Search results for: horizontal bone
1455 Mixed Convective Heat Transfer in Water-Based Al2O3 Nanofluid in Horizontal Rectangular Duct
Authors: Nur Irmawati, H. A. Mohammed
Abstract:
In the present study, mixed convection in a horizontal rectangular duct using Al2O3 is numerically investigated. The effects of different Rayleigh number, Reynolds number and radiation on flow and heat transfer characteristics were studied in detail. This study covers Rayleigh number in the range of 2×106≤Ra≤2×107 and Reynolds number in the range of 100≤Re≤1100. Results reveal that the Nusselt number increases as Reynolds and Rayleigh numbers increase. It was also found that the dimensionless temperature distribution increases as Rayleigh number increases.Keywords: numerical simulation, mixed convection, horizontal rectangular duct, nanofluids
Procedia PDF Downloads 3741454 Absorbed Dose Estimation of 68Ga-EDTMP in Human Organs
Authors: S. Zolghadri, H. Yousefnia, A. R. Jalilian
Abstract:
Bone metastases are observed in a wide range of cancers leading to intolerable pain. While early detection can help the physicians in the decision of the type of treatment, various radiopharmaceuticals using phosphonates like 68Ga-EDTMP have been developed. In this work, due to the importance of absorbed dose, human absorbed dose of this new agent was calculated for the first time based on biodistribution data in Wild-type rats. 68Ga was obtained from 68Ge/68Ga generator with radionuclidic purity and radiochemical purity of higher than 99%. The radiolabeled complex was prepared in the optimized conditions. Radiochemical purity of the radiolabeled complex was checked by instant thin layer chromatography (ITLC) method using Whatman No. 2 paper and saline. The results indicated the radiochemical purity of higher than 99%. The radiolabelled complex was injected into the Wild-type rats and its biodistribution was studied up to 120 min. As expected, major accumulation was observed in the bone. Absorbed dose of each human organ was calculated based on biodistribution in the rats using RADAR method. Bone surface and bone marrow with 0.112 and 0.053 mSv/MBq, respectively, received the highest absorbed dose. According to these results, the radiolabeled complex is a suitable and safe option for PET bone imaging.Keywords: absorbed dose, EDTMP, ⁶⁸Ga, rats
Procedia PDF Downloads 1931453 The Inhibition of Relapse of Orthodontic Tooth Movement by NaF Administration in Expressions of TGF-β1, Runx2, Alkaline Phosphatase and Microscopic Appearance of Woven Bone
Authors: R. Sutjiati, Rubianto, I. B. Narmada, I. K. Sudiana, R. P. Rahayu
Abstract:
The prevalence of post-treatment relapse in orthodontics in the community is high enough; therefore, relapses in orthodontic treatment must be prevented well. The aim of this study is to experimentally test the inhibition of relapse of orthodontics tooth movement in NaF of expression TGF-β1, Runx2, alkaline phosphatase (ALP) and microscopic of woven bone. The research method used was experimental laboratory research involving 30 rats, which were divided into three groups. Group A: rats were not given orthodontic tooth movement and without NaF. Group B: rats were given orthodontic tooth movement and without 11.5 ppm by topical application. Group C: rats were given orthodontic tooth movement and 11.75 ppm by topical application. Orthodontic tooth movement was conducted by applying ligature wires of 0.02 mm in diameter on the molar-1 (M-1) of left permanent maxilla and left insisivus of maxilla. Immunohistochemical examination was conducted to calculate the number of osteoblast to determine TGF β1, Runx2, ALP and haematoxylin to determine woven bone on day 7 and day 14. Results: It was shown that administrations of Natrium Fluoride topical application proved effective to increase the expression of TGF-β1, Runx2, ALP and to increase woven bone in the tension area greater than administration without natrium fluoride topical application (p < 0.05), except the expression of ALP on day 7 and day 14 which was significant. The results of the study show that NaF significantly increases the expressions of TGF-β1, Runx2, ALP and woven bone. The expression of the variables enhanced on day 7 compared on that on day 14, except ALP. Thus, it can be said that the acceleration of woven bone occurs on day 7.Keywords: TGF-β1, Runx2, ALP, woven bone, natrium fluoride
Procedia PDF Downloads 2321452 Comparison between Torsional Ultrasonic Assisted Drilling and Conventional Drilling of Bone: An in vitro Study
Authors: Nikoo Soleimani
Abstract:
Background: Reducing torque during bone drilling is one of the effective factors in reaching to an optimal drilling process. Methods: 15 bovine femurs were drilled in vitro with a drill bit with a diameter of 4 mm using two methods of torsional ultrasonic assisted drilling (T-UAD) and convent conventional drilling (CD) and the effects of changing the feed rate and rotational speed on the torque were compared in both methods. Results: There was no significant difference in the thrust force measured in both methods due to the direction of vibrations. Results showed that using T-UAD method for bone drilling at feed rates of 0.16, 0.24 and 0.32 mm/rev led for all rotational speeds to a decrease of at least 16.3% in torque compared to the CD method. Further, using T-UAD at rotational speeds of 355~1000 rpm with various feed rates resulted in a torque reduction of 16.3~50.5% compared to CD method. Conclusions: Reducing the feed rate and increasing the rotational speed, except for the rotational speed of 500 rpm and a feed rate of 0.32 mm/rev, resulted generally in torque reduction in both methods. However, T-UAD is a more effective and desirable option for bone drilling considering its significant torque reduction.Keywords: torsional ultrasonic assisted drilling, torque, bone drilling, rotational speed, feed rate
Procedia PDF Downloads 1561451 Computed Tomography Guided Bone Biopsies: Experience at an Australian Metropolitan Hospital
Authors: K. Hinde, R. Bookun, P. Tran
Abstract:
