Search results for: ring deep beam
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3450

Search results for: ring deep beam

1980 Fuzzy Sliding Mode Control of a Flexible Structure for Vibration Suppression Using MFC Actuator

Authors: Jinsiang Shaw, Shih-Chieh Tseng

Abstract:

Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper use a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to suppress the disturbance. A fuzzy sliding mode controller is developed and applied to this system. Experimental results illustrate that the controller and MFC actuator are very effective in attenuating the structural vibration near the first resonant freuqency. Furthermore, this controller is shown to outperform the traditional skyhook controller, with nearly 90% of the vibration suppressed at the first resonant frequency of the structure.

Keywords: Fuzzy sliding mode controller, macro-fiber-composite actuator, skyhook controller, vibration suppression

Procedia PDF Downloads 403
1979 Synchronization of Two Mobile Robots

Authors: R. M. López-Gutiérrez, J. A. Michel-Macarty, H. Cervantes-De Avila, J. I. Nieto-Hipólito, C. Cruz-Hernández, L. Cardoza-Avendaño, S. Cortiant-Velez

Abstract:

It is well know that mankind benefits from the application of robot control by virtual handlers in industrial environments. In recent years, great interest has emerged in the control of multiple robots in order to carry out collective tasks. One main trend is to copy the natural organization that some organisms have, such as, ants, bees, school of fish, birds’ migration, etc. Surely, this collaborative work, results in better outcomes than those obtain in an isolated or individual effort. This topic has a great drive because collaboration between several robots has the potential capability of carrying out more complicated tasks, doing so, with better efficiency, resiliency and fault tolerance, in cases such as: coordinate navigation towards a target, terrain exploration, and search-rescue operations. In this work, synchronization of multiple autonomous robots is shown over a variety of coupling topologies: star, ring, chain, and global. In all cases, collective synchronous behavior is achieved, in the complex networks formed with mobile robots. Nodes of these networks are modeled by a mass using Matlab to simulate them.

Keywords: robots, synchronization, bidirectional, coordinate navigation

Procedia PDF Downloads 358
1978 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 72
1977 Real-Time Big-Data Warehouse a Next-Generation Enterprise Data Warehouse and Analysis Framework

Authors: Abbas Raza Ali

Abstract:

Big Data technology is gradually becoming a dire need of large enterprises. These enterprises are generating massively large amount of off-line and streaming data in both structured and unstructured formats on daily basis. It is a challenging task to effectively extract useful insights from the large scale datasets, even though sometimes it becomes a technology constraint to manage transactional data history of more than a few months. This paper presents a framework to efficiently manage massively large and complex datasets. The framework has been tested on a communication service provider producing massively large complex streaming data in binary format. The communication industry is bound by the regulators to manage history of their subscribers’ call records where every action of a subscriber generates a record. Also, managing and analyzing transactional data allows service providers to better understand their customers’ behavior, for example, deep packet inspection requires transactional internet usage data to explain internet usage behaviour of the subscribers. However, current relational database systems limit service providers to only maintain history at semantic level which is aggregated at subscriber level. The framework addresses these challenges by leveraging Big Data technology which optimally manages and allows deep analysis of complex datasets. The framework has been applied to offload existing Intelligent Network Mediation and relational Data Warehouse of the service provider on Big Data. The service provider has 50+ million subscriber-base with yearly growth of 7-10%. The end-to-end process takes not more than 10 minutes which involves binary to ASCII decoding of call detail records, stitching of all the interrogations against a call (transformations) and aggregations of all the call records of a subscriber.

Keywords: big data, communication service providers, enterprise data warehouse, stream computing, Telco IN Mediation

Procedia PDF Downloads 175
1976 Arabic Light Word Analyser: Roles with Deep Learning Approach

Authors: Mohammed Abu Shquier

Abstract:

This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.

Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN

Procedia PDF Downloads 42
1975 Vibration Control of a Flexible Structure Using MFC Actuator

Authors: Jinsiang Shaw, Jeng-Jie Huang

Abstract:

Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper employs a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to reject the disturbance. A notch filter with an adaptive tuning algorithm, the leaky filtered-X least mean square algorithm (leaky FXLMS algorithm), is developed and applied to the system. Experimental results show that the controller and MFC actuator was very effective in attenuating the structural vibration. Furthermore, this notch filter controller was compared with the traditional skyhook controller. It was found that its performance was better, with over 88% vibration suppression near the first resonant frequency of the structure.

Keywords: macro-fiber composite, notch filter, skyhook controller, vibration suppression

Procedia PDF Downloads 462
1974 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 101
1973 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 96
1972 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design

Authors: Mohammad Bagher Anvari, Arman Shojaei

Abstract:

Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.

Keywords: incremental launching, bridge construction, finite element model, optimization

Procedia PDF Downloads 102
1971 Aire-Dependent Transcripts have Shortened 3’UTRs and Show Greater Stability by Evading Microrna-Mediated Repression

Authors: Clotilde Guyon, Nada Jmari, Yen-Chin Li, Jean Denoyel, Noriyuki Fujikado, Christophe Blanchet, David Root, Matthieu Giraud

Abstract:

Aire induces ectopic expression of a large repertoire of tissue-specific antigen (TSA) genes in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in maturing T cells. Although important mechanisms of Aire-induced transcription have recently been disclosed through the identification and the study of Aire’s partners, the fine transcriptional functions underlied by a number of them and conferred to Aire are still unknown. Alternative cleavage and polyadenylation (APA) is an essential mRNA processing step regulated by the termination complex consisting of 85 proteins, 10 of them have been related to Aire. We evaluated APA in MECs in vivo by microarray analysis with mRNA-spanning probes and RNA deep sequencing. We uncovered the preference of Aire-dependent transcripts for short-3’UTR isoforms and for proximal poly(A) site selection marked by the increased binding of the cleavage factor Cstf-64. RNA interference of the 10 Aire-related proteins revealed that Clp1, a member of the core termination complex, exerts a profound effect on short 3’UTR isoform preference. Clp1 is also significantly upregulated in the MECs compared to 25 mouse tissues in which we found that TSA expression is associated with longer 3’UTR isoforms. Aire-dependent transcripts escape a global 3’UTR lengthening associated with MEC differentiation, thereby potentiating the repressive effect of microRNAs that are globally upregulated in mature MECs. Consistent with these findings, RNA deep sequencing of actinomycinD-treated MECs revealed the increased stability of short 3’UTR Aire-induced transcripts, resulting in TSA transcripts accumulation and contributing for their enrichment in the MECs.

Keywords: Aire, central tolerance, miRNAs, transcription termination

Procedia PDF Downloads 383
1970 Characteristics and Challenges of Post-Burn Contractures in Adults and Children: A Descriptive Study

Authors: Hardisiswo Soedjana, Inne Caroline

Abstract:

Deep dermal or full thickness burns are inevitably lead to post-burn contractures. These contractures remain to be one of the most concerning late complications of burn injuries. Surgical management includes releasing the contracture followed by resurfacing the defect accompanied by post-operative rehabilitation. Optimal treatment of post-burn contractures depends on the characteristics of the contractures. This study is aimed to describe clinical characteristics, problems, and management of post-burn contractures in adults and children. A retrospective analysis was conducted from medical records of patients suffered from contractures after burn injuries admitted to Hasan Sadikin general hospital between January 2016 and January 2018. A total of 50 patients with post burn contractures were included in the study. There were 17 adults and 33 children. Most patients were male, whose age range within 15-59 years old and 5-9 years old. Educational background was mostly senior high school among adults, while there was only one third of children who have entered school. Etiology of burns was predominantly flame in adults (82.3%); whereas flame and scald were the leading cause of burn injury in children (11%). Based on anatomical regions, hands were the most common affected both in adults (35.2%) and children (48.5%). Contractures were identified in 6-12 months since the initial burns. Most post-burn hand contractures were resurfaced with full-thickness skin graft (FTSG) both in adults and children. There were 11 patients who presented with recurrent contracture after previous history of contracture release. Post-operative rehabilitation was conducted for all patients; however, it is important to highlight that it is still challenging to control splinting and exercise when patients are discharged and especially the compliance in children. In order to improve quality of life in patients with history of deep burn injuries, prevention of contractures should begin right after acute care has been established. Education for the importance of splinting and exercise should be administered as comprehensible as possible for adult patients and parents of pediatric patients.

