W-40 oil were performed and analyzed using a ball-on-three-pins tribometer and a 3D optical profilometer, respectively. Further analysis on the worn surface was carried out by Raman spectroscopy and SEM microscopy, illustrating the formation of the protective IL and MgO tribo-films as hybrid additives. In friction tests with sliding steel-steel tribo-pairs, IL3-based hybrid nanolubricant decreased the friction coefficient and wear volume by 7% and 59%, respectively, in comparison with the neat SAE 10W-40, while the one based on IL1 only achieved a reduction of these parameters by 6% and 39%, respectively. Thus, the tribological characterization also revealed that the MgO and IL3 addition has a positive synergy over the commercial lubricant, adequately meeting the requirements for their use in internal combustion engines. In summary, this study has shown that the addition of ionic liquids to MgO nanoparticles can improve the stability and lubrication behavior of MgO nanolubricant and encourages more investigations on using nanoparticle additives with green solvents such as ionic liquids to protect the environment as well as prolong the lifetime of machinery. The improvement in the lubricant properties was attributed to the following wear mechanisms: the formation of a protective tribo-film and the ability of nanoparticles to fill out valleys between asperities, thereby effectively smoothing out the shearing surfaces.

Keywords: lubricant, nanoparticles, phosphonium-based ionic liquids, tribology

Procedia PDF Downloads 82
917 Integrating Virtual Reality and Building Information Model-Based Quantity Takeoffs for Supporting Construction Management

Authors: Chin-Yu Lin, Kun-Chi Wang, Shih-Hsu Wang, Wei-Chih Wang

Abstract:

A construction superintendent needs to know not only the amount of quantities of cost items or materials completed to develop a daily report or calculate the daily progress (earned value) in each day, but also the amount of quantities of materials (e.g., reinforced steel and concrete) to be ordered (or moved into the jobsite) for performing the in-progress or ready-to-start construction activities (e.g., erection of reinforced steel and concrete pouring). These daily construction management tasks require great effort in extracting accurate quantities in a short time (usually must be completed right before getting off work every day). As a result, most superintendents can only provide these quantity data based on either what they see on the site (high inaccuracy) or the extraction of quantities from two-dimension (2D) construction drawings (high time consumption). Hence, the current practice of providing the amount of quantity data completed in each day needs improvement in terms of more accuracy and efficiency. Recently, a three-dimension (3D)-based building information model (BIM) technique has been widely applied to support construction quantity takeoffs (QTO) process. The capability of virtual reality (VR) allows to view a building from the first person's viewpoint. Thus, this study proposes an innovative system by integrating VR (using 'Unity') and BIM (using 'Revit') to extract quantities to support the above daily construction management tasks. The use of VR allows a system user to be present in a virtual building to more objectively assess the construction progress in the office. This VR- and BIM-based system is also facilitated by an integrated database (consisting of the information and data associated with the BIM model, QTO, and costs). In each day, a superintendent can work through a BIM-based virtual building to quickly identify (via a developed VR shooting function) the building components (or objects) that are in-progress or finished in the jobsite. And he then specifies a percentage (e.g., 20%, 50% or 100%) of completion of each identified building object based on his observation on the jobsite. Next, the system will generate the completed quantities that day by multiplying the specified percentage by the full quantities of the cost items (or materials) associated with the identified object. A building construction project located in northern Taiwan is used as a case study to test the benefits (i.e., accuracy and efficiency) of the proposed system in quantity extraction for supporting the development of daily reports and the orders of construction materials.

Keywords: building information model, construction management, quantity takeoffs, virtual reality

Procedia PDF Downloads 132
916 Characterization of Electrospun Carbon Nanofiber Doped Polymer Composites

Authors: Atilla Evcin, Bahri Ersoy, Süleyman Akpınar, I. Sinan Atlı

Abstract:

Ceramic, polymer and composite nanofibers are nowadays begun to be utilized in many fields of nanotechnology. By the means of dimensions, these fibers are as small as nano scale but because of having large surface area and microstructural characteristics, they provide unique mechanic, optical, magnetic, electronic and chemical properties. In terms of nanofiber production, electrospinning has been the most widely used technique in recent years. In this study, carbon nanofibers have been synthesized from solutions of Polyacrylonitrile (PAN)/ N,N-dimethylformamide (DMF) by electrospinning method. The carbon nanofibers have been stabilized by oxidation at 250 °C for 2 h in air and carbonized at 750 °C for 1 h in H2/N2. Images of carbon nanofibers have been taken with scanning electron microscopy (SEM). The images have been analyzed to study the fiber morphology and to determine the distribution of the fiber diameter using FibraQuant 1.3 software. Then polymer composites have been produced from mixture of carbon nanofibers and silicone polymer. The final polymer composites have been characterized by X-ray diffraction method and scanning electron microscopy (SEM) energy dispersive X-ray (EDX) measurements. These results have been reported and discussed. At result, homogeneous carbon nanofibers with 100-167 nm of diameter were obtained with optimized electrospinning conditions.

Keywords: electrospinning, characterization, composites, nanofiber

Procedia PDF Downloads 394
915 Optimization of Machining Parameters by Using Cryogenic Media

Authors: Shafqat Wahab, Waseem Tahir, Manzoor Ahmad, Sarfraz Khan, M. Azam

Abstract:

Optimization and analysis of tool flank wear width and surface finish of alloy steel rods are studied in the presence of cryogenic media (LN2) by using Tungsten Carbide Insert (CNMG 120404- WF 4215). Robust design concept of Taguchi L9(34) method and ANOVA is applied to determine the contribution of key cutting parameters and their optimum conditions. Through analysis, it revealed that cryogenic impact is more significant in reduction of the tool flank wear width while surface finish is mostly dependent on feed rate.

Keywords: turning, cryogenic fluid, liquid nitrogen, flank wear, surface roughness, taguchi

Procedia PDF Downloads 666
914 Evaluation of Excision Wound Healing Activity of Ethanolic Extract of Michelia Champaca ın Diabetic Wistar Rats

Authors: Smita Shenoy, Amoolya Gowda, Tara Shanbhag, Krishnananda Prabhu, Venumadhav Nelluri

Abstract:

The study was undertaken to assess the effect of ethanolic extract of Michelia champaca on excision wound healing in diabetic wistar rats. Excision wound was made in five groups of rats after inducing diabetes with streptozotocin in four groups. Paraffin was applied to wounds in nondiabetic and diabetic control and 2.5%, 5%, 10% ointment of extract to wounds in three diabetic test groups. Monitoring of wound contraction rate, the period of epithelization and histopathological examination of granulation tissue was done. There was a significant (p < 0.05) decrease in the period of epithelization and a significant increase in the wound contraction rate on day 12 and 16 in rats treated with 5% and 10% ointment as compared to diabetic rats. There was a better organization of collagen fibers in the granulation tissue of wounds treated with 10% ointment. The higher dose of ethanolic extract of Michelia champaca promoted wound healing in diabetic Wistar rats.

Keywords: Michelia champaca, excision wound, contraction, epithelization

Procedia PDF Downloads 359
913 EMI Shielding in Carbon Based Nanocomposites

Authors: Mukul Kumar Srivastava, Sumit Basu

Abstract:

Carbon fiber reinforced polymer (CFRP) composites find wide use in the space and aerospace industries primarily due to their favourable strength-to-weight ratios. However, in spite of the impressive mechanical properties, their ability to shield sophisticated electronics from electromagnetic interference (EMI) is rather limited. As a result, metallic wire meshes or metal foils are often embedded in CFRP composites to provide adequate EMI shielding. This comes at additional manufacturing cost, increased weight and, particularly in cases of aluminium, increased risk of galvanic corrosion in the presence of moisture. In this work, we will explore ways of enhancing EMI shielding of CFRP laminates in the 8-12 GHz range (the so-called X-band), without compromising their mechanical and fracture properties, through minimal modifications to their current well-established fabrication protocol. The computational-experimental study of EMI shielding in CFRP laminates will focus on the effects of incorporating multiwalled carbon nanotubes (MWCNT) and conducting nanoparticles in different ways in the resin and/or carbon fibers. We will also explore the possibility of utilising the excellent absorbing properties of MWCNT reinforced polymer foams to enhance the overall EMI shielding capabilities.

Keywords: EMI shielding, X-band, CFRP, MWCNT

Procedia PDF Downloads 83
912 Investigation of Electrical, Thermal and Structural Properties on Polyacrylonitrile Nano-Fiber

Authors: N. Demirsoy, N. Uçar, A. Önen, N. Kızıldağ, Ö. F. Vurur, O. Eren, İ. Karacan

Abstract:

Polymer composite nano-fibers including (1, 3 wt %) silver nano-particles have been produced by electrospinning method. Polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) solution has been prepared and the amount of silver nitrate has been adjusted to PAN weight. Silver nano-particles were obtained from reduction of silver ions into silver nano-particles by chemical reduction by hydrazine hydroxide (N2H5OH). The different amount of silver salt was loaded into polymer matrix to obtain polyacrylonitrile composite nano-fiber containing silver nano-particles. The effect of the amount of silver nano-particles on the properties of composite nano-fiber web was investigated. Electrical conductivity, mechanical properties, thermal properties were examined by Microtest LCR Meter 6370 (0.01 mΩ-100 MΩ), tensile tester, differential scanning calorimeter DSC (Q10) and SEM, respectively. Also, antimicrobial efficiency test (ASTM E2149-10) was done against Staphylococcus aureus bacteria. It has been seen that breaking strength, conductivity, antimicrobial effect, enthalpy during cyclization increase by use of silver nano-particles while the diameter of nano-fiber decreases.