Percutaneous CT guided biopsies provide a fast, minimally invasive, cost effective and safe method for obtaining tissue for histopathology and culture. Standards for diagnostic yield vary depending on whether the tissue is being obtained for histopathology or culture. We present a retrospective audit from Western Health in Melbourne Australia over a 12-month period which aimed to determine the diagnostic yield, technical success and complication rate for CT guided bone biopsies and identify factors affecting these results. The digital imaging storage program (Synapse Picture Archiving and Communication System – Fujifilm Australia) was analysed with key word searches from October 2015 to October 2016. Nineteen CT guided bone biopsies were performed during this time. The most common referring unit was oncology, work up imaging included CT, MRI, bone scan and PET scan. The complication rate was 0%, overall diagnostic yield was 74% with a technical success of 95%. When performing biopsies for histologic analysis diagnostic yield was 85% and when performing biopsies for bacterial culture diagnostic yield was 60%. There was no significant relationship identified between size of lesion, distance of lesion to skin, lesion appearance on CT, the number of samples taken or gauge of needle to diagnostic yield or technical success. CT guided bone biopsy at Western Health meets the standard reported at other major clinical centres for technical success and safety. It is a useful investigation in identification of primary malignancy in distal bone metastases.Keywords: bone biopsy, computed tomography, core biopsy, histopathology
Procedia PDF Downloads 1991450 Effect of Supplemental Bacterial Phytase at Different Dietary Levels of Phosphorus on Tibial Bone Characteristics and Body Weight Gain in Broilers
Authors: Saqib Saleem Abdullah, Saima Masood, Hafsa Zaneb, Shela Gul Bokhari, Muti Ur Rehman, Jamil Akbar
Abstract:
A 5- weeks feeding trial was carried out to determine the effectiveness of Bacterial Phytase (Phyzyme®) in broilers, at different dietary levels of Phosphorous. 140 d-old broilers (Hubbard) were randomly divided into 4 groups (n=4). Birds were fed corn-based basal diet or the same diet supplemented with 3 different levels of non Phytate Phosphorous (NPP) (0.45 %, 0.30 % and 0.15 %). Furthermore, the diets were supplemented with bacterial Phytase. Birds were fed ad libitum and kept under thermo neutral conditions. The parameters studied were; body weight gain (BWG), tibial bone characteristics (TBC), serum Calcium (Ca), Phosphorus (P) and Alkaline Phosphatase (AP) levels and tibia ash percentage (TAP). BWG of the broilers was calculated at weekly interval and remaining parameters were calculated after slaughtering the birds at 35thday. Results suggested that Phytase supplementation at 0.30% NPP (Non Phytate Phosphorus + Bacterial Phytase) increased (P < 0.05) the BWG, bone length, bone weight, tibiotarsal index, medullary canal diameter and diaphysis diameter however, rubosticity index was reduced to minimum (P < 0.05) at this dietary level of phosphorous when compared with other groups. Maximum (P < 0.05) rubosticity index was observed in control group with 0% Phytase. Furthermore, Phytase addition at 0.30 % NPP also improved (P < 0.05) Ca, P and AP levels in the blood. Phytase supplementation at lower phosphorus level (0.30%NPP) improved BWG and TBC including bone density and bone quality in broilers hence it can be concluded that addition of Phytase at 0.30% NPP may prove beneficial for bone and overall performance in broilers.Keywords: diaphysis diameter, phytase, rubosticity index, tibia
Procedia PDF Downloads 3931449 Bone Mineral Density of the Lumbar Spine, Femur in Elite Egyptian Male Swimmers
Authors: Magdy Abouzeid
Abstract:
Introduction: Physical activity has been shown to have a positive effect on bone mineral density (BMD) and bone mineral content (BMC) among children, adolescents, and adults. Sports characterized by little or moderate weight bearing or impact have a low osteogenic effect. However, the action of such sports on bone turnover remains unclear. Swimming, as a non-weight-bearing sport, has been considered to be insignificant in the maintenance of bone mass. Purpose: To examine this issue we measured (BMD) and(BMC) of the lumbar spine, proximal femur via dual energy x-ray absorptiometry in the group of elite male swimmers, and determine the effect of swimming training on bone health and compared the results with matched controls group in age, body weight and height. Materials and Methods: Twenty-five male swimmers (age 20.7+/-0.8 years) training for 12-15 hours/week; and the controls group consisted of 25 non-active male (age 21.3 +/-1.3 years) were studied BMD and BMC of lumbar spine, femur were assessed via (DXA) absorptiometry. Results: There was significant difference between swimmers and control group in BMD and BMC, BMD of Swimmers was significantly greater than controls at all sites. The lumbar spine (1, 08 +/-0.202 vs., 0717+0.57 gxcm (-2), right proximal femur (1, 02 +/-, 044 vs., 771+/-, 027 gxcm (-2), and left proximal femur (1.374+/-0.212 vs. 1.01 +/-0.141 gxcm (-2). Swimmers were significantly taller, and had greater BMC and BMD compared to the controls group (P<0.001). Conclusions: These results suggest that swimming training may be beneficial in the prevention or therapy of OSTEOPENIA, and may lead to increased (BMD) and (BMC) for male swimmers. Swimming may be an effective non-pharmacological intervention for the adults and adolescent. Further research with younger athletes of another type of aquatics sport is warranted to better identify the periods of BMD development during which Aquatics sport has the greatest impact on bone health.Keywords: bone mineral density, lumbar spine, femur, swimming, DXA absorptiometry
Procedia PDF Downloads 3211448 Durability Assessment of Nanocomposite-Based Bone Fixation Device Consisting of Bioabsorbable Polymer and Ceramic Nanoparticles
Authors: Jisoo Kim, Jin-Young Choi, MinSu Lee, Sunmook Lee
Abstract:
Effects of ceramic nanoparticles on the improvement of durability of bone fixation devices have been investigated by assessing the durability of nanocomposite materials consisting of bioabsorbable polymer and ceramic nanoparticles, which could be applied for bone fixation devices such as plates and screws. Various composite ratios were used for the synthesis of nanocomposite materials by blending polylactic acid (PLA) and polyglycolic acid (PGA) as bioabsorbable polymer, and hydroxyapatite (HA) and tri-calcium phosphate (TCP) as ceramic nanoparticles. It was found that the addition of ceramic nanoparticles significantly enhanced the mechanical properties of the bone fixation devices compared to those fabricated with pure biopolymers. Particularly, the layer-by-layer approach for the fabrication of nanocomposites also had an effect on the improvement of bending strength. Durability tests were performed by measuring the changes in the bending strength of nanocomposite samples under varied temperature conditions for the accelerated degradation tests. It was found that Weibull distribution was the most proper one for describing the life distribution of devices in the present study. The mean lifetime was predicted by adopting Arrhenius Eq. Model for Stress-Life relationship.Keywords: bioabsorbable, bone fixation device, ceramic nanoparticles, durability assessment, nanocomposite
Procedia PDF Downloads 3241447 Microstructural Mechanical Properties of Human Trabecular Bone Based on Nanoindentation Test