Keywords: burn, contracture, education, exercise, splinting

Procedia PDF Downloads 130
1969 3D Simulation of the Twin-Aperture IRON Superconducting Quadrupole for Charm-Tau Factory

Authors: K. K. Riabchenko, T. V Rybitskaya, A. A. Starostenko

Abstract:

Sper Charm-Tau Factory is a double ring e+e- collider to be operated in the center-of-mass energy range from 2 to 6 GeV, with a peak luminosity of about 1035 cm-2s-1 (Crab Waist collision) and with longitudinally polarized electrons at the IP (interaction point). One of the important elements of the cτ-factory is the superconducting two-aperture quadrupole of the final focus. It was decided to make a full-scale prototype quadrupole. The main objectives of our study included: 1) 3D modeling of the quadrupole in the Opera program, 2) Optimization of the geometry of the quadrupole lens, 3) Study of the influence of magnetic properties and geometry of a quadrupole on integral harmonics. In addition to this, the ways of producing unwanted harmonics have been studied. In the course of this work, a 3D model of a two-aperture iron superconducting quadrupole lens was created. A three-dimensional simulation of the magnetic field was performed, and the geometrical parameters of the lens were selected. Calculations helped to find sources of possible errors and methods for correcting unwanted harmonics. In addition to this, calculations show that there are no obstacles to the production of a prototype lens.

Keywords: super cτ-factory, final focus, twin aperture quadrupole lens, integral harmonics

Procedia PDF Downloads 126
1968 Analytical Investigation of Ductility of Reinforced Concrete Beams Strengthening with Polypropylene Fibers

Authors: Rifat Sezer, Abdulhamid Aryan

Abstract:

The purpose of this study is to research both the ductility of the reinforced concrete beams without fiber and the ductility of the reinforced concrete beams with fiber. For this purpose, the analytical load - displacement curves of the beams were formed and the areas under these curves were compared. According to the results of this comparison, it is concluded that the reinforced concrete beams with polypropylene fiber are more ductile. The dimension of the used beam-samples for analytical model in this study is 20x30 cm, their length is 200 cm and their scale is ½. The reinforced concrete reference-beams are produced as one item and the reinforced concrete beams with P-0.60 kg/m3 polypropylene fiber are produced as one item. The modeling of reinforced concrete beams was utilized with Abaqus software.

Keywords: polypropylene, fiber-reinforced beams, strengthening of the beams, abaqus program

Procedia PDF Downloads 496
1967 Development of a Robust Procedure for Generating Structural Models of Calcium Aluminosilicate Glass Surfaces

Authors: S. Perera, T. R. Walsh, M. Solvang

Abstract:

The structure-property relationships of calcium aluminosilicate (CAS) glass surfaces are of scientific and technological interest regarding dissolution phenomena. Molecular dynamics (MD) simulations can provide atomic-scale insights into the structure and properties of the CAS interfaces in vacuo as the first step to conducting computational dissolution studies on CAS surfaces. However, one limitation to date is that although the bulk properties of CAS glasses have been well studied by MD simulation, corresponding efforts on CAS surface properties are relatively few in number (both theoretical and experimental). Here, a systematic computational protocol to create CAS surfaces in vacuo is developed by evaluating the sensitivity of the resultant surface structure with respect to different factors. Factors such as the relative thickness of the surface layer, the relative thickness of the bulk region, the cooling rate, and the annealing schedule (time and temperature) are explored. Structural features such as ring size distribution, defect concentrations (five-coordinated aluminium (AlV), non-bridging oxygen (NBO), and tri-cluster oxygen (TBO)), and linkage distribution are identified as significant features in dissolution studies.

