Search results for: algebraic method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19024

Search results for: algebraic method

18904 Computational Thinking Based Coding Environment for Coding and Free Semester Mathematics Education in Korea

Authors: Han Hyuk Cho, Hanik Jo

Abstract:

In recent years, coding education has been globally emphasized, and the Free Semester System and coding education were introduced to the public schools from the beginning of 2016 and 2018 respectively in Korea. With the introduction of the Free Semester System and the rising demand of Computational Thinking (CT) capacity, this paper aims to design ‘Coding Environment’ and Minecraft-like Turtlecraft in which learners can design and construct mathematical objects through mathematical symbolic expressions. Students can transfer the constructed mathematical objects to the Turtlecraft environment (open-source codingmath website), and also can print them out through 3D printers. Furthermore, we design learnable mathematics and coding curriculum by representing the figurate numbers and patterns in terms of executable expression in the coding context and connecting them to algebraic symbols, which will allow students to experience mathematical patterns and symbolic coding expressions.

Keywords: coding education, computational thinking, mathematics education, TurtleMAL and Turtlecraft

Procedia PDF Downloads 206
18903 Calculating Stress Intensity Factor of Cracked Axis by Using a Meshless Method

Authors: S. Shahrooi, A. Talavari

Abstract:

Numeral study on the crack and discontinuity using element-free methods has been widely spread in recent years. In this study, for stress intensity factor calculation of the cracked axis under torsional loading has been used from a new element-free method as MLPG method. Region range is discretized by some dispersed nodal points. From method of moving least square (MLS) utilized to create the functions using these nodal points. Then, results of meshless method and finite element method (FEM) were compared. The results is shown which the element-free method was of good accuracy.

Keywords: stress intensity factor, crack, torsional loading, meshless method

Procedia PDF Downloads 565
18902 Exploring the Applications of Modular Forms in Cryptography

Authors: Berhane Tewelday Weldhiwot

Abstract:

This research investigates the pivotal role of modular forms in modern cryptographic systems, particularly focusing on their applications in secure communications and data integrity. Modular forms, which are complex analytic functions with rich arithmetic properties, have gained prominence due to their connections to number theory and algebraic geometry. This study begins by outlining the fundamental concepts of modular forms and their historical development, followed by a detailed examination of their applications in cryptographic protocols such as elliptic curve cryptography and zero-knowledge proofs. By employing techniques from analytic number theory, the research delves into how modular forms can enhance the efficiency and security of cryptographic algorithms. The findings suggest that leveraging modular forms not only improves computational performance but also fortifies security measures against emerging threats in digital communication. This work aims to contribute to the ongoing discourse on integrating advanced mathematical theories into practical applications, ultimately fostering innovation in cryptographic methodologies.

Keywords: modular forms, cryptography, elliptic curves, applications, mathematical theory

Procedia PDF Downloads 17
18901 Generalization of Tsallis Entropy from a Q-Deformed Arithmetic

Authors: J. Juan Peña, J. Morales, J. García-Ravelo, J. García-Martínez

Abstract:

It is known that by introducing alternative forms of exponential and logarithmic functions, the Tsallis entropy Sᵩ is itself a generalization of Shannon entropy S. In this work, from a deformation through a scaling function applied to the differential operator, it is possible to generate a q-deformed calculus as well as a q-deformed arithmetic, which not only allows generalizing the exponential and logarithmic functions but also any other standard function. The updated q-deformed differential operator leads to an updated integral operator under which the functions are integrated together with a weight function. For each differentiable function, it is possible to identify its q-deformed partner, which is useful to generalize other algebraic relations proper of the original functions. As an application of this proposal, in this work, a generalization of exponential and logarithmic functions is studied in such a way that their relationship with the thermodynamic functions, particularly the entropy, allows us to have a q-deformed expression of these. As a result, from a particular scaling function applied to the differential operator, a q-deformed arithmetic is obtained, leading to the generalization of the Tsallis entropy.

Keywords: q-calculus, q-deformed arithmetic, entropy, exponential functions, thermodynamic functions

Procedia PDF Downloads 78
18900 An Efficient Approach to Optimize the Cost and Profit of a Tea Garden by Using Branch and Bound Method

Authors: Abu Hashan Md Mashud, M. Sharif Uddin, Aminur Rahman Khan

Abstract:

In this paper, we formulate a new problem as a linear programming and Integer Programming problem and maximize profit within the limited budget and limited resources based on the construction of a tea garden problem. It describes a new idea about how to optimize profit and focuses on the practical aspects of modeling and the challenges of providing a solution to a complex real life problem. Finally, a comparative study is carried out among Graphical method, Simplex method and Branch and bound method.

Keywords: integer programming, tea garden, graphical method, simplex method, branch and bound method

Procedia PDF Downloads 623
18899 Effect of Digital Technology on Students Interest, Achievement and Retention in Algebra in Abia State College of Education (Technical) Arochukwu

Authors: Stephen O. Amaraihu

Abstract:

This research investigated the effect of Computer Based Instruction on Students’ interest, achievement, and retention in Algebra in Abia State College of Education (Technical), Arochukwu. Three research questions and two hypotheses guided the study. Two instruments, Maths Achievement Test (MAT) and Maths Interest Inventory were employed, to test a population of three hundred and sixteen (316) NCE 1 students in algebra. It is expected that this research will lead to the improvement of students’ performance and enhance their interest and retention of basic algebraic concept. It was found that the majority of students in the college are not proficient in the use of ICT as a result of a lack of trained personnel. It was concluded that the state government was not ready to implement the usage of mathematics in Abia State College of Education. The paper recommends, amongst others, the employment of mathematics Lectures with competent skills in ICT and the training of lecturers of mathematics.

Keywords: achievement, computer based instruction, interest, retention

Procedia PDF Downloads 209
18898 Introducing Quantum-Weijsberg Algebras by Redefining Quantum-MV Algebras: Characterization, Properties, and Other Important Results

Authors: Lavinia Ciungu

Abstract:

In the last decades, developing algebras related to the logical foundations of quantum mechanics became a central topic of research. Generally known as quantum structures, these algebras serve as models for the formalism of quantum mechanics. In this work, we introduce the notion of quantum-Wajsberg algebras by redefining the quantum-MV algebras starting from involutive BE algebras. We give a characterization of quantum-Wajsberg algebras, investigate their properties, and show that, in general, quantum-Wajsberg algebras are not (commutative) quantum-B algebras. We also define the ∨-commutative quantum-Wajsberg algebras and study their properties. Furthermore, we prove that any Wajsberg algebra (bounded ∨-commutative BCK algebra) is a quantum-Wajsberg algebra, and we give a condition for a quantum-Wajsberg algebra to be a Wajsberg algebra. We prove that Wajsberg algebras are both quantum-Wajsberg algebras and commutative quantum-B algebras. We establish the connection between quantum-Wajsberg algebras and quantum-MV algebras, proving that the quantum-Wajsberg algebras are term equivalent to quantum-MV algebras. We show that, in general, the quantum-Wajsberg algebras are not commutative quantum-B algebras and if a quantum-Wajsberg algebra is self-distributive, then the corresponding quantum-MV algebra is an MV algebra. Our study could be a starting point for the development of other implicative counterparts of certain existing algebraic quantum structures.

Keywords: quantum-Wajsberg algebra, quantum-MV algebra, MV algebra, