Search results for: electrical current
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10342

Search results for: electrical current

8842 Solar-Assisted City Bus Electrical Installation: Opportunities and Impact on the Environment in Sydney

Authors: M. J. Geca, T. Tulwin, A. Majczak

Abstract:

On-board electricity consumption in the diesel city bus during operation is an important energy source. Electricity is generated by a combustion engine-driven alternator. Increased fuel consumption to generate on-board electricity in the bus has a negative impact on the emission of toxic components and carbon dioxide. At the same time, the bus roof surface allows placing a set of lightweight photovoltaic panels with power from 1 to 1.5 kW. The article presents an experimental study of electricity consumption of a city bus with diesel engine equipped with photovoltaic installation. The stream of electricity consumed by the bus and generated by a standard alternator and PV system was recorded. Base on the experimental research carried out in central Europe; the article analyses the impact of an additional source of electricity in the form of a photovoltaic installation on fuel consumption and emissions of toxic components of vehicles located in the latitude of Sydney. In Poland, the maximum global value of horizontal irradiation GHI is 1150 kWh/m², while for Sydney 1652 kWh/m². In addition, the profile of temperature and sunshine per year is different for these two different latitudes as presented in the article. Electricity generated directly from the sun powers the bus's electrical receivers. The photovoltaic system is able to replace 23% of annual electricity consumption, which at the same time will reduce 4% of fuel consumption and CO₂ reduction. Approximately 25% of the light is lost during vehicle traffic in Sydney latitude. The temperature losses of photovoltaic panels are comparable due to the cooling during vehicle motion. Acknowledgement: The project/research was financed in the framework of the project Lublin University of Technology - Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: electric energy, photovoltaic system, fuel consumption, CO₂

Procedia PDF Downloads 100
8841 Mobile Application Interventions in Positive Psychology: Current Status and Recommendations for Effective App Design

Authors: Gus Salazar, Jeremy Bekker, Lauren Linford, Jared Warren

Abstract:

Positive psychology practices allow for its principles to be applied to all people, regardless of their current level of functioning. To increase the dissemination of these practices, interventions are being adapted for use with digital technology, such as mobile apps. However, the research regarding positive psychology mobile app interventions is still in its infancy. In an effort to facilitate progress in this important area, we 1) conducted a qualitative review to summarize the current state of the positive psychology mobile app literature and 2) developed research-supported recommendations for positive psychology app development to maximize behavior change. In our literature review, we found that while positive psychology apps varied widely in content and purpose, there was a near-complete lack of research supporting their effectiveness. Most apps provided no rationale for the behavioral change techniques (BCTs) they employed in their app, and most did not develop their app with specific theoretical frameworks or design models in mind. Given this problem, we recommended four steps for effective positive psychology app design. First, developers must establish their app in a research-supported theory of change. Second, researchers must select appropriate behavioral change techniques which are consistent with their app’s goals. Third, researchers must leverage effective design principles. These steps will help mobile applications use data-driven methods for encouraging behavior change in their users. Lastly, we discuss directions for future research. In particular, researchers must investigate the effectiveness of various BCTs in positive psychology interventions. Although there is some research on this point, we do not yet clearly understand the mechanisms within the apps that lead to behavior change. Additionally, app developers must also provide data on the effectiveness of their mobile apps. As developers follow these steps for effective app development and as researchers continue to investigate what makes these apps most effective, we will provide millions of people in need with access to research-based mental health resources.

Keywords: behavioral change techniques, mobile app, mobile intervention, positive psychology

Procedia PDF Downloads 212
8840 Delineation of Oil– Polluted Sites in Ibeno LGA, Nigeria

Authors: Ime R. Udotong, Ofonime U. M. John, Justina I. R. Udotong

Abstract:

Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other multinational oil companies like Shell Petroleum Development Company Ltd, Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of ENI E&P operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria, respectively. This study was designed to carry out the survey of the oil impacted sites in Ibeno, Nigeria. A combinations of electrical resistivity (ER), ground penetrating radar (GPR) and physico-chemical as well as microbiological characterization of soils and water samples from the area were carried out. Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from significant concentrations of THC, BTEX and heavy metal contents in the environment. Also, high resistivity values and GPR profiles clearly showing the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones corroborates previous significant oil input. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Hydrocarbon pollution of the study area was confirmed by the results of soil and water physico-chemical and microbiological analysis. The levels of THC contamination observed in this study are indicative of high levels of crude oil contamination. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas, the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively as well as the high counts of hydrocarbonoclastic microorganisms in excess of 1% confirmed significant recent pollution of the study area.