Keywords: composite polyacrylonitrile nanofiber, electrical conductivity, electrospinning, mechanical properties, thermal properties, silver nanoparticles

Procedia PDF Downloads 418
911 Effect of Preoxidation on the Effectiveness of Gd₂O₃ Nanoparticles Applied as a Source of Active Element in the Crofer 22 APU Coated with a Protective-conducting Spinel Layer

Authors: Łukasz Mazur, Kamil Domaradzki, Maciej Bik, Tomasz Brylewski, Aleksander Gil

Abstract:

Interconnects used in solid oxide fuel and electrolyzer cells (SOFCₛ/SOECs) serve several important functions, and therefore interconnect materials must exhibit certain properties. Their thermal expansion coefficient needs to match that of the ceramic components of these devices – the electrolyte, anode and cathode. Interconnects also provide structural rigidity to the entire device, which is why interconnect materials must exhibit sufficient mechanical strength at high temperatures. Gas-tightness is also a prerequisite since they separate gas reagents, and they also must provide very good electrical contact between neighboring cells over the entire operating time. High-chromium ferritic steels meets these requirements to a high degree but are affected by the formation of a Cr₂O₃ scale, which leads to increased electrical resistance. The final criterion for interconnect materials is chemical inertness in relation to the remaining cell components. In the case of ferritic steels, this has proved difficult due to the formation of volatile and reactive oxyhydroxides observed when Cr₂O3 is exposed to oxygen and water vapor. This process is particularly harmful on the cathode side in SOFCs and the anode side in SOECs. To mitigate this, protective-conducting ceramic coatings can be deposited on an interconnect's surface. The area-specific resistance (ASR) of a single interconnect cannot exceed 0.1 m-2 at any point of the device's operation. The rate at which the CrO₃ scale grows on ferritic steels can be reduced significantly via the so-called reactive element effect (REE). Research has shown that the deposition of Gd₂O₃ nanoparticles on the surface of the Crofer 22 APU, already modified using a protective-conducting spinel layer, further improves the oxidation resistance of this steel. However, the deposition of the manganese-cobalt spinel layer is a rather complex process and is performed at high temperatures in reducing and oxidizing atmospheres. There was thus reason to believe that this process may reduce the effectiveness of Gd₂O₃ nanoparticles added as an active element source. The objective of the present study was, therefore, to determine any potential impact by introducing a preoxidation stage after the nanoparticle deposition and before the steel is coated with the spinel. This should have allowed the nanoparticles to incorporate into the interior of the scale formed on the steel. Different samples were oxidized for 7000 h in air at 1073 K under quasi-isothermal conditions. The phase composition, chemical composition, and microstructure of the oxidation products formed on the samples were determined using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. A four-point, two-probe DC method was applied to measure ASR. It was found that coating deposition does indeed reduce the beneficial effect of Gd₂O₃ addition, since the smallest mass gain and the lowest ASR value were determined for the sample for which the additional preoxidation stage had been performed. It can be assumed that during this stage, gadolinium incorporates into and segregates at grain boundaries in the thin Cr₂O₃ that is forming. This allows the Gd₂O₃ nanoparticles to be a more effective source of the active element.

Keywords: interconnects, oxide nanoparticles, reactive element effect, SOEC, SOFC

Procedia PDF Downloads 84
910 Finite Element Modelling of Mechanical Connector in Steel Helical Piles

Authors: Ramon Omar Rosales-Espinoza

Abstract:

Pile-to-pile mechanical connections are used if the depth of the soil layers with sufficient bearing strength exceeds the original (“leading”) pile length, with the additional pile segment being termed “extension” pile. Mechanical connectors permit a safe transmission of forces from leading to extension pile while meeting strength and serviceability requirements. Common types of connectors consist of an assembly of sleeve-type external couplers, bolts, pins, and other mechanical interlock devices that ensure the transmission of compressive, tensile, torsional and bending stresses between leading and extension pile segments. While welded connections allow for a relatively simple structural design, mechanical connections are advantageous over welded connections because they lead to shorter installation times and significant cost reductions since specialized workmanship and inspection activities are not required. However, common practices followed to design mechanical connectors neglect important aspects of the assembly response, such as stress concentration around pin/bolt holes, torsional stresses from the installation process, and interaction between the forces at the installation (torsion), service (compression/tension-bending), and removal stages (torsion). This translates into potentially unsatisfactory designs in terms of the ultimate and service limit states, exhibiting either reduced strength or excessive deformations. In this study, the experimental response under compressive forces of a type of mechanical connector is presented, in terms of strength, deformation and failure modes. The tests revealed that the type of connector used can safely transmit forces from pile to pile. Using the results from the compressive tests, an analysis model was developed using the finite element (FE) method to study the interaction of forces under installation and service stages of a typical mechanical connector. The response of the analysis model is used to identify potential areas for design optimization, including size, gap between leading and extension piles, number of pin/bolts, hole sizes, and material properties. The results show the design of mechanical connectors should take into account the interaction of forces present at every stage of their life cycle, and that the torsional stresses occurring during installation are critical for the safety of the assembly.

Keywords: piles, FEA, steel, mechanical connector

Procedia PDF Downloads 264
909 Tyrosine Rich Fraction as an Immunomodulatory Agent from Ficus Religiosa Bark

Authors: S. A. Nirmal, G. S. Asane, S. C. Pal, S. C. Mandal

Abstract:

Objective: Ficus religiosa Linn (Moraceae) is being used in traditional medicine to improve immunity hence present work was undertaken to validate this use scientifically. Material and Methods: Dried, powdered bark of F. religiosa was extracted successively using petroleum ether and 70% ethanol in soxhlet extractor. The extracts obtained were screened for immunomodulatory activity by delayed type hypersensitivity (DTH), neutrophil adhesion test and cyclophosphamide-induced neutropenia in Swiss albino mice at the dose of 50 and 100 mg/kg, i.p. 70% ethanol extract showed significant immunostimulant activity hence subjected to column chromatography to produce tyrosine rich fraction (TRF). TRF obtained was screened for immunomodulatory activity by above methods at the dose of 10 mg/kg, i.p. Results: TRF showed potentiation of DTH response in terms of significant increase in the mean difference in foot-pad thickness and it significantly increased neutrophil adhesion to nylon fibers by 48.20%. Percentage reduction in total leukocyte count and neutrophil by TRF was found to be 43.85% and 18.72%, respectively. Conclusion: Immunostimulant activity of TRF was more pronounced and thus it has great potential as a source for natural health products.

Keywords: Ficus religiosa, immunomodulatory, cyclophosphamide, neutropenia

Procedia PDF Downloads 446
908 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC

Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan

Abstract:

Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.

Keywords: concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, uniaxial tensile test

Procedia PDF Downloads 419
907 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: creep, lean concrete, pavement, fiber reinforced concrete, base

Procedia PDF Downloads 522
906 Alloying Effect on Hot Workability of M42 High Speed Steel

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

In the present study, the effect of Si, Al, Ti, Zr, and Nb addition on the microstructure and hot workability of cast M42 tool steels, basically consisting of 1.0C, 0.2Mn, 3.8Cr, 1.5W, 8.5Co, 9.2Mo, and 1.0V in weight percent has been investigated. Tool steels containing Si of 0.25 and 0.5 wt.%, Al of 0.06 and 0.12 wt.%, Ti of 0.3 wt.%, Zr of 0.3 wt.%, and Nb of 0.3 wt.% were cast into ingots of 140 mm´ 140 mm´ 330 mm by vacuum induction melting. After solution treatment at 1150°C for 1.5 hrs. followed by furnace cooling, hot rolling at 1180 °C was conducted on the ingots. Addition of titanium, zirconium and niobium was found to retard the decomposition of the eutectic carbides and result in the deterioration of hot workability of the tool steels, while addition of aluminium and silicon showed relatively well decomposed carbide structure and resulted in sound hot rolled plates.

Keywords: high speed steels, alloying elements, eutectic carbides, microstructure, hot workability

Procedia PDF Downloads 352
905 Stromal Vascular Fraction Regenerative Potential in a Muscle Ischemia/Reperfusion Injury Mouse Model

Authors: Anita Conti, Riccardo Ossanna, Lindsey A. Quintero, Giamaica Conti, Andrea Sbarbati

Abstract:

Ischemia/reperfusion (IR) injury induces muscle fiber atrophy and skeletal muscle fiber death with subsequently functionality loss. The heterogeneous pool of cells, especially mesenchymal stem cells, contained in the stromal vascular fraction (SVF) of adipose tissue could promote muscle fiber regeneration. To prevent SVF dispersion, it has been proposed the use of injectable biopolymers that work as cells carrier. A significant element of the extracellular matrix is hyaluronic acid (HA), which has been widely used in regenerative medicine as a cell scaffold given its biocompatibility, degradability, and the possibility of chemical functionalization. Connective tissue micro-fragments enriched with SVF obtained from mechanical disaggregation of adipose tissue were evaluated for IR muscle injury regeneration using low molecular weight HA as a scaffold. IR induction. Hindlimb ischemia was induced in 9 athymic nude mice through the clamping of the right quadriceps using a plastic band. Reperfusion was induced by cutting the plastic band after 3 hours of ischemic period. Contralateral (left) muscular tissue was used as healthy control. Treatment. Twenty-four hours after the IR induction, animals (n=3) were intramuscularly injected with 100 µl of SVF mixed with HA (SVF-HA). Animals treated with 100 µl of HA (n=3) and 100 µl saline solution (n=3) were used as control. Treatment monitoring. All animals were in vivo monitored by magnetic resonance imaging (MRI) at 5, 7, 14 and 18 days post-injury (dpi). High-resolution morphological T2 weighed, quantitative T2 map and Dynamic Contrast-Enhanced (DCE) images were acquired in order to assess the regenerative potential of SVF-HA treatment. Ex vivo evaluation. After 18 days from IR induction, animals were sacrificed, and the muscles were harvested for histological examination. At 5 dpi T2 high-resolution MR images clearly reveal the presence of an extensive edematous area due to IR damage for all groups identifiable as an increase of signal intensity (SI) of muscular and surrounding tissue. At 7 dpi, animals of the SVF-HA group showed a reduction of SI, and the T2relaxation time of muscle tissue of the HA-SVF group was 29±0.5ms, comparable with the T2relaxation time of contralateral muscular tissue (30±0.7ms). These suggest a reduction of edematous overflow and swelling. The T2relaxation time at 7dpi of HA and saline groups were 84±2ms and 90±5ms, respectively, which remained elevated during the rest of the study. The evaluation of vascular regeneration showed similar results. Indeed, DCE-MRI analysis revealed a complete recovery of muscular tissue perfusion after 14 dpi for the SVF-HA group, while for the saline and HA group, controls remained in a damaged state. Finally, the histological examination of SVF-HA treated animals exhibited well-defined and organized fibers morphology with a lateralized nucleus, similar to contralateral healthy muscular tissue. On the contrary, HA and saline-treated animals presented inflammatory infiltrates, with HA slightly improving the diameter of the fibers and less degenerated tissue. Our findings show that connective tissue micro-fragments enriched with SVF induce higher muscle homeostasis and perfusion restoration in contrast to control groups.

Keywords: ischemia/reperfusion injury, regenerative medicine, resonance imaging, stromal vascular fraction

Procedia PDF Downloads 127
904 Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nano Fiber and Nano Fiber/Nano Particle

Authors: Kevser Dincer, Basma Waisi, M. Ozan Ozdemir, Ugur Pasaogullari, Jeffrey McCutcheon

Abstract:

Nanofibers are defined as fibers with diameters less than 100 nanometers. They can be produced by interfacial polymerization, electrospinning and electrostatic spinning. In this study, behaviours of activated carbon nano fiber (ACNF), carbon nano-fiber (CNF), Polyacrylonitrile/carbon nanotube (PAN/CNT), Polyvinyl alcohol/nano silver (PVA/Ag) in PEM fuel cells are investigated experimentally. This material was used as gas diffusion layer (GDL) in PEM fuel cells. When the performances of these cells are compared to each other at 5x5 cm2 cell, it is found that the PVA/Ag exhibits the best performance among all. In this work, nano fiber and nano fiber/nano particles electrical conductivities have been studied to understand their effects on PEM fuel cell performance. According to the experimental results, the maximum electrical conductivity performance of the fuel cell with nanofiber was found to be at PVA/Ag. The electrical conductivities of CNF, ACNF, PAN/CNT are lower for PEM. The resistance of cell with PVA/Ag is lower than the resistance of cell with PAN/CNT, ACNF, CNF.