Keywords: MD simulation, CAS glasses, surface structure, structure-property, CAS interface

Procedia PDF Downloads 98
1966 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging

Authors: Balakrishna Shetty

Abstract:

Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.

Keywords: stem cells, imaging, DWI, peripheral vascular disease

Procedia PDF Downloads 74
1965 Identification of Deposition Sequences of the Organic Content of Lower Albian-Cenomanian Age in Northern Tunisia: Correlation between Molecular and Stratigraphic Fossils

Authors: Tahani Hallek, Dhaou Akrout, Riadh Ahmadi, Mabrouk Montacer

Abstract:

The present work is an organic geochemical study of the Fahdene Formation outcrops at the Mahjouba region belonging to the Eastern part of the Kalaat Senan structure in northwestern Tunisia (the Kef-Tedjerouine area). The analytical study of the organic content of the samples collected, allowed us to point out that the Formation in question is characterized by an average to good oil potential. This fossilized organic matter has a mixed origin (type II and III), as indicated by the relatively high values of hydrogen index. This origin is confirmed by the C29 Steranes abundance and also by tricyclic terpanes C19/(C19+C23) and tetracyclic terpanes C24/(C24+C23) ratios, that suggest a marine environment of deposit with high plants contribution. We have demonstrated that the heterogeneity of organic matter between the marine aspect, confirmed by the presence of foraminifera, and the continental contribution, is the result of an episodic anomaly in relation to the sequential stratigraphy. Given that the study area is defined as an outer platform forming a transition zone between a stable continental domain to the south and a deep basin to the north, we have explained the continental contribution by successive forced regressions, having blocked the albian transgression, allowing the installation of the lowstand system tracts. This aspect is represented by the incised valleys filling, in direct contact with the pelagic and deep sea facies. Consequently, the Fahdene Formation, in the Kef-Tedjerouine area, consists of transgressive system tracts (TST) brutally truncated by extras of continental progradation; resulting in a mixed influence deposition having retained a heterogeneous organic material.

Keywords: molecular geochemistry, biomarkers, forced regression, deposit environment, mixed origin, Northern Tunisia

Procedia PDF Downloads 249
1964 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method

Authors: Rui Wu

Abstract:

In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.

Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning

Procedia PDF Downloads 108
1963 Linkage between Trace Element Distribution and Growth Ring Formation in Japanese Red Coral (Paracorallium japonicum)

Authors: Luan Trong Nguyen, M. Azizur Rahman, Yusuke Tamenori, Toshihiro Yoshimura, Nozomu Iwasaki, Hiroshi Hasegawa

Abstract:

This study investigated the distribution of magnesium (Mg), phosphorus (P), sulfur (S) and strontium (Sr) using micro X-ray fluorescence (µ-XRF) along the annual growth rings in the skeleton of Japanese red coral Paracorallium japonicum. The Mg, P and S distribution in µ-XRF mapping images correspond to the dark and light bands along the annual growth rings observed in microscopic images of the coral skeleton. The µ-XRF mapping data showed a positive correlation (r = 0.6) between P and S distribution in the coral skeleton. A contrasting distribution pattern of S and Mg along the axial skeleton of P. japonicum indicates a weak negative correlation (r = -0.2) between these two trace elements. The distribution pattern of S, P and Mg reveals linkage between their distributions and the formation of dark/light bands along the annual growth rings in the axial skeleton of P. japonicum. Sulfur and P were distributed in the organic matrix rich dark bands, while Mg was distributed in the light bands of the annual growth rings.

Keywords: µ-XRF, trace element, precious coral, Paracorallium japonicum

Procedia PDF Downloads 442
1962 Closed Incision Negative Pressure Therapy Dressing as an Approach to Manage Closed Sternal Incisions in High-Risk Cardiac Patients: A Multi-Centre Study in the UK

Authors: Rona Lee Suelo-Calanao, Mahmoud Loubani

Abstract:

Objective: Sternal wound infection (SWI) following cardiac operation has a significant impact on patient morbidity and mortality. It also contributes to longer hospital stays and increased treatment costs. SWI management is mainly focused on treatment rather than prevention. This study looks at the effect of closed incision negative pressure therapy (ciNPT) dressing to help reduce the incidence of superficial SWI in high-risk patients after cardiac surgery. The ciNPT dressing was evaluated at 3 cardiac hospitals in the United Kingdom". Methods: All patients who had cardiac surgery from 2013 to 2021 were included in the study. The patients were classed as high risk if they have two or more of the recognised risk factors: obesity, age above 80 years old, diabetes, and chronic obstructive pulmonary disease. Patients receiving standard dressing (SD) and patients using ciNPT were propensity matched, and the Fisher’s exact test (two-tailed) and unpaired T-test were used to analyse categorical and continuous data, respectively. Results: There were 766 matched cases in each group. Total SWI incidences are lower in the ciNPT group compared to the SD group (43 (5.6%) vs 119 (15.5%), P=0.0001). There are fewer deep sternal wound infections (14(1.8%) vs. 31(4.04%), p=0.0149) and fewer superficial infections (29(3.7%) vs. 88 (11.4%), p=0.0001) in the ciNPT group compared to the SD group. However, the ciNPT group showed a longer average length of stay (11.23 ± 13 days versus 9.66 ± 10 days; p=0.0083) and higher mean logistic EuroSCORE (11.143 ± 13 versus 8.094 ± 11; p=0.0001). Conclusion: Utilization of ciNPT as an approach to help reduce the incidence of superficial and deep SWI may be effective in high-risk patients requiring cardiac surgery.

Keywords: closed incision negative pressure therapy, surgical wound infection, cardiac surgery complication, high risk cardiac patients

Procedia PDF Downloads 96
1961 Investigation of Film and Mechanical Properties of Poly(Lactic Acid)

Authors: Reyhan Özdoğan, Özgür Ceylan, Mehmet Arif Kaya, Mithat Çelebi

Abstract:

Food packaging is important for the food industry. Bioplastics have been used as food packaging materials. According to the European Bioplastics organization, bioplastics can be defined as plastics based on renewable resources (bio-based) or as plastics which are biodegradable and/or compostable. Poly(lactic acid) (PLA) has an industrially importance of bioplastic polymers. PLA is a family of biodegradable thermoplastic polyester made from renewable resources. It is produced by conversion of corn, or other carbohydrate sources, into dextrose, followed by fermentation into lactic acid through direct polycondensation of lactic acid monomers or through ring-opening polymerization of lactide. The processing possibilities of this transparent material are very wide, ranging from injection molding and extrusion over cast film extrusion to blow molding and thermoforming. In this study, PLA films were prepared by solution casting method. PLAs which are different molecular weights were plasticized with glycerol and the morphology of films was monitored by optical microscopy. Properties of mechanical and film of PLA were researched with the mechanical testing machine.