Authors: K. Jankowski, M. Pawlikowski, A. Makuch, K. Skalski
Abstract:
Depth-sensing indentation (DSI) or nanoindentation is becoming a more and more popular method of measuring mechanical properties of various materials and tissues at a micro-scale. This technique allows measurements without complicated sample preparation procedures which makes this method very useful. As a result of measurement force and displacement of the intender are obtained. It is also possible to determine three measures of hardness i.e. Martens hardness (HM), nanohardness (HIT), Vickers hardness (HV) and Young modulus EIT. In this work trabecular bone mechanical properties were investigated. The bone samples were harvested from human femoral heads during hip replacement surgery. Patients were of different age, sexes and stages of tissue degeneration caused by osteoarthritis. The specimens were divided into three groups. Each group contained samples harvested from patients of different range of age. All samples were investigated with the same measurement conditions. The maximum load was Pmax=500 mN and the loading rate was 500 mN/min. The tests were held without hold at the peak force. The tests were conducted with indenter Vickers tip and spherical tip of the diameter 0.2 mm. Each trabecular bone sample was tested 7 times in a close area of the same trabecula. The measured loading P as a function of indentation depth allowed to obtain hysteresis loop and HM, HIT, HV, EIT. Results for arbitrarily chosen sample are HM=289.95 ± 42.31 MPa, HIT=430.75 ± 45.37 MPa, HV=40.66 ± 4.28 Vickers, EIT=7.37 ± 1.84 GPa for Vickers tip and HM=115.19 ± 15.03 MPa, HIT=165.80 ± 19.30 MPa, HV=16.90 ± 1.97 Vickers, EIT=5.30 ± 1.31 GPa for spherical tip. Results of nanoindentation tests show that this method is very useful and is perfect for obtaining mechanical properties of trabecular bone. Estimated values of elastic modulus are similar. The differences between hardness are significant but it is a result of using two different types of tips. However, it has to be emphasised that the differences in the values of elastic modulus and hardness result from different testing protocols, anisotropy and asymmetry of the micro-samples and the hydration of bone.Keywords: human bone, mechanical properties, nano hardness nanoindentation, trabecular bone
Procedia PDF Downloads 2751446 Preliminary Design, Production and Characterization of a Coral and Alginate Composite for Bone Engineering
Authors: Sthephanie A. Colmenares, Fabio A. Rojas, Pablo A. Arbeláez, Johann F. Osma, Diana Narvaez
Abstract:
The loss of functional tissue is a ubiquitous and expensive health care problem, with very limited treatment options for these patients. The golden standard for large bone damage is a cadaveric bone as an allograft with stainless steel support; however, this solution only applies to bones with simple morphologies (long bones), has a limited material supply and presents long term problems regarding mechanical strength, integration, differentiation and induction of native bone tissue. Therefore, the fabrication of a scaffold with biological, physical and chemical properties similar to the human bone with a fabrication method for morphology manipulation is the focus of this investigation. Towards this goal, an alginate and coral matrix was created using two production techniques; the coral was chosen because of its chemical composition and the alginate due to its compatibility and mechanical properties. In order to construct the coral alginate scaffold the following methodology was employed; cleaning of the coral, its pulverization, scaffold fabrication and finally the mechanical and biological characterization. The experimental design had: mill method and proportion of alginate and coral, as the two factors, with two and three levels each, using 5 replicates. The coral was cleaned with sodium hypochlorite and hydrogen peroxide in an ultrasonic bath. Then, it was milled with both a horizontal and a ball mill in order to evaluate the morphology of the particles obtained. After this, using a combination of alginate and coral powder and water as a binder, scaffolds of 1cm3 were printed with a SpectrumTM Z510 3D printer. This resulted in solid cubes that were resistant to small compression stress. Then, using a ESQUIM DP-143 silicon mold, constructs used for the mechanical and biological assays were made. An INSTRON 2267® was implemented for the compression tests; the density and porosity were calculated with an analytical balance and the biological tests were performed using cell cultures with VERO fibroblast, and Scanning Electron Microscope (SEM) as visualization tool. The Young’s moduli were dependent of the pulverization method, the proportion of coral and alginate and the interaction between these factors. The maximum value was 5,4MPa for the 50/50 proportion of alginate and horizontally milled coral. The biological assay showed more extracellular matrix in the scaffolds consisting of more alginate and less coral. The density and porosity were proportional to the amount of coral in the powder mix. These results showed that this composite has potential as a biomaterial, but its behavior is elastic with a small Young’s Modulus, which leads to the conclusion that the application may not be for long bones but for tissues similar to cartilage.Keywords: alginate, biomaterial, bone engineering, coral, Porites asteroids, SEM
Procedia PDF Downloads 2531445 Evaluation of Longitudinal Relaxation Time (T1) of Bone Marrow in Lumbar Vertebrae of Leukaemia Patients Undergoing Magnetic Resonance Imaging
Authors: M. G. R. S. Perera, B. S. Weerakoon, L. P. G. Sherminie, M. L. Jayatilake, R. D. Jayasinghe, W. Huang
Abstract:
The aim of this study was to measure and evaluate the Longitudinal Relaxation Times (T1) in bone marrow of an Acute Myeloid Leukaemia (AML) patient in order to explore the potential for a prognostic biomarker using Magnetic Resonance Imaging (MRI) which will be a non-invasive prognostic approach to AML. MR image data were collected in the DICOM format and MATLAB Simulink software was used in the image processing and data analysis. For quantitative MRI data analysis, Region of Interests (ROI) on multiple image slices were drawn encompassing vertebral bodies of L3, L4, and L5. T1 was evaluated using the T1 maps obtained. The estimated bone marrow mean value of T1 was 790.1 (ms) at 3T. However, the reported T1 value of healthy subjects is significantly (946.0 ms) higher than the present finding. This suggests that the T1 for bone marrow can be considered as a potential prognostic biomarker for AML patients.Keywords: acute myeloid leukaemia, longitudinal relaxation time, magnetic resonance imaging, prognostic biomarker.