Keywords: proton exchange membrane fuel cells, electrospinning, carbon nano fiber, activate carbon nano-fiber, PVA fiber, PAN fiber, carbon nanotube, nano particle nanocomposites

Procedia PDF Downloads 391
903 Utilizing Quicklime (Calcium Oxide) for Self-Healing Properties in Innovation of Coconut Husk Fiber Bricks

Authors: Christian Gabriel Mariveles, Darelle Jay Gallardo, Leslie Dayaoen, Laurenz Paul Diaz

Abstract:

True experimental research with descriptive analysis was conducted. Utilizing Quicklime (Calcium Oxide) for self-healing properties of coconut husk fibre concrete brick. There are 2 setups established: the first one has the 1:1:2 ratio of calcium oxide, cement and sand, and the second one has a 2:1:2 ratio of the same variables. The bricks are made from the residences along Barangay Greater Lagro. The mixture of sand and cement is mixed with coconut husk fibers and then molded with different ratios in the molder. After the drying of cement, the researchers tested the bricks in the laboratory for compressive strength. The brick with the highest PSI is picked by the researchers to drop into freefall testing, and it makes remarkable remarks as it is deformed after dropping to different heights with a maximum of 20 feet. Unfortunately, the self-healing capabilities were not observed during the 12 weeks of monitoring. However, the brick was weighed after 12 weeks of monitoring, and it increased in weight by 0.030 kg. from 1.833 kg. to 1.863 kg. meaning that this ratio 2 has the potential to self-heal, but 12 weeks of monitoring by the researchers is not enough to conclude that it has a significant difference.

Keywords: self healing, coconut husk bricks, research, calcium oxide, utilizing quicklime

Procedia PDF Downloads 42
902 Getting to Know the Types of Concrete and its Production Methods

Authors: Mokhtar Nikgoo

Abstract:

Definition of Concrete and Concreting: Concrete (in French: Béton) in a broad sense is any substance or combination that consists of a sticky substance with the property of cementation. In general, concrete refers to concrete made by Portland cement, which is produced by mixing fine and coarse aggregates, Portland cement and water. After enough time, this mixture turns into a stone-like substance. During the hardening or processing of the concrete, cement is chemically combined with water to form strong crystals that bind the aggregates together, a process called hydration. During this process, significant heat is released called hydration heat. Additionally, concrete shrinks slightly, especially as excess water evaporates, a phenomenon known as drying shrinkage. The process of hardening and the gradual increase in concrete strength that occurs with it does not end suddenly unless it is artificially interrupted. Instead, it decreases more over long periods of time, although, in practical applications, concrete is usually set after 28 days and is considered at full design strength. Concrete may be made from different types of cement as well as pozzolans, furnace slag, additives, additives, polymers, fibers, etc. It may also be used in the way it is made, heating, water vapor, autoclave, vacuum, hydraulic pressures and various condensers.

Keywords: concrete, RCC, batching, cement, Pozzolan, mixing plan

Procedia PDF Downloads 98
901 Keratin Reconstruction: Evaluation of Green Peptides Technology on Hair Performance

Authors: R. Di Lorenzo, S. Laneri, A. Sacchi

Abstract:

Hair surface properties affect hair texture and shine, whereas the healthy state of the hair cortex sways hair ends. Even if cosmetic treatments are intrinsically safe, there is potentially damaging action on the hair fibers. Loss of luster, frizz, split ends, and other hair problems are particularly prevalent among people who repeatedly alter the natural style of their hair or among people with intrinsically weak hair. Technological and scientific innovations in hair care thus become invaluable allies to preserve their natural well-being and shine. The study evaluated restoring keratin-like ingredients that improve hair fibers' structural integrity, increase tensile strength, improve hair manageability and moisturizing. The hair shaft is composed of 65 - 95% of keratin. It gives the hair resistance, elasticity, and plastic properties and also contributes to their waterproofing. Providing exogenous keratin is, therefore, a practical approach to protect and nourish the hair. By analyzing the amino acid composition of keratin, we find a high frequency of hydrophobic amino acids. It confirms the critical role interactions, mainly hydrophobic, between cosmetic products and hair. The active ingredient analyzed comes from vegetable proteins through an enzymatic cut process that selected only oligo- and polypeptides (> 3500 KDa) rich in amino acids with hydrocarbon side chains apolar or sulfur. These chemical components are the most expressed amino acids at the level of the capillary keratin structure, and it determines the most significant possible compatibility with the target substrate. Given the biological variability of the sources, it isn't easy to define a constant and reproducible molecular formula of the product. Still, it consists of hydroxypropiltrimonium vegetable peptides with keratin-like performances. 20 natural hair tresses (30 cm in length and 0.50 g weight) were treated with the investigated products (5 % v/v aqueous solution) following a specific protocol and compared with non-treated (Control) and benchmark-keratin-treated strands (Benchmark). Their brightness, moisture content, cortical and surface integrity, and tensile strength were evaluated and statistically compared. Keratin-like treated hair tresses showed better results than the other two groups (Control and Benchmark). The product improves the surface with significant regularization of the cuticle closure, improves the cortex and the peri-medullar area filling, gives a highly organized and tidy structure, delivers a significant amount of sulfur on the hair, and is more efficient moisturization and imbibition power, increases hair brightness. The hydroxypropyltrimonium quaternized group added to the C-terminal end interacts with the negative charges that form on the hair after washing when disheveled and tangled. The interactions anchor the product to the hair surface, keeping the cuticles adhered to the shaft. The small size allows the peptides to penetrate and give body to the hair, together with a conditioning effect that gives an image of healthy hair. Results suggest that the product is a valid ally in numerous restructuring/conditioning, shaft protection, straightener/dryer-damage prevention hair care product.