Keywords: biodegradable, bioplastics, morphology, solution casting, poly(lactic acid)

Procedia PDF Downloads 378
1960 The Potential Use of Flavin Mononucleotide for Photoluminescent and Bioluminescent Textile

Authors: Sweta Iyer, Nemeshwaree Behary, Jinping Guan, Guoqiang Chen, Vincent Nierstrasz

Abstract:

Flavin mononucleotide widely known as 'FMN' is a biobased resource derived from riboflavin. The isoalloxazine ring present in the FMN molecule attributes the photoluminescence phenomenon, whereas FMN molecule in the presence of bacterial luciferase enzyme and co-factors such as NADH, long chain aldehyde leads to bioluminescence reaction. In this study, the FMN molecule was treated on cellulosic textile using chromojet technique and the photoluminescence property was characterized using spectroscopy technique. Further, the FMN was used as a substrate along with enzymes and co-factors to treat the non-woven textile, and the bioluminescence property was explored using luminometer equipment. The investigation revealed photoluminescence property on cellulosic textile, and the emission peak was observed at a wavelength around 530 nm with an average corrected spectral intensity of 10×106 CPS/Microamps. In addition, the measurement of nonwoven textile using bioluminescence reaction system exhibited light intensity measured in the form of relative light units (RLU). The study enabled to explore the use of FMN as both photoluminescent and bioluminescent textile. Further investigation would require for stability study of the same to provide an eco-efficient approach to obtain luminescent textile.

Keywords: flavin mononucleotide, photoluminescence, bioluminescence, luminescent textile

Procedia PDF Downloads 291
1959 Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis

Authors: J. H. Kim, J. H. Kwon, J. S. Park, K. J. Lim

Abstract:

This paper has investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program.

Keywords: actuator, piezoelectric, performance, unimorph

Procedia PDF Downloads 464
1958 How Geant4 Hadronic Models Handle Tracking of Pion Particles Resulting from Antiproton Annihilation

Authors: M. B. Tavakoli, R. Reiazi, M. M. Mohammadi, K. Jabbari

Abstract:

From 2003, AD4/ACE experiment in CERN tried to investigate different aspects of antiproton as a new modality in particle therapy. Because of lack of reliable absolute dose measurements attempts to find out the radiobiological characteristics of antiproton have not reached to a reasonable result yet. From the other side, application of Geant4 in medical approaches is increased followed by Geant4-DNA project which focuses on using this code to predict radiation effects in the cellular scale. This way we can exploit Geant4-DNA results for antiproton. Unfortunately, previous studies showed there are serious problem in simulating an antiproton beam using Geant4. Since most of the problem was in the Bragg peak region which antiproton annihilates there, in this work we tried to understand if the problem came from the way in which Geant4 handles annihilation products especially pion particles. This way, we can predict the source of the dose discrepancies between Geant4 simulations and dose measurements done in CERN.

Keywords: Geant4, antiproton, annihilation, pion plus, pion minus

Procedia PDF Downloads 657
1957 Development of a Digital Healthcare Intervention to Reduce Digital and Healthcare Inequality in Rural Communities with a Focus on Hypertensive Management

Authors: Festus Adedoyin, Nana Mbeah Otoo, Sofia Meacham

Abstract:

Hypertension is one of the main health issues in Ghana, where prevalence is higher in rural than in urban areas. This is due to the challenges rural areas have in accessing technology and healthcare services for hypertension control. This study's goal is to create a digital healthcare solution to alleviate this inequality. Through an analysis of current technology and problems, using the ring onion methodology, the study determined the needs for the intervention and evaluated healthcare disparities. An online application with teleconsultation capabilities, reminder mechanisms, and clinical decision support is part of the suggested solution. In outlying areas, mobile clinics in containers with the required equipment will be established. Heuristic evaluation and think-aloud sessions were used to assess the prototype's usability and navigational problems. This study highlights the need to develop digital health interventions to help manage hypertension in rural locations and decrease healthcare disparities. To develop and improve digital healthcare solutions for rural areas worldwide and in Ghana, this study might be used as a tool for future research.