Procedia PDF Downloads 5291444 TLR4 Gene Polymorphism and Biochemical Markers as a Tool to Identify Risk of Osteoporosis in Women from Karachi
Authors: Rozeena Baig, R. Rehana Rehman, Rifat Ahmed
Abstract:
Background: Osteoporosis, characterized by low bone mineral density, poses a global health concern. Diagnosis increases the likelihood of developing osteoporosis, a multifactorial disorder marked by low bone mass, elevating the risk of fractures in the lumbar spine, femoral neck, hip, vertebras, and distal forearm, particularly in postmenopausal women due to bone loss influenced by various pathophysiological factors. Objectives: The aim is to investigate the association of serum cytokine, bone turnover marker, bone mineral density and TLR4 gene polymorphism in pre and post-menopausal women and to find if any of these can be the potential predictor of osteoporosis in postmenopausal women. Material and methods: The study participants consisted of Group A (n=91) healthy pre-menopausal women and Group B (n=102) healthy postmenopausal women having ≥ 5 years’ history of menopause. ELISA was performed for cytokine (TNFα) and bone turnover markers (carboxytelopeptides), respectively. Bone Mineral Density (BMD)was measured through a dual X-ray absorptiometry (DEXA) scan. Toll-like Receptors 4 (TLR4) gene polymorphisms (A896G; Asp299Gly) and (C1196T; Thr399Ile) were investigated by PCR and Sanger sequencing. Results: Statistical analysis reveals a positive correlation of age and BMI with T scores in the premenopausal group, whereas in post-menopausal group found a significant negative correlation between age and T-score at hip (r = - 0.352**), spine (r = - .306**), and femoral neck (r = - 0.344**) and a significant negative correlation of BMI with TNF-α (- 0.316**). No association and significant differences were observed for TLR4 genotype and allele frequencies among studied groups However, both SNPs exhibited significant association with each other. Conclusions: This study concludes that BMI, BMD and TNF-α are the potential predictors of osteoporosis in post-menopausal women. However, CTX and TLR4 gene polymorphism did not appear as potential predictors of bone loss in this study and apparently cannot help in predicting bone loss in post-menopausal women.Keywords: osteoporosis, post-menopausal, pre-menopausal woemn, genetics mutaiont, TLR4 genepolymorphsum
Procedia PDF Downloads 391443 Histological Study on the Effect of Bone Marrow Transplantation Combined with Curcumin on Pancreatic Regeneration in Streptozotocin Induced Diabetic Rats
Authors: Manal M. Shehata, Kawther M. Abdel-Hamid, Nashwa A. Mohamed, Marwa H. Bakr, Maged S. Mahmoud, Hala M. Elbadre
Abstract:
Introduction: The worldwide rapid increase in diabetes poses a significant challenge to current therapeutic approaches. Therapeutic utility of bone marrow transplantation in diabetes is an attractive approach. However, the oxidative stress generated by hyperglycemia may hinder β-cell regeneration. Curcumin, is a dietary spice with antioxidant activity. Aim of work: The present study was undertaken to investigate the therapeutic potential of curcumin, bone marrow transplantation, and their combined effects in the reversal of experimental diabetes. Material and Methods: Fifty adult male healthy albino rats were included in the present study.They were divided into two groups: Group І: (control group) included 10 rats. Group П: (diabetic group): included 40 rats. Diabetes was induced by single intraperitoneal injection of streptozotocin (STZ). Group II will be further subdivided into four groups (10 rats for each): Group II-a (diabetic control). Group II-b: rats were received single intraperitoneal injection of bone marrow suspension (un-fractionated bone marrow cells) prepared from rats of the same family. Group II-c: rats were treated with curcumin orally by gastric intubation for 6 weeks. Group II-d: rats were received a combination of single bone marrow transplantation and curcumin for 6 weeks. After 6 weeks, blood glucose, insulin levels were measured and the pancreas from all rats were processed for Histological, Immunohistochemical and morphometric examination. Results: Diabetic group, showed progressive histological changes in the pancreatic islets. Treatment with either curcumin or bone marrow transplantation improved the structure of the islets and reversed streptozotocin-induced hyperglycemia and hypoinsulinemia. Combination of curcumin and bone marrow transplantation elicited more profound alleviation of streptozotocin-induced changes including islet regeneration and insulin secretion. Conclusion: The use of natural antioxidants combined with bone marrow transplantation to induce pancreatic regeneration is a promising strategy in the management of diabetes.Keywords: diabtes, panceatic islets, bone marrow transplantation, curcumin
Procedia PDF Downloads 3841442 In vivo Protective Effects of Ginger Extract on Cyclophosphamide Induced Chromosomal Aberrations in Bone Marrow Cells of Swiss Mice
Authors: K. Yadamma, K. Rudrama Devi
Abstract:
The protective effect of Ginger Extract against cyclophosphamide induced cytotoxicity was evaluated in in vivo animal model using analysis of chromosomal aberrations in somatic cells of mice. Three doses of Ginger Extract (150mg/kg, 200mg/kg, and 250mg/kg body weight) were selected for modulation and given to animals after priming. The animals were sacrificed 24, 48, 72 hrs after the treatment and slides were prepared for the incidence of chromosomal aberrations in bone marrow cells of mice. When animals were treated with cyclophosphamide 50mg/kg, showed cytogenetic damage in somatic cells. However, a significant decrease was observed in the percentage of chromosomal aberrations when animals were primed with various doses of Ginger Extract. The present results clearly indicate the protective nature of Ginger Extract against cyclophosphamide induced genetic damage in mouse bone marrow cells.Keywords: ginger extract, protection, bone marrow cells, swiss albino mice
Procedia PDF Downloads 4361441 Evaluation of Biological and Confinement Properties of a Bone Substitute to in Situ Preparation Based on Demineralized Bone Matrix for Bone Tissue Regeneration
Authors: Aura Maria Lopera Echavarria, Angela Maria Lema Perez, Daniela Medrano David, Pedronel Araque Marin, Marta Elena Londoño Lopez
Abstract:
Bone regeneration is the process by which the formation of new bone is stimulated. Bone fractures can originate at any time due to trauma, infections, tumors, congenital malformations or skeletal diseases. Currently there are different strategies to treat bone defects that in some cases, regeneration does not occur on its own. That is why they are treated with bone substitutes, which provide a necessary environment for the cells to synthesize new bone. The Demineralized Bone Matrix (DBM) is widely used as a bone implant due to its good properties, such as osteoinduction and bioactivity. However, the use of DBM is limited, because its presentation is powder, which is difficult to implant with precision and is susceptible to migrating to other sites through blood flow. That is why the DBM is commonly incorporated into a variety of vehicles or carriers. The objective of this project is to evaluate the bioactive and confinement properties of a bone substitute based on demineralized bone matrix (DBM). Also, structural and morphological properties were evaluated. Bone substitute was obtained from EIA Biomaterials Laboratory of EIA University and the DBM was facilitated by Tissue Bank Foundation. Morphological and structural properties were evaluated by scanning electron microscopy (SEM), X-ray diffraction (DRX) and Fourier transform infrared spectroscopy with total attenuated reflection (FTIR-ATR). Water absorption capacity and degradation were also evaluated during three months. The cytotoxicity was evaluated by the MTT test. The bioactivity of the bone substitute was evaluated through immersion of the samples in simulated body fluid during four weeks. Confinement tests were performed on tibial fragments of a human donor with bone defects of determined size, to ensure that the substitute remains in the defect despite the continuous flow of fluid. According of the knowledge of the authors, the methodology for evaluating samples in a confined environment has not been evaluated before in real human bones. The morphology of the samples showed irregular surface and presented some porosity. DRX confirmed a semi-crystalline structure. The FTIR-ATR determined the organic and inorganic phase of the sample. The degradation and absorption measurements stablished a loss of 3% and 150% in one month respectively. The MTT showed that the system is not cytotoxic. Apatite clusters formed from the first week were visualized by SEM and confirmed by EDS. These calcium phosphates are necessary to stimulate bone regeneration and thanks to the porosity of the developed material, osteinduction and osteoconduction are possible. The results of the in vitro evaluation of the confinement of the material showed that the migration of the bone filling to other sites is negligible, although the samples were subjected to the passage of simulated body fluid. The bone substitute, putty type, showed stability, is bioactive, non-cytotoxic and has handling properties for specialists at the time of implantation. The obtained system allows to maintain the osteoinductive properties of DBM and it can fill completely fractures in any way; however, it does not provide a structural support, that is, it should only be used to treat fractures without requiring a mechanical load.Keywords: bone regeneration, cytotoxicity, demineralized bone matrix, hydrogel
Procedia PDF Downloads 1191440 Mechanical Properties and Antibiotic Release Characteristics of Poly(methyl methacrylate)-based Bone Cement Formulated with Mesoporous Silica Nanoparticles
Authors: Kumaran Letchmanan, Shou-Cang Shen, Wai Kiong Ng
Abstract:
Postoperative implant-associated infections in soft tissues and bones remain a serious complication in orthopaedic surgery, which leads to impaired healing, re-implantation, prolong hospital stay and increase cost. Drug-loaded implants with sustained release of antibiotics at the local site are current research interest to reduce the risk of post-operative infections and osteomyelitis, thus, minimize the need for follow-up care and increase patient comfort. However, the improved drug release of the drug-loaded bone cements is usually accompanied by a loss in mechanical strength, which is critical for weight-bearing bone cement. Recently, more attempts have been undertaken to develop techniques to enhance the antibiotic elution as well as preserve the mechanical properties of the bone cements. The present study investigates the potential influence of addition of mesoporous silica nanoparticles (MSN) on the in vitro drug release kinetics of gentamicin (GTMC), along with the mechanical properties of bone cements. Simplex P was formulated with MSN and loaded with GTMC by direct impregnation. Meanwhile, Simplex P with water soluble poragen (xylitol) and high loading of GTMC as well as commercial bone cement CMW Smartset GHV were used as controls. MSN-formulated bone cements are able to increase the drug release of GTMC by 3-fold with a cumulative release of more than 46% as compared with other control groups. Furthermore, a sustained release could be achieved for two months. The loaded nano-sized MSN with uniform pore channels significantly build up an effective nano-network path in the bone cement facilitates the diffusion and extended release of GTMC. Compared with formulations using xylitol and high GTMC loading, incorporation of MSN shows no detrimental effect on biomechanical properties of the bone cements as no significant changes in the mechanical properties as compared with original bone cement. After drug release for two months, the bending modulus of MSN-formulated bone cements is 4.49 ± 0.75 GPa and the compression strength is 92.7 ± 2.1 MPa (similar to the compression strength of Simplex-P: 93.0 ± 1.2 MPa). The unaffected mechanical properties of MSN-formulated bone cements was due to the unchanged microstructures of bone cement, whereby more than 98% of MSN remains in the matrix and supports the bone cement structures. In contrast, the large portions of extra voids can be observed for the formulations using xylitol and high drug loading after the drug release study, thus caused compressive strength below the ASTM F541 and ISO 5833 minimum of 70 MPa. These results demonstrate the potential applicability of MSN-functionalized poly(methyl methacrylate)-based bone cement as a highly efficient, sustained and local drug delivery system with good mechanical properties.Keywords: antibiotics, biomechanical properties, bone cement, sustained release
Procedia PDF Downloads 2551439 Temperature-Related Alterations to Mineral Levels and Crystalline Structure in Porcine Long Bone: Intense Heat Vs. Open Flame
Authors: Caighley Logan
Abstract:
The outcome of fire related fatalities, along with other research, has found fires can have a detrimental effect to the mineral and crystalline structures within bone. This study focused on the mineral and crystalline structures within porcine bone samples to analyse the changes caused, with the intent of effectively ‘reverse engineering’ the data collected from burned bone samples to discover what may have happened. Using Fourier Transform Infrared (FT-IR), and X-Ray Fluorescence (XRF), the data collected from a controlled source of intense heat (muffle furnace) and an open fire, based in a living room setting in a standard size shipping container (8.5ft x 8ft) of a similar temperature with a known ignition source, a gasoline lighter. This approach is to analyse the changes to the samples and how the changes differ depending on the heat source. Results have found significant differences in the levels of remaining minerals for each type of heat/burning (p=<0.001), particularly Phosphorus and Calcium, this also includes notable additions of absorbed elements and minerals from the surrounding materials, i.e., Cerium (Ce), Bromine (Br) and Neodymium (Ne). The analysis techniques included provide validated results in conjunction with previous studies.Keywords: forensic anthropology, thermal alterations, porcine bone, FTIR, XRF