Keywords: conditioning, hair damage, hair, keratin, polarized light microscopy, scanning electron microscope, thermogravimetric analysis

Procedia PDF Downloads 125
900 Modeling and Optimizing of Sinker Electric Discharge Machine Process Parameters on AISI 4140 Alloy Steel by Central Composite Rotatable Design Method

Authors: J. Satya Eswari, J. Sekhar Babub, Meena Murmu, Govardhan Bhat

Abstract:

Electrical Discharge Machining (EDM) is an unconventional manufacturing process based on removal of material from a part by means of a series of repeated electrical sparks created by electric pulse generators at short intervals between a electrode tool and the part to be machined emmersed in dielectric fluid. In this paper, a study will be performed on the influence of the factors of peak current, pulse on time, interval time and power supply voltage. The output responses measured were material removal rate (MRR) and surface roughness. Finally, the parameters were optimized for maximum MRR with the desired surface roughness. RSM involves establishing mathematical relations between the design variables and the resulting responses and optimizing the process conditions. RSM is not free from problems when it is applied to multi-factor and multi-response situations. Design of experiments (DOE) technique to select the optimum machining conditions for machining AISI 4140 using EDM. The purpose of this paper is to determine the optimal factors of the electro-discharge machining (EDM) process investigate feasibility of design of experiment techniques. The work pieces used were rectangular plates of AISI 4140 grade steel alloy. The study of optimized settings of key machining factors like pulse on time, gap voltage, flushing pressure, input current and duty cycle on the material removal, surface roughness is been carried out using central composite design. The objective is to maximize the Material removal rate (MRR). Central composite design data is used to develop second order polynomial models with interaction terms. The insignificant coefficients’ are eliminated with these models by using student t test and F test for the goodness of fit. CCD is first used to establish the determine the optimal factors of the electro-discharge machining (EDM) for maximizing the MRR. The responses are further treated through a objective function to establish the same set of key machining factors to satisfy the optimization problem of the electro-discharge machining (EDM) process. The results demonstrate the better performance of CCD data based RSM for optimizing the electro-discharge machining (EDM) process.

Keywords: electric discharge machining (EDM), modeling, optimization, CCRD

Procedia PDF Downloads 341
899 Carbon Coated Yarn Supercapacitors: Parametric Study of Performance Output

Authors: Imtiaz Ahmed Khan, Sabu John, Sania Waqar, Lijing Wang, Mac Fergusson, Ilija Najdovski

Abstract:

Evolution of textiles, from its orthodox to more interactive role has stirred the researchers to uncover its application in numerous arenas. The idea of using textile based materials for wearable energy harvesting and storage devices have gained immense popularity. This is mainly due to textile comfort and flexibility features. In this work, nano-carbonous materials were infused on cellulosic fibers using caustic soda treatment. This paper presents the complete procedure of yarn supercapacitors fabrication process through dip coating technique and its characterization method. The main objective is to study, the effect of varying caustic soda concentration on mass loading of activated carbon on yarns and the related capacitance output of the designed yarn supercapacitor. Polyvinyl alcohol and Phosphoric acid were used as electrolyte in a two-electrode cell assembly to measure device electrochemical performance. The results show a promising increase in capacitance value using this technique.

Keywords: yarn supercapacitors, activated carbon, dip coating, caustic soda, electrolyte, electrochemical characterization

Procedia PDF Downloads 462
898 Scale Up-Mechanochemical Synthesis of High Surface Area Alpha-Alumina

Authors: Sarah Triller, Ferdi Schüth

Abstract:

The challenges encountered in upscaling the mechanochemical synthesis of high surface area α-alumina are investigated in this study. After lab-scale experiments in shaker mills and planetary ball mills, the optimization of reaction parameters of the conversion in the smallest vessel of a scalable mill, named Simoloyer, was developed. Furthermore, the future perspectives by scaling up the conversion in several steps are described. Since abrasion from the steel equipment can be problematic, the process was transferred to a ceramically lined mill, which solved the contamination problem. The recovered alpha-alumina shows a high specific surface area in all investigated scales.