Keywords: digital health, health inequalities, hypertension management, rural areas

Procedia PDF Downloads 108
1956 The Evaluation of Superiority of Foot Local Anesthesia Method in Dairy Cows

Authors: Samaneh Yavari, Christiane Pferrer, Elisabeth Engelke, Alexander Starke, Juergen Rehage

Abstract:

Background: Nowadays, bovine limb interventions, especially any claw surgeries, raises selection of the most qualified and appropriate local anesthesia technique applicable for any superficial or deep interventions of the limbs. Currently, two local anesthesia methods of Intravenous Regional Anesthesia (IVRA), as well as Nerve Blocks, have been routine to apply. However, the lack of studies investigating the quality and duration as well as quantity and onset of full (complete) local anesthesia, is noticeable. Therefore, the aim of our study was comparing the onset and quality of both IVRA and our modified NBA at the hind limb of dairy cows. For this abstract, only the onset of full local anesthesia would be consider. Materials and Methods: For that reason, we used six healthy non pregnant non lactating Holestein Frisian cows in a cross-over study design. Those cows divided into two groups to receive IVRA and our modified four-point NBA. For IVRA, 20 ml procaine without epinephrine was injected into the vein digitalis dorsalis communis III and for our modified four-point NBA, 10-15 ml procaine without epinephrine preneurally to the nerves, superficial and deep peroneal as well as lateral and medial branches of metatarsal nerves. For pain stimulation, electrical stimulator Grass S48 was applied. Results: The results of electrical stimuli revealed the faster onset of full local anesthesia (p < 0.05) by application of our modified NBA in comparison to IVRA about 10 minutes. Conclusion and discussion: Despite of available references showing faster onset of foot local anesthesia of IVRA, our study demonstrated that our modified four point NBA not only can be well known as a standard foot local anesthesia method applicable to desensitize the hind limb of dairy cows, but also, selection of this modified validated local anesthesia method can lead to have a faster start of complete desensitization of distal hind limb that is remarkable in any bovine limb interventions under time constraint.

Keywords: IVRA, four point NBA, dairy cow, hind limb, full onset

Procedia PDF Downloads 151
1955 Bonding Capacity of GFRP Sheet on Strengthen Concrete Beams After Influenced the Marine Environment

Authors: Mufti Amir Sultan, Rudy Djamaluddin, Rita Irmawaty

Abstract:

Structures built in aggressive environments such as in the sea/marine environment need to be carefully designed, due to the possibility of chloride ion penetration into the concrete. One way to reduce the strength degradation in such environment is to use FRP, which is attached to the surface of reinforced concrete using epoxy. A series of the specimen of reinforced concrete beams with dimension 100×120×600 mm were casted. Beams were immersed in the sea for 3 months (BL3), 6 months (BL6), and 12 months (BL12). Three specimens were prepared control beam without immersion to the sea (B0). The study presented is focused on determining the effect of the marine environment to the capacity of GFRP as flexural external reinforcement elements. The result indicated that the bonding capacity of BL3, BL6, and BL12 compared to B0 decreased for 7.91%, 11.99%, and 37.83%, respectively. The decreasing was caused by the weakening of the bonding capacity GFRP due to the influence of the marine environment.

Keywords: flexural, GFRP, marine environment, bonding capacity

Procedia PDF Downloads 353
1954 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 20
1953 Study of the Behavior of Bolted Joints with and Without Reinforcement

Authors: Karim Akkouche

Abstract:

Many methods have been developed for characterizing the behavior of bolted joints. However, in the presence of a certain model of stiffeners, no orientation was given in relation to their modeling. To this end, multitude of coarse errors can arise in the reproduction of the propagation of efforts and in representation of the modes of deformations. Considering these particularities, a numerical investigation was carried out in our laboratory. In this paper we will present a comparative study between three types of assemblies. A non-linear 3D modeling was chosen, given that it takes into consideration geometric and material non-linearity, using the Finite Element calculation code ABAQUS. Initially, we evaluated the influence of the presence of each stiffener on the "global" behavior of the assemblies, this by analyzing their Moment-Rotation curves, also by referring to the classification system proposed by NF EN 1993- 1.8 which is based on the resisting moment Mj-Rd and the initial stiffness Sj.int. In a second step, we evaluated the "local" behavior of their components by referring to the stress-strain curves.