Procedia PDF Downloads 831438 Behavior of the Masonry Infill in Structures Subjected to the Horizontal Loads
Authors: Mezigheche Nawel, Gouasmia Abdelhacine, Athmani Allaeddine, Merzoud Mouloud
Abstract:
Masonry infill walls are inevitable in the self-supporting structures, but their contribution in the resistance of earthquake loads is generally neglected in the structural analyses. The principal aim of this work through a numerical study of the behavior of masonry infill walls in structures subjected to horizontal load is to propose by finite elements numerical modeling, a more reliable approach, faster and close to reality. In this study, 3D finite element analysis was developed to study the behavior of masonry infill walls in structures subjected to horizontal load: The finite element software being used was ABAQUS, it is observed that more rigidity of the masonry filling is significant, more the structure is rigid, so we can conclude that the filling brings an additional rigidity to the structure not to be neglected. It is also observed that when the framework is subjected to horizontal loads, the framework separates from the filling on the level of the tended diagonal.Keywords: finite element, masonry infill walls, rigidity of the masonry, tended diagonal
Procedia PDF Downloads 4891437 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam
Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen
Abstract:
In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks
Procedia PDF Downloads 2081436 Cup-Cage Construct for Treatment of Severe Acetabular Bone Loss in Revision Total Hip Arthroplasty: Midterm Clinical and Radiographic Outcomes
Authors: Faran Chaudhry, Anser Daud, Doris Braunstein, Oleg Safir, Allan Gross, Paul Kuzyk
Abstract:
Background: Acetabular reconstruction in the context of massive acetabular bone loss is challenging. In rare scenarios where the extent of bone loss precludes shell placement (cup-cage), reconstruction at our center consisted of a cage combined with highly porous metal augments. This study evaluates survivorship, complications, and functional outcomes using this technique. Methods: A total of 131 cup-cage implants (129 patients) were included in our retrospective review of revisions of total hip arthroplasty from January 2003 to January 2022. Among these cases, 100/131 (76.3%) were women, the mean age at surgery time was 68.7 years (range, 29.0 to 92.0; SD, 12.4), and the mean follow-up was 7.7 years (range, 0.02 to 20.3; SD, 5.1). Kaplan-Meier survivorship analysis was conducted with failure defined as revision surgery and/or failure of the cup-cage reconstruction. Results: A total of 30 implants (23%) reached the study endpoint involving all-cause revision. Overall survivorship was 74.8% at 10 years and 69.8% at 15 years. Reasons for revision included infection 12/131 (9.1%), dislocation 10/131 (7.6%), aseptic loosening of cup and/or cage 5/131 (3.8%), and aseptic loosening of the femoral stem 2/131 (1.5%). The mean LLD improved from 12.2 ± 15.9 mm to 3.9 ± 11.8 (p<0.05). The horizontal and vertical hip centres on plain film radiographs were significantly improved (p<0.05). Functionally, there was a decrease in the number of patients requiring the use of gait aids, with fewer patients (34, 25.9%) using a cane, walker, or wheelchair post-operatively compared to pre-operatively (58, 44%). There was a significant increase in the number of independent ambulators from 24 to 47 (36%). Conclusion: The cup-cage construct is a reliable treatment option for the treatment of various acetabular defects. There are favourable survivorship, clinical and radiographic outcomes, with a satisfactory complication rate.Keywords: revision total hip arthroplasty, acetabular defect, pelvic discontinuity, trabecular metal augment, cup-cage
Procedia PDF Downloads 661435 Nano-Hydroxyapatite/Dextrin/Chitin Nanocomposite System for Bone Tissue Engineering
Authors: Mohammad Shakir, Reshma Jolly, Mohammad Shoeb Khan, Noor-E-Iram
Abstract:
A nanocomposite system incorporating dextrin into nano-hydroxyapatite/chitin matrix (n-HA/DX/CT) has been successfully synthesized via co-precipitation route at room temperature for the application in bone tissue engineering by investigating biocompatibility, cytotoxicity and mechanical properties. The FTIR spectra of n-HA/DX/CT nanocomposite indicated a considerable intermolecular interaction between the various components of the system. The results of XRD, TEM and TGA/DTA revealed that the crystallinity, size and thermal stability of the n-HA/DX/CT scaffold has decreased and increased respectively. The result of SEM image of the n-HA/DX/CT scaffold indicated that the incorporation of dextrin affected the surface morphology while considerable in-vitro bioactivity has been observed in n-HA/DX/CT based on SBF study, referring a step towards possibility of making direct bond to living bone if implanted. Moreover, MTT assay suggested the non-toxic nature of n-HA/DX/CT to murine fibroblast L929 cells. The swelling study of n-HA/DX/CT scaffold indicated the low swelling rate for n-HADX/CT. All these results have paved the way for n-HA/DX/CT to be used as a competent material for bone tissue engineering.Keywords: autograft, chitin, dextrin, nanocomposite
Procedia PDF Downloads 5321434 Seismic Directionality Effects on In-Structure Response Spectra in Seismic Probabilistic Risk Assessment
Authors: Sittipong Jarernprasert, Enrique Bazan-Zurita, Paul C. Rizzo
Abstract:
Currently, seismic probabilistic risk assessments (SPRA) for nuclear facilities use In-Structure Response Spectra (ISRS) in the calculation of fragilities for systems and components. ISRS are calculated via dynamic analyses of the host building subjected to two orthogonal components of horizontal ground motion. Each component is defined as the median motion in any horizontal direction. Structural engineers applied the components along selected X and Y Cartesian axes. The ISRS at different locations in the building are also calculated in the X and Y directions. The choice of the directions of X and Y are not specified by the ground motion model with respect to geographic coordinates, and are rather arbitrarily selected by the structural engineer. Normally, X and Y coincide with the “principal” axes of the building, in the understanding that this practice is generally conservative. For SPRA purposes, however, it is desirable to remove any conservatism in the estimates of median ISRS. This paper examines the effects of the direction of horizontal seismic motion on the ISRS on typical nuclear structure. We also evaluate the variability of ISRS calculated along different horizontal directions. Our results indicate that some central measures of the ISRS provide robust estimates that are practically independent of the selection of the directions of the horizontal Cartesian axes.Keywords: seismic, directionality, in-structure response spectra, probabilistic risk assessment