Keywords: mechanochemistry, scale-up, ball milling, ceramic lining

Procedia PDF Downloads 66
897 Application of Coaxial Electrospinning for the Encapsulation of Omega-3 Fatty Acids

Authors: Sokratis Koskinakis, Georgia Frakolaki, Magdalini Krokida

Abstract:

Regular consumption of omega-3 fatty acid-rich lipids is said to provide a wide range of health benefits, including prevention of inflammation, cardiovascular disease, diabetes, arthritis, and ulcerative colitis. Because of their potential nutritional and health benefits, the omega-3 PUFAs are increasingly being supplemented in functional food products meant to improve human health and wellbeing. However, dietary fortification with PUFAs is difficult due to their low water solubility, tendency to oxidize quickly, and inconsistent bioavailability. These issues can be solved through application of modern encapsulation technologies, which typically entail integrating omega-3 oils into well-designed matrices made from food-grade components. Electrospinning, for example, is an effective encapsulation method for producing sub-micron or nano-scale polymer fibers. For this purpose, various combinations of hydroxypropyl-β-cyclodextrin and cellulose nanocrystals/ nanofibers were assessed for the encapsulation of omega-3 fatty acids through the innovative technology of electrospinning. The encapsulation yield was evaluated through GC-analysis, and the morphology of the final products was assessed through SEM analysis.

Keywords: electrospinning, encapsulation, omega-3 fatty acids, cellulose nanocrystals / nanofibers

Procedia PDF Downloads 82
896 Briquetting of Metal Chips by Controlled Impact: Experimental Study

Authors: Todor Penchev, Dimitar Karastojanov, Ivan Altaparmakov

Abstract:

For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette.

Keywords: briquetting, chips briquetting, impact briquetting, controlled impact

Procedia PDF Downloads 401
895 The Fabrication and Characterization of Hierarchical Carbon Nanotube/Carbon Fiber/High-Density Polyethylene Composites via Twin-Screw Extrusion

Authors: Chao Hu, Xinwen Liao, Qing-Hua Qin, Gang Wang

Abstract:

The hierarchical carbon nanotube (CNT)/carbon fiber (CF)/high density polyethylene (HDPE) was fabricated via compound extrusion and injection molding, in which to author’s best knowledge CNT was employed as a nano-coatings on the surface of CF for the first time by spray coating technique. The CNT coatings relative to CF was set at 1 wt% and the CF content relative to the composites varied from 0 to 25 wt% to study the influence of CNT coatings and CF contents on the mechanical, thermal and morphological performance of this hierarchical composites. The results showed that with the rise of CF contents, the mechanical properties, including the tensile properties, flexural properties, and hardness of CNT/CF/HDPE composites, were effectively improved. Furthermore, the CNT-coated composites showed overall higher mechanical performance than the uncoated counterparts. It can be ascribed to the enhancement of interfacial bonding between the CF and HDPE via the incorporation of CNT, which was demonstrated by the scanning electron microscopy observation. Meanwhile, the differential scanning calorimetry data indicated that by the introduction of CNT and CF, the crystallization temperature and crystallinity of HDPE were affected while the melting temperature did not have an obvious alteration.

Keywords: carbon fibers, carbon nanotubes, extrusion, high density polyethylene

Procedia PDF Downloads 138
894 The Actuation of Semicrystalline Poly(Vinylidene Fluoride) Tie Molecules: A Computational and Experimental Study

Authors: Abas Mohsenzadeh, Tariq Bashir, Waseen Tahir, Ulf Stigh, Mikael Skrifvars, Kim Bolton

Abstract:

The area of artificial muscles has received significant attention from many research domains including soft robotics, biomechanics and smart textiles in recent years. Poly(vinylidene fluoride) (PVDF) has been used to form artificial muscles since it contracts upon heating when under load. In this study, PVDF fibers were produced by melt spinning technique at different solid state draw ratios and then actuation mechanism for PVDF tie molecules within the semicrystalline region of PVDF polymer has been investigated using molecular dynamics simulations. Tie molecules are polymer chains that link two (or more) crystalline regions in semicrystalline polymers. The changes in fiber length upon heating have been investigated using a novel simulation technique. The results show that conformational changes of the tie molecules from the longer all-trans conformation at low temperature (β structure) to the shorter conformation (α structure) at higher temperature accrue by increasing the temperature. These results may be applied to understand the actuation observed for PVDF upon heating.

Keywords: poly(vinylidene fluoride), molecular dynamics, simulation, actuators, tie molecules, semicrystalline

Procedia PDF Downloads 308