Keywords: assembly, post-beam, end plate, nonlinearity

Procedia PDF Downloads 74
1952 Risk Assessment Tools Applied to Deep Vein Thrombosis Patients Treated with Warfarin

Authors: Kylie Mueller, Nijole Bernaitis, Shailendra Anoopkumar-Dukie

Abstract:

Background: Vitamin K antagonists particularly warfarin is the most frequently used oral medication for deep vein thrombosis (DVT) treatment and prophylaxis. Time in therapeutic range (TITR) of the international normalised ratio (INR) is widely accepted as a measure to assess the quality of warfarin therapy. Multiple factors can affect warfarin control and the subsequent adverse outcomes including thromboembolic and bleeding events. Predictor models have been developed to assess potential contributing factors and measure the individual risk of these adverse events. These predictive models have been validated in atrial fibrillation (AF) patients, however, there is a lack of literature on whether these can be successfully applied to other warfarin users including DVT patients. Therefore, the aim of the study was to assess the ability of these risk models (HAS BLED and CHADS2) to predict haemorrhagic and ischaemic incidences in DVT patients treated with warfarin. Methods: A retrospective analysis of DVT patients receiving warfarin management by a private pathology clinic was conducted. Data was collected from November 2007 to September 2014 and included demographics, medical and drug history, INR targets and test results. Patients receiving continuous warfarin therapy with an INR reference range between 2.0 and 3.0 were included in the study with mean TITR calculated using the Rosendaal method. Bleeding and thromboembolic events were recorded and reported as incidences per patient. The haemorrhagic risk model HAS BLED and ischaemic risk model CHADS2 were applied to the data. Patients were then stratified into either the low, moderate, or high-risk categories. The analysis was conducted to determine if a correlation existed between risk assessment tool and patient outcomes. Data was analysed using GraphPad Instat Version 3 with a p value of <0.05 considered to be statistically significant. Patient characteristics were reported as mean and standard deviation for continuous data and categorical data reported as number and percentage. Results: Of the 533 patients included in the study, there were 268 (50.2%) female and 265 (49.8%) male patients with a mean age of 62.5 years (±16.4). The overall mean TITR was 78.3% (±12.7) with an overall haemorrhagic incidence of 0.41 events per patient. For the HAS BLED model, there was a haemorrhagic incidence of 0.08, 0.53, and 0.54 per patient in the low, moderate and high-risk categories respectively showing a statistically significant increase in incidence with increasing risk category. The CHADS2 model showed an increase in ischaemic events according to risk category with no ischaemic events in the low category, and an ischaemic incidence of 0.03 in the moderate category and 0.47 high-risk categories. Conclusion: An increasing haemorrhagic incidence correlated to an increase in the HAS BLED risk score in DVT patients treated with warfarin. Furthermore, a greater incidence of ischaemic events occurred in patients with an increase in CHADS2 category. In an Australian population of DVT patients, the HAS BLED and CHADS2 accurately predicts incidences of haemorrhage and ischaemic events respectively.

Keywords: anticoagulant agent, deep vein thrombosis, risk assessment, warfarin

Procedia PDF Downloads 263
1951 Radiative Reactions Analysis at the Range of Astrophysical Energies

Authors: A. Amar

Abstract:

Analysis of the elastic scattering of protons on 10B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V0) and proton energy (Ep) has been obtained. Also, surface imaginary potential WD is proportional to the proton energy (Ep) in the range 0.400 and 17 MeV. The radiative reaction 10B(p,γ)11C has been analyzed using potential model. A comparison between 10B(p,γ)11C and 6Li(p,γ)7Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction 7Li(p,γ)8Be has been studied.

Keywords: elastic scattering of protons on 10B nuclei, optical potential parameters, potential model, radiative reaction

Procedia PDF Downloads 211