Keywords: oil-polluted sites, physico-chemical analyses, microbiological characterization, geotechnical investigations, total hydrocarbon content

Procedia PDF Downloads 378
8839 A Feasibility Study of Crowdsourcing Data Collection for Facility Maintenance Management

Authors: Mohamed Bin Alhaj, Hexu Liu, Mohammed Sulaiman, Osama Abudayyeh

Abstract:

An effective facility maintenance management (FMM) system plays a crucial role in improving the quality of services and maintaining the facility in good condition. Current FMM heavily relies on the quality of the data collection function of the FMM systems, at times resulting in inefficient FMM decision-making. The new technology-based crowdsourcing provides great potential to improve the current FMM practices, especially in terms of timeliness and quality of data. This research aims to investigate the feasibility of using new technology-driven crowdsourcing for FMM and highlight its opportunities and challenges. A survey was carried out to understand the human, data, system, geospatial, and automation characteristics of crowdsourcing for an educational campus FMM via social networks. The survey results were analyzed to reveal the challenges and recommendations for the implementation of crowdsourcing for FMM. This research contributes to the body of knowledge by synthesizing the challenges and opportunities of using crowdsourcing for facility maintenance and providing a road map for applying crowdsourcing technology in FMM. In future work, a conceptual framework will be proposed to support data-driven FMM using social networks.

Keywords: crowdsourcing, facility maintenance management, social networks

Procedia PDF Downloads 150
8838 The Effects of Normal Aging on Reasoning Ability: A Dual-Process Approach

Authors: Jamie A. Prowse Turner, Jamie I. D. Campbell, Valerie A. Thompson

Abstract:

The objective of the current research was to use a dual-process theory framework to explain these age-related differences in reasoning. Seventy-two older (M = 80.0 years) and 72 younger (M = 24.6 years) adults were given a variety of reasoning tests (i.e., a syllogistic task, base rate task, the Cognitive Reflection Test, and a perspective manipulation), as well as independent tests of capacity (working memory, processing speed, and inhibition), thinking styles, and metacognitive ability, to account for these age-related differences. It was revealed that age-related differences were limited to problems that required Type 2 processing and were related to differences in cognitive capacity, individual difference factors, and strategy choice. Furthermore, older adults’ performance can be improved by reasoning from another’s’ perspective and cannot, at this time, be explained by metacognitive differences between young and older adults. All of these findings fit well within a dual-process theory of reasoning, which provides an integrative framework accounting for previous findings and the findings presented in the current manuscript.

Keywords: aging, dual-process theory, performance, reasoning ability

Procedia PDF Downloads 178
8837 The Effect of Aging of ZnO, AZO, and GZO films on the Microstructure and Photoelectric Property

Authors: Zue-Chin Chang

Abstract:

RF magnetron sputtering is used on the ceramic targets, each of which contains zinc oxide (ZnO), zinc oxide doped with aluminum (AZO) and zinc oxide doped with gallium (GZO). The XRD analysis showed a preferred orientation along the (002) plane for ZnO, AZO, and GZO films. The AZO film had the best electrical properties; it had the lowest resistivity of 6.6 × 10-4 cm, the best sheet resistance of 2.2 × 10-1 Ω/square, and the highest carrier concentration of 4.3 × 1020 cm-3, as compared to the ZnO and GZO films.

Keywords: aging, films, microstructure, photoelectric property

Procedia PDF Downloads 455
8836 A State-Of-The-Art Review on Web Services Adaptation

Authors: M. Velasco, D. While, P. Raju, J. Krasniewicz, A. Amini, L. Hernandez-Munoz

Abstract:

Web service adaptation involves the creation of adapters that solve Web services incompatibilities known as mismatches. Since the importance of Web services adaptation is increasing because of the frequent implementation and use of online Web services, this paper presents a literature review of web services to investigate the main methods of adaptation, their theoretical underpinnings and the metrics used to measure adapters performance. Eighteen publications were reviewed independently by two researchers. We found that adaptation techniques are needed to solve different types of problems that may arise due to incompatibilities in Web service interfaces, including protocols, messages, data and semantics that affect the interoperability of the services. Although adapters are non-invasive methods that can improve Web services interoperability and there are current approaches for service adaptation; there is, however, not yet one solution that fits all types of mismatches. Our results also show that only a few research projects incorporate theoretical frameworks and that metrics to measure adapters’ performance are very limited. We conclude that further research on software adaptation should improve current adaptation methods in different layers of the service interoperability and that an adaptation theoretical framework that incorporates a theoretical underpinning and measures of qualitative and quantitative performance needs to be created.

Keywords: Web Services Adapters, software adaptation, web services mismatches, web services interoperability

Procedia PDF Downloads 276
8835 Proposal of Methodology Based on Technical Characterization and Quantitative Contrast of Co₂ Emissions for the Migration to Electric Mobility of the Vehicle Fleet: Case Study of Electric Companies in Ecuador

Authors: Rodrigo I. Ullauri, Santiago E. Tinajero, Omar O. Ramos, Paola R. Quintana

Abstract:

The increase of CO₂ emissions in the atmosphere and its impact on climate change is a global concern. The transportation sector is a significant consumer of fossil fuels and contributes significantly to greenhouse gas emissions. The current challenge is to find ways to reduce the use of fossil fuels in transportation. In Ecuador, where 92% of electricity is generated from clean sources, the concept of e-mobility is considered an attractive alternative to address the challenge of sustainable mobility. The proposal is to migrate from combustion-powered vehicles to electric vehicles in the electric companies of Ecuador, using a methodology to standardize criteria, determine specific requirements, contrast technical characteristics, and estimate emission reductions. The results showed that there are three categories of vehicles that have electric counterparts suitable for performing activities under certain operation parameters inherent to current technology limitations but with a significant contribution to the reduction of annual CO₂ emissions.

Keywords: climate change, electro mobility, energy, sustainable transportation

Procedia PDF Downloads 76
8834 Improving Security Features of Traditional Automated Teller Machines-Based Banking Services via Fingerprint Biometrics Scheme

Authors: Anthony I. Otuonye, Juliet N. Odii, Perpetual N. Ibe

Abstract:

The obvious challenges faced by most commercial bank customers while using the services of ATMs (Automated Teller Machines) across developing countries have triggered the need for an improved system with better security features. Current ATM systems are password-based, and research has proved the vulnerabilities of these systems to heinous attacks and manipulations. We have discovered by research that the security of current ATM-assisted banking services in most developing countries of the world is easily broken and maneuvered by fraudsters, majorly because it is quite difficult for these systems to identify an impostor with privileged access as against the authentic bank account owner. Again, PIN (Personal Identification Number) code passwords are easily guessed, just to mention a few of such obvious limitations of traditional ATM operations. In this research work also, we have developed a system of fingerprint biometrics with PIN code Authentication that seeks to improve the security features of traditional ATM installations as well as other Banking Services. The aim is to ensure better security at all ATM installations and raise the confidence of bank customers. It is hoped that our system will overcome most of the challenges of the current password-based ATM operation if properly applied. The researchers made use of the OOADM (Object-Oriented Analysis and Design Methodology), a software development methodology that assures proper system design using modern design diagrams. Implementation and coding were carried out using Visual Studio 2010 together with other software tools. Results obtained show a working system that provides two levels of security at the client’s side using a fingerprint biometric scheme combined with the existing 4-digit PIN code to guarantee the confidence of bank customers across developing countries.

Keywords: fingerprint biometrics, banking operations, verification, ATMs, PIN code

Procedia PDF Downloads 25
8833 Gassing Tendency of Natural Ester Based Transformer oils: Low Alkane Generation in Stray Gassing Behaviour

Authors: Thummalapalli CSM Gupta, Banti Sidhiwala

Abstract:

Mineral oils of naphthenic and paraffinic type have been traditionally been used as insulating liquids in the transformer applications to protect the solid insulation from moisture and ensures effective heat transfer/cooling. The performance of these type of oils have been proven in the field over many decades and the condition monitoring and diagnosis of transformer performance have been successfully monitored through oil properties and dissolved gas analysis methods successfully. Different type of gases representing various types of faults due to components or operating conditions effectively. While large amount of data base has been generated in the industry on dissolved gas analysis for mineral oil based transformer oils and various models for predicting the fault and analysis, oil specifications and standards have also been modified to include stray gassing limits which cover the low temperature faults and becomes an effective preventative maintenance tool that can benefit greatly to know the reasons for the breakdown of electrical insulating materials and related components. Natural esters have seen a rise in popularity in recent years due to their "green" credentials. Some of its benefits include biodegradability, a higher fire point, improvement in load capability of transformer and improved solid insulation life than mineral oils. However, the Stray gases evolution like hydrogen and hydrocarbons like methane (CH4) and ethane (C2H6) show very high values which are much higher than the limits of mineral oil standards. Though the standards for these type esters are yet to be evolved, the higher values of hydrocarbon gases that are available in the market is of concern which might be interpreted as a fault in transformer operation. The current paper focuses on developing a natural ester based transformer oil which shows very levels of stray gassing by standard test methods show much lower values compared to the products available currently and experimental results on various test conditions and the underlying mechanism explained.

Keywords: biodegadability, fire point, dissolved gassing analysis, stray gassing

Procedia PDF Downloads 83
8832 Contemporary Living Spaces – Exploring, Differentiating, and Defining the Terms and Requirements of “Micro” and “Small” Homes in Bulgaria

Authors: Evgenia Dimova-Aleksandrova, Elitsa Deianova

Abstract:

Dynamic changes in modern life and habitation due to demographic, urban, technology, and ecological factors affect the size of modern homes leading to a trend of decreasing their area. The current paper aims to investigate the differences between “micro” homes and “small” homes. In Bulgaria, these two types are not included in legal regulations, and therefore, a precise definition and special requirements are needed and sought in order to include their characteristic features in contemporary individual habitation. The purpose of the current study is to determine limits in built-up volume for the two types, to create a definition of the terms “micro” and “small” home, and to find methods to distinguish them. A comparative analysis will differentiate these types of habitation units, thus determining the boundaries for the built-up area for both concepts. The analysis is based on a case study from European practices and is focused on defining minimal requirements for “micro” and “small” home in the context of contemporary demands for high quality habitation in limited areas.

Keywords: Bulgaria, differentiation, micro home, requirements, small home

Procedia PDF Downloads 86
8831 Thermoelectric Cooler As A Heat Transfer Device For Thermal Conductivity Test

Authors: Abdul Murad Zainal Abidin, Azahar Mohd, Nor Idayu Arifin, Siti Nor Azila Khalid, Mohd Julzaha Zahari Mohamad Yusof

Abstract:

A thermoelectric cooler (TEC) is an electronic component that uses ‘peltier’ effect to create a temperature difference by transferring heat between two electrical junctions of two different types of materials. TEC can also be used for heating by reversing the electric current flow and even power generation. A heat flow meter (HFM) is an equipment for measuring thermal conductivity of building materials. During the test, water is used as heat transfer medium to cool the HFM. The existing re-circulating cooler in the market is very costly, and the alternative is to use piped tap water to extract heat from HFM. However, the tap water temperature is insufficiently low to enable heat transfer to take place. The operating temperature for isothermal plates in the HFM is 40°C with the range of ±0.02°C. When the temperature exceeds the operating range, the HFM stops working, and the test cannot be conducted. The aim of the research is to develop a low-cost but energy-efficient TEC prototype that enables heat transfer without compromising the function of the HFM. The objectives of the research are a) to identify potential of TEC as a cooling device by evaluating its cooling rate and b) to determine the amount of water savings using TEC compared to normal tap water. Four (4) peltier sets were used, with two (2) sets used as pre-cooler. The cooling water is re-circulated from the reservoir into HFM using a water pump. The thermal conductivity readings, the water flow rate, and the power consumption were measured while the HFM was operating. The measured data has shown decrease in average cooling temperature difference (ΔTave) of 2.42°C and average cooling rate of 0.031°C/min. The water savings accrued from using the TEC is projected to be 8,332.8 litres/year with the application of water re-circulation. The results suggest the prototype has achieved required objectives. Further research will include comparing the cooling rate of TEC prototype against conventional tap water and to optimize its design and performance in terms of size and portability. The possible application of the prototype could also be expanded to portable storage for medicine and beverages.

Keywords: energy efficiency, thermoelectric cooling, pre-cooling device, heat flow meter, sustainable technology, thermal conductivity

Procedia PDF Downloads 144
8830 Identification of Architectural Design Error Risk Factors in Construction Projects Using IDEF0 Technique

Authors: Sahar Tabarroki, Ahad Nazari

Abstract:

The design process is one of the most key project processes in the construction industry. Although architects have the responsibility to produce complete, accurate, and coordinated documents, architectural design is accompanied by many errors. A design error occurs when the constraints and requirements of the design are not satisfied. Errors are potentially costly and time-consuming to correct if not caught early during the design phase, and they become expensive in either construction documents or in the construction phase. The aim of this research is to identify the risk factors of architectural design errors, so identification of risks is necessary. First, a literature review in the design process was conducted and then a questionnaire was designed to identify the risks and risk factors. The questions in the form of the questionnaire were based on the “similar service description of study and supervision of architectural works” published by “Vice Presidency of Strategic Planning & Supervision of I.R. Iran” as the base of architects’ tasks. Second, the top 10 risks of architectural activities were identified. To determine the positions of possible causes of risks with respect to architectural activities, these activities were located in a design process modeled by the IDEF0 technique. The research was carried out by choosing a case study, checking the design drawings, interviewing its architect and client, and providing a checklist in order to identify the concrete examples of architectural design errors. The results revealed that activities such as “defining the current and future requirements of the project”, “studies and space planning,” and “time and cost estimation of suggested solution” has a higher error risk than others. Moreover, the most important causes include “unclear goals of a client”, “time force by a client”, and “lack of knowledge of architects about the requirements of end-users”. For error detecting in the case study, lack of criteria, standards and design criteria, and lack of coordination among them, was a barrier, anyway, “lack of coordination between architectural design and electrical and mechanical facility”, “violation of the standard dimensions and sizes in space designing”, “design omissions” were identified as the most important design errors.

Keywords: architectural design, design error, risk management, risk factor

Procedia PDF Downloads 116
8829 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.

Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark

Procedia PDF Downloads 62
8828 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology

Authors: Shashank. S. Bagane, H. N. Rajendra Prasad

Abstract:

Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.