Procedia PDF Downloads 4091433 Study of the Best Algorithm to Estimate Sunshine Duration from Global Radiation on Horizontal Surface for Tropical Region
Authors: Tovondahiniriko Fanjirindratovo, Olga Ramiarinjanahary, Paulisimone Rasoavonjy
Abstract:
The sunshine duration, which is the sum of all the moments when the solar beam radiation is up to a minimal value, is an important parameter for climatology, tourism, agriculture and solar energy. Its measure is usually given by a pyrheliometer installed on a two-axis solar tracker. Due to the high cost of this device and the availability of global radiation on a horizontal surface, on the other hand, several studies have been done to make a correlation between global radiation and sunshine duration. Most of these studies are fitted for the northern hemisphere using a pyrheliometric database. The aim of the present work is to list and assess all the existing methods and apply them to Reunion Island, a tropical region in the southern hemisphere. Using a database of ten years, global, diffuse and beam radiation for a horizontal surface are employed in order to evaluate the uncertainty of existing algorithms for a tropical region. The methodology is based on indirect comparison because the solar beam radiation is not measured but calculated by the beam radiation on a horizontal surface and the sun elevation angle.Keywords: Carpentras method, data fitting, global radiation, sunshine duration, Slob and Monna algorithm, step algorithm
Procedia PDF Downloads 1221432 Experimental Research on the Elastic Modulus of Bones at the Lamellar Level under Fatigue Loading
Authors: Xianjia Meng, Chuanyong Qu
Abstract:
Compact bone produces fatigue damage under the inevitable physiological load. The accumulation of fatigue damage can change the bone’s micro-structure at different scales and cause the catastrophic failure eventually. However, most tests were limited to the macroscopic modulus of bone and there is a need to assess the microscopic modulus during fatigue progress. In this paper, nano-identation was used to investigate the bone specimen subjected to four point bending. The microscopic modulus of the same area were measured at different degrees of damage including fracture. So microscopic damage can be divided into three stages: first, the modulus decreased rapidly and then They fell slowly, before fracture the decline became fast again. After fracture, the average modulus decreased by 20%. The results of inner and outer planes explained the influence of compressive and tensile loads on modulus. Both the compressive and tensile moduli decreased with the accumulation of damage. They reached the minimum at ending and increased after fracture. The modulus evolution under different strains were revealed by the side. They all fell slowly and then fast with the accumulation of damage. The fractured results indicated that the elastic modulus decreased obviously at the high strain while decreased less at the low strain. During the fatigue progress, there was a significant difference in modulus at low degree of damage. However, the dispersed modulus tended to be similar at high degree of damage, but they became different again after the failure.Keywords: fatigue damage, fracture, microscopic modulus, bone, nano-identation
Procedia PDF Downloads 1621431 Development of a Vacuum System for Orthopedic Drilling Processes and Determination of Optimal Processing Parameters for Temperature Control
Authors: Kadir Gök
Abstract:
In this study, a vacuum system was developed for orthopedic drilling processes, and the most efficient processing parameters were determined using statistical analysis of temperature rise. A reverse engineering technique was used to obtain a 3D model of the chip vacuum system, and the obtained point cloud data was transferred to Solidworks software in STL format. An experimental design method was performed by selecting different parameters and their levels, such as RPM, feed rate, and drill bit diameter, to determine the most efficient processing parameters in temperature rise using ANOVA. Additionally, the bone chip-vacuum device was developed and performed successfully to collect the whole chips and fragments in the bone drilling experimental tests, and the chip-collecting device was found to be useful in removing overheating from the drilling zone. The effects of processing parameters on the temperature levels during the chip-vacuuming were determined, and it was found that bone chips and fractures can be used as autograft and allograft for tissue engineering. Overall, this study provides significant insights into the development of a vacuum system for orthopedic drilling processes and the use of bone chips and fractures in tissue engineering applications.Keywords: vacuum system, orthopedic drilling, temperature rise, bone chips
Procedia PDF Downloads 961430 Comparative Study of Dose Calculation Accuracy in Bone Marrow Using Monte Carlo Method
Authors: Marzieh Jafarzadeh, Fatemeh Rezaee
Abstract:
Introduction: The effect of ionizing radiation on human health can be effective for genomic integrity and cell viability. It also increases the risk of cancer and malignancy. Therefore, X-ray behavior and absorption dose calculation are considered. One of the applicable tools for calculating and evaluating the absorption dose in human tissues is Monte Carlo simulation. Monte Carlo offers a straightforward way to simulate and integrate, and because it is simple and straightforward, Monte Carlo is easy to use. The Monte Carlo BEAMnrc code is one of the most common diagnostic X-ray simulation codes used in this study. Method: In one of the understudy hospitals, a certain number of CT scan images of patients who had previously been imaged were extracted from the hospital database. BEAMnrc software was used for simulation. The simulation of the head of the device with the energy of 0.09 MeV with 500 million particles was performed, and the output data obtained from the simulation was applied for phantom construction using CT CREATE software. The percentage of depth dose (PDD) was calculated using STATE DOSE was then compared with international standard values. Results and Discussion: The ratio of surface dose to depth dose (D/Ds) in the measured energy was estimated to be about 4% to 8% for bone and 3% to 7% for bone marrow. Conclusion: MC simulation is an efficient and accurate method for simulating bone marrow and calculating the absorbed dose.Keywords: Monte Carlo, absorption dose, BEAMnrc, bone marrow