Keywords: building information modeling, energy impact, spatial geometry, vastu

Procedia PDF Downloads 147
8827 Empirical Analysis of the Effect of Cloud Movement in a Basic Off-Grid Photovoltaic System: Case Study Using Transient Response of DC-DC Converters

Authors: Asowata Osamede, Christo Pienaar, Johan Bekker

Abstract:

Mismatch in electrical energy (power) or outage from commercial providers, in general, does not promote development to the public and private sector, these basically limit the development of industries. The necessity for a well-structured photovoltaic (PV) system is of importance for an efficient and cost-effective monitoring system. The major renewable energy potential on earth is provided from solar radiation and solar photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduction on the dependence on fossil fuels. Solar arrays which consist of various PV module should be operated at the maximum power point in order to reduce the overall cost of the system. So power regulation and conditioning circuits should be incorporated in the set-up of a PV system. Power regulation circuits used in PV systems include maximum power point trackers, DC-DC converters and solar chargers. Inappropriate choice of power conditioning device in a basic off-grid PV system can attribute to power loss, hence the need for a right choice of power conditioning device to be coupled with the system of the essence. This paper presents the design and implementation of a power conditioning devices in order to improve the overall yield from the availability of solar energy and the system’s total efficiency. The power conditioning devices taken into consideration in the project includes the Buck and Boost DC-DC converters as well as solar chargers with MPPT. A logging interface circuit (LIC) is designed and employed into the system. The LIC is designed on a printed circuit board. It basically has DC current signalling sensors, specifically the LTS 6-NP. The LIC is consequently required to program the voltages in the system (these include the PV voltage and the power conditioning device voltage). The voltage is structured in such a way that it can be accommodated by the data logger. Preliminary results which include availability of power as well as power loss in the system and efficiency will be presented and this would be used to draw the final conclusion.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation

Procedia PDF Downloads 119
8826 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease

Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove

Abstract:

Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.

Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease

Procedia PDF Downloads 86
8825 Design and Modeling of Human Middle Ear for Harmonic Response Analysis

Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey

Abstract:

The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.

Keywords: computed tomography (μCT), human middle ear (ME), harmonic response, pathologies, tympanic membrane (TM)

Procedia PDF Downloads 158
8824 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties

Authors: Hsyi-En Cheng, Ying-Yi Liou

Abstract:

Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.

Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide

Procedia PDF Downloads 232
8823 Collaborative Implementation of Master Plans in Afghanistan's Context Considering Land Readjustment as Case Study

Authors: Ahmad Javid Habib, Tetsuo Kidokoro

Abstract:

There is an increasing demand for developing urban land to provide better living conditions for all citizens in Afghanistan. Most of the development will involve the acquisition of land. And the current land acquisition method practiced by central government is expropriation, which is a cash-based transaction method that imposes heavy fiscal burden on local municipalities and central government, and it does not protect ownership rights and social equity of landowners besides it relocates the urban poor to remote areas with limited access to jobs and public services. The questionnaire analysis, backed by observations of different case studies in countries where land readjustment is used as a collaborative land development tool indicates that the method plays a key role in valuing landowners’ rights, giving other community members and stakeholders the opportunity to collaboratively implement urban development projects. The practice of the method is reducing the heavy fiscal burden on the local and central governments and is a better option to deal with the current development challenges in Afghanistan.

Keywords: collaboration, land readjustment, master plan, expropriation

Procedia PDF Downloads 277
8822 Standard Essential Patents for Artificial Intelligence Hardware and the Implications For Intellectual Property Rights

Authors: Wendy de Gomez

Abstract:

Standardization is a critical element in the ability of a society to reduce uncertainty, subjectivity, misrepresentation, and interpretation while simultaneously contributing to innovation. Technological standardization is critical to codify specific operationalization through legal instruments that provide rules of development, expectation, and use. In the current emerging technology landscape Artificial Intelligence (AI) hardware as a general use technology has seen incredible growth as evidenced from AI technology patents between 2012 and 2018 in the United States Patent Trademark Office (USPTO) AI dataset. However, as outlined in the 2023 United States Government National Standards Strategy for Critical and Emerging Technology the codification through standardization of emerging technologies such as AI has not kept pace with its actual technological proliferation. This gap has the potential to cause significant divergent possibilities for the downstream outcomes of AI in both the short and long term. This original empirical research provides an overview of the standardization efforts around AI in different geographies and provides a background to standardization law. It quantifies the longitudinal trend of Artificial Intelligence hardware patents through the USPTO AI dataset. It seeks evidence of existing Standard Essential Patents from these AI hardware patents through a text analysis of the Statement of patent history and the Field of the invention of these patents in Patent Vector and examines their determination as a Standard Essential Patent and their inclusion in existing AI technology standards across the four main AI standards bodies- European Telecommunications Standards Institute (ETSI); International Telecommunication Union (ITU)/ Telecommunication Standardization Sector (-T); Institute of Electrical and Electronics Engineers (IEEE); and the International Organization for Standardization (ISO). Once the analysis is complete the paper will discuss both the theoretical and operational implications of F/Rand Licensing Agreements for the owners of these Standard Essential Patents in the United States Court and Administrative system. It will conclude with an evaluation of how Standard Setting Organizations (SSOs) can work with SEP owners more effectively through various forms of Intellectual Property mechanisms such as patent pools.

Keywords: patents, artifical intelligence, standards, F/Rand agreements

Procedia PDF Downloads 68
8821 The Current Use of Cell Phone in Education

Authors: Elham A. Alsadoon, Hamadah B. Alsadoon

Abstract:

Educators try to design learning environments that are preferred by their students. With the wide-spread adoption of cell phones surpassing any other technology, educators should not fail to invest in the power of such technology. This study aimed to explore the current use of cell phones in education among Saudi students in Saudi universities and how students perceive such use. Data was collected from 237 students at King Saud University. Descriptive analysis was used to analyze the data. A T-test for independent groups was used to examine whether there was a significant difference between males and females in their perception of using cell phones in education. Findings suggested that students have a positive attitude toward the use of cell phones in education. The most accepted use was for sending notification to students, which has already been experienced through the Twasel system provided by King Saud University. This electronic system allows instructors to easily send any SMS or email to their students. The use of cell phone applications came in the second rank of using cell phones in education. Students have already experienced the benefits of having these applications handy wherever they go. On the other hand, they did not perceive using cell phones for assessment as practical educational usage. No gender difference was detected in terms of students’ perceptions toward using cell phones in education.

Keywords: cell phone, mobile learning, educational sciences, education

Procedia PDF Downloads 400
8820 Schooling Competent Citizens: A Normative Analysis of Citizenship Education Policy in Europe

Authors: M. Joris, O. Agirdag

Abstract:

For over two decades, calls for citizenship education (CE) have been rising to the top of educational policy agendas in Europe. The main motive for the current treatment of CE as a key topic is a sense of crisis: social and political threats that go beyond the reach of nations and require action at the international and European level. On the one hand, this context has triggered abundant attention to the promotion of citizenship through education. On the other hand, the ubiquity of citizenship and education in policy language is paired with a self-evident manner of using the concepts: the more we call for citizenship in and through education, the less the concepts seem to be made explicit or be defined. Research and reflection on the normativity of the concepts of citizenship and CE in Europe are scarce. Departing from the idea that policies are always normative, this study, therefore, investigates the normativity of the current concepts of citizenship and education, in ’key’ European CE policy texts. The study consists of a content analysis of these texts, based on a normative framework developed around the different dimensions of citizenship as status, identity, virtues and agency. The framework also describes the purposes of education and its learning processes, content and practices, based on the assumption that good education always includes, next to qualification and socialisation, a purpose of emancipation: of helping young people become autonomous and independent subjects. The analysis shows how contemporary European citizenship is conceptualised around the dimension of competences. This focus on competences is also visible in the normative framing of education and its relationship to citizenship in the texts: CE should help young people learn how to become good citizens by acquiring a toolkit of competences, consisting of knowledge, skills, values and attitudes that can be predetermined, measured and evaluated. This ideal of citizenship-as-competence entails a focus on the educational purposes of socialisation and qualification. Current policy texts thus seem to leave out the educational purpose of emancipating young people, allowing them to take on citizenship as something to which they can determine their own relation and position. It is, however, this purpose of CE that seems increasingly important in our current context. Young people are stepping out of school and onto the streets by the thousands in Belgium and throughout Europe, protesting for more and better environmental policies. They are making use of existing modes of citizenship, exactly to indicate to policymakers how these are falling short and are claiming their right and entitlement to a future that established practices of politics are putting at risk. The importance of citizenship education might then lie, now more than ever, not in the fact that it would prepare young people for competent citizenship, but in offering them a possibility, an emancipatory experience of being able to do something new. It seems that this is what we might want to expect from the school if we want it to educate our truly future citizens.

Keywords: citizenship education, normativity, policy, purposes of education

Procedia PDF Downloads 117
8819 Evaluating the effects of Gas Injection on Enhanced Gas-Condensate Recovery and Reservoir Pressure Maintenance

Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh

Abstract:

In this paper, the Eclipse 300 simulator was used to perform compositional modeling of gas injection process for enhanced condensate recovery of a real gas condensate well in south of Iran here referred to as SA4. Some experimental data were used to tune the Peng-Robinson equation of state for this case. Different scenarios of gas injection at current reservoir pressure and at abandonment reservoir pressure had been considered with different gas compositions. Methane, carbon dioxide, nitrogen and two other gases with specified compositions were considered as potential gases for injection. According to the obtained results, nitrogen leads to highest pressure maintenance in the reservoir but methane results in highest condensate recovery among the selected injection gases. At low injection rates, condensate recovery percent is strongly affected by gas injection rate but this dependency shifts to zero at high injection rates. Condensate recovery is higher in all cases of injection at current reservoir pressure than injection at abandonment pressure. Using a constant injection rate, increasing the production well bottom hole pressure results in increasing the condensate recovery percent and time of gas breakthrough.

Keywords: gas-condensate reservoir, case-study, compositional modelling, enhanced condensate recovery, gas injection

Procedia PDF Downloads 177
8818 Therapeutic Journey towards Self: Developing Positivity with Indications of Cluster B and C Personality Traits

Authors: Shweta Jha, Nandita Chaube

Abstract:

The concept of self has a major role to play in the study of personality which drives the current study in its present form. This is a case of Miss S, a 17-year-old Hindu, currently in eleventh standard, with no family history of mental illness but with a past history of inability to manage relationships, multiple emotional and sexual relationships, repeated self harming behaviour, and sexual abuse over a period of 2 months at the age of 10 years. She comes with a psychiatric history of one episode of dissociative fall followed by a stressful event which left the patient with many psychological disturbances matching the criterion of Cluster B and C traits. Current episode precipitated due to the relationship failure, predisposing factor is her personality traits, and poor social and family support. Considering the patient’s aspiration for positivity and demand of the therapy, ventilation sessions were carried out which made her capable of understanding and dealing with her negative emotions, also strengthened mother child bond, helped her maintain meaningful and healthy relationships, also helped her increase her problem solving ability and adaptive coping skills making her feel more positive and acceptable towards herself, family members and others.

Keywords: cluster B and C traits, personality, therapy, self

Procedia PDF Downloads 272
8817 Teacher Professional Development –Current Practices in a Secondary School in Brunei Darussalam

Authors: Shanthi Thomas

Abstract:

This research paper presents the current practices of teacher professional development, perceived as beneficial by teachers themselves, in a private secondary school in Brunei Darussalam. This is part of the findings of a larger qualitative study on teacher empowerment, using ethnographic methods for data collection, i.e. participant observation, interviews and document analysis. The field work was carried out over a period of six months in 2013. An analysis of the field data revealed multiple pathways of teacher professional development existing in the school. The results indicate that school leaders, the teacher community in the school, students, and the teachers themselves were the agents in a school that facilitated teacher empowerment. Besides contributing to the knowledge base on teacher professional development, the results of this study provides directions for educational policy makers in their efforts to enhance professional development in secondary schools of similar characteristics. For school leaders and the teacher community, these findings offer guidelines for maximizing the opportunities for these professional development practices, by strengthening collegiality and by using the existing structures optimally for the benefit of all concerned.

Keywords: colleagues and the wider teacher community, school leaders, self-driven professional development, teacher professional development

Procedia PDF Downloads 398
8816 Enhancement of Critical Current Density of Liquid Infiltration Processed Y-Ba-Cu-O Bulk Superconductors Used for Flywheel Energy Storage System

Authors: Asif Mahmood, Yousef Alzeghayer

Abstract:

The size effects of a precursor Y2BaCuO5 (Y211) powder on the microstructure and critical current density (Jc) of liquid infiltration growth (LIG)-processed YBa2Cu3O7-y (Y123) bulk superconductors were investigated in terms of milling time (t). YBCO bulk samples having high Jc values have been selected for the flywheel energy storage system. Y211 powders were attrition-milled for 0-10 h in 2 h increments at a fixed rotation speed of 400 RPM. Y211 pre-forms were made by pelletizing the milled Y211 powders followed by subsequent sintering, after which an LIG process with top seeding was applied to the Y211/Ba3Cu5O8 (Y035) pre-forms. Spherical pores were observed in all LIG-processed Y123 samples, and the pore density gradually decreased as t increased from 0 h to 8 h. In addition to the reduced pore density, the Y211 particle size in the final Y123 products also decreased with increasing t. As t increased further to 10 h, unexpected Y211 coarsening and large pore evolutions were observed. The magnetic susceptibility-temperature curves showed that the onset superconducting transition temperature (Tc, onset) of all samples was the same (91.5 K), but the transition width became greater as t increased. The Jc of the Y123 bulk superconductors fabricated in this study was observed to correlate well with t of the Y211 precursor powder. The maximum Jc of 1.0×105 A cm-2 (at 77 K, 0 T) was achieved at t = 8 h, which is attributed to the reduction in pore density and Y211 particle size. The prolonged milling time of t = 10 h decreased the Jc of the LIG-processed Y123 superconductor owing to the evolution of large pores and exaggerated Y211 growth. YBCO bulk samples having high Jc (samples prepared using 8 h milled powders) have been used for the energy storage system in flywheel energy storage system.

Keywords: critical current, bulk superconductor, liquid infiltration, bioinformatics

Procedia PDF Downloads 198
8815 Predictors of Survival of Therapeutic Hypothermia Based on Analysis of a Consecutive American Inner City Population over 4 Years

Authors: Jorge Martinez, Brandon Roberts, Holly Payton Toca

Abstract:

Background: Therapeutic hypothermia (TH) is the international standard of care for all comatose patients after cardiac arrest, but criticism focuses on poor outcomes. We sought to develop criteria to identify American urban patients more likely to benefit from TH. Methods: Retrospective chart review of 107 consecutive adults undergoing TH in downtown New Orleans from 2010-2014 yielded records for 99 patients with all 44 survivors or families contacted up to four years. Results: 69 males and 38 females with a mean age of 60.2 showed 63 dead (58%) and 44 survivors (42%). Presenting cardiac rhythm was divided into shockable (Pulseless Ventricular Tachycardia, Ventricular Fibrillation) and non-shockable (Pulseless Electrical Activity, Asystole). Presenting in shockable rhythms with ROSC <20 minutes were 21 patients with 15 (71%) survivors (p=.001). Time >20 minutes until ROSC in shockable rhythms had 5 patients with 3 survivors (78%, p=0.001). Presenting in non-shockable rhythms with ROSC <20 minutes were 54 patients with 18 survivors (33%, p=.001). ROSC >20 minutes in non-shockable rhythms had 19 patients with 2 survivors (8%, p=.001). Survivors of shockable rhythms showed 19 (100%) living post TH. 15 survivors (79%, n=19, p=.001) had CPC score 1 or 2 with 4 survivors (21%, n=19) having a CPC score of 3. A total of 25 survived non-shockable rhythm. Acute survival of patients with non-shockable rhythm showed 18 expired <72 hours (72%, n=25) with long-term survival of 4 patients (5%, n=74) and CPC scores of 1 or 2 (p=.001). Interestingly, patients with time to ROSC <20 minutes exhibiting more than one loss of sustained ROSC showed 100% mortality (p=.001). Patients presenting with shockable >20 minutes ROSC had overall survival of 70% (p=.001), but those undergoing >3 cardiac rhythm changes had 100% mortality (p=.001). Conclusion: Patients presenting with shockable rhythms undergoing TH had overall acute survival of 70% followed by long-term survival of 100% after 4 years. In contrast, patients presenting with non-shockable rhythm had long-term survival of 5%. TH is not recommended for patients presenting with non-shockable rhythm and requiring greater than 20 minutes for restoration of ROSC.

Keywords: cardiac rhythm changes, Pulseless Electrical Activity (PEA), Therapeutic Hypothermia (TH)

Procedia PDF Downloads 197
8814 The Current Status and Abundance of the Genus Citharinus in Jebba Lake, Niger State, Nigeria

Authors: M. B. Mshelia, J. K Balogun, J. Auta, N. O. Bankole

Abstract:

The current status and abundance of the genus Citharinus was carried out in Jebba Lake, Niger State, Nigeria from January to December, 2011. The aim was to determine the extent of exploitation of the genus Citharinus in Jebba Lake so as to advice the government of Nigeria on how to overcome difficulties in terms of the sustainability of the said fish in the Lake. Descriptive statistics were used to analyze the data obtained. A total of 2,389 of the genus Citharinus were caught during the sampling period. Only two species of the genus Citharinus were caught with 1,220 in number and 430.68kg total weight of Citharinus citharus and 1,169 in number and 418.56kg total weight of Citharinus latus). The current total yield estimated for the genus Citharinus in Jebba Lake in the six (6) sampling sites was calculated and pooled together to be 849.24kg. A day’s catch was calculated to be 35.38kg. The monthly and annual yields of the genus Citharinus were calculated to 1061.55 equivalents to 1 ton and 12 metric tonnes respectively. For the fecundity, June, July and August were discovered as the spawning period for the genus Citharinus and out of total experimental gillnet catch of 2, 389, only 244 (10.21%)of Citharinus citharus and 231 (9.67%) of Citharinus latus were in sexually mature stage. Out of these numbers, 113 (46.31%) were males and 121 (53.69%) were females of Citharinus citharus and 112 (48.48) were males and 119 (51.52) were females of Citharinus latus. The youngest mature males in either of the two had a standard length of 31.5 with a weight of 800.5gWhilethe youngest spawning females were having the standard length of 29.5 cm with a weight of 1,3oo.5g.It was also discovered that females started maturing earlier than the males at the standard length for females and males to be 18.0cm and 19.5cm respectively. Their fecundity ranged from 15,000 to 16, 500 eggs. The sex ratio of 1172 that were males and 1217 that were females was 1 male to 1.0383 females which was equivalent to 1:1 sex ratio of male to female. It was concluded that Jebba Lake had suffered seriously over exploitation of the genus Citharinus and proper management have to be enforced on the lake otherwise the threat of fish being extent may arise.

Keywords: Jebba Lake, Niger State, Nigeria, Citharinus citharus, Citharinus latus, fecundity, sex ratio

Procedia PDF Downloads 248
8813 Improvement of Process Competitiveness Using Intelligent Reference Models

Authors: Julio Macedo

Abstract:

Several methodologies are now available to conceive the improvements of a process so that it becomes competitive as for example total quality, process reengineering, six sigma, define measure analysis improvement control method. These improvements are of different nature and can be external to the process represented by an optimization model or a discrete simulation model. In addition, the process stakeholders are several and have different desired performances for the process. Hence, the methodologies above do not have a tool to aid in the conception of the required improvements. In order to fill this void we suggest the use of intelligent reference models. A reference model is a set of qualitative differential equations and an objective function that minimizes the gap between the current and the desired performance indexes of the process. The reference models are intelligent so when they receive the current state of the problematic process and the desired performance indexes they generate the required improvements for the problematic process. The reference models are fuzzy cognitive maps added with an objective function and trained using the improvements implemented by the high performance firms. Experiments done in a set of students show the reference models allow them to conceive more improvements than students that do not use these models.

Keywords: continuous improvement, fuzzy cognitive maps, process competitiveness, qualitative simulation, system dynamics

Procedia PDF Downloads 73