Procedia PDF Downloads 2111429 Design of Nanoreinforced Polyacrylamide-Based Hybrid Hydrogels for Bone Tissue Engineering
Authors: Anuj Kumar, Kummara M. Rao, Sung S. Han
Abstract:
Bone tissue engineering has emerged as a potentially alternative method for localized bone defects or diseases, congenital deformation, and surgical reconstruction. The designing and the fabrication of the ideal scaffold is a great challenge, in restoring of the damaged bone tissues via cell attachment, proliferation, and differentiation under three-dimensional (3D) biological micro-/nano-environment. In this case, hydrogel system composed of high hydrophilic 3D polymeric-network that is able to mimic some of the functional physical and chemical properties of the extracellular matrix (ECM) and possibly may provide a suitable 3D micro-/nano-environment (i.e., resemblance of native bone tissues). Thus, this proposed hydrogel system is highly permeable and facilitates the transport of the nutrients and metabolites. However, the use of hydrogels in bone tissue engineering is limited because of their low mechanical properties (toughness and stiffness) that continue to posing challenges in designing and fabrication of tough and stiff hydrogels along with improved bioactive properties. For this purpose, in our lab, polyacrylamide-based hybrid hydrogels were synthesized by involving sodium alginate, cellulose nanocrystals and silica-based glass using one-step free-radical polymerization. The results showed good in vitro apatite-forming ability (biomineralization) and improved mechanical properties (under compression in the form of strength and stiffness in both wet and dry conditions), and in vitro osteoblastic (MC3T3-E1 cells) cytocompatibility. For in vitro cytocompatibility assessment, both qualitative (attachment and spreading of cells using FESEM) and quantitative (cell viability and proliferation using MTT assay) analyses were performed. The obtained hybrid hydrogels may potentially be used in bone tissue engineering applications after establishment of in vivo characterization.Keywords: bone tissue engineering, cellulose nanocrystals, hydrogels, polyacrylamide, sodium alginate
Procedia PDF Downloads 1501428 Stress Study in Implants Dental
Authors: M. Benlebna, B. Serier, B. Bachir Bouiadjra, S. Khalkhal
Abstract:
This study focuses on the mechanical behavior of a dental prosthesis subjected to dynamic loads chewing. It covers a three-dimensional analysis by the finite element method, the level of distribution of equivalent stresses induced in the bone between the implants (depending on the number of implants). The studied structure, consisting of a braced, implant and mandibular bone is subjected to dynamic loading of variable amplitude in three directions corrono-apical, mesial-distal and bucco-lingual. These efforts simulate those of mastication. We show that compared to the implantation of a single implant, implantology using two implants promotes the weakening of the bones. This weakness is all the more likely that the implants are located in close proximity to one another.Keywords: stress, bone, dental implant, distribution, stress levels, dynamic, effort, interaction, prosthesis
Procedia PDF Downloads 4011427 Slugging Frequency Correlation for High Viscosity Oil-Gas Flow in Horizontal Pipeline
Authors: B. Y. Danjuma, A. Archibong-Eso, Aliyu M. Aliyu, H. Yeung
Abstract:
In this experimental investigation, a new data for slugging frequency for high viscosity oil-gas flow are reported. Scale experiments were carried out using a mixture of air and mineral oil as the liquid phase in a 17 m long horizontal pipe with 0.0762 ID. The data set was acquired using two high-speed Gamma Densitometers at a data acquisition frequency of 250 Hz over a time interval of 30 seconds. For the range of flow conditions investigated, increase in liquid oil viscosity was observed to strongly influence the slug frequency. A comparison of the present data with prediction models available in the literature revealed huge discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for the horizontal flow, which represents the main contribution of this work.Keywords: gamma densitometer, flow pattern, pressure gradient, slug frequency
Procedia PDF Downloads 4101426 Effect of cold water immersion on bone mineral metabolism in aging rats
Authors: Irena Baranowska-Bosiacka, Mateusz Bosiacki, Patrycja Kupnicka, Anna Lubkowska, Dariusz Chlubek
Abstract:
Physical activity and a balanced diet are among the key factors of "healthy ageing". Physical effort, including swimming in cold water (including bathing in natural water reservoirs), is widely recognized as a hardening factor, with a positive effect on the mental and physical health. At the same time, there is little scientific evidence to verify this hypothesis. In the literature to date, it is possible to obtain data on the impact of these factors on selected physiological and biochemical parameters of the blood, at the same time there are no results of research on the effect of immersing in cold water on mineral metabolism, especially bones, hence it seems important to perform such an analysis in relation to the key elements such as calcium (Ca), magnesium (Mg) and phosphorus (P). Taking the above into account, a hypothesis was put forward about the possibility of a positive effect of exercise in cold water on mineral metabolism and bone density in aging rats. The aim of the study was to evaluate the effect of an 8-week swimming training on mineral metabolism and bone density in aging rats in response to exercise in cold water (5oC) in comparison to swimming in thermal comfort (36oC) and sedentary (control) rats of both sexes. The examination of the concentration of the examined elements in the bones was carried out using inductively coupled plasma atomic emission spectrometry (ICP-OES). The mineral density of the femurs of the rats was measured using the Hologic Horizon DEXA System® densitometer. The results of our study showed that swimming in cold water affects bone mineral metabolism in aging rats by changing the Ca, Mg, P concentration and at the same time increasing their bone density. In males, a decrease in Mg concentration and no changes in bone density were observed. In the light of the research results, it seems that swimming in cold water may be a factor that positively modifies the bone aging process by improving the mechanisms affecting their density.Keywords: swimming in cold water, adaptation to cold water, bone mineral metabolism, aging
Procedia PDF Downloads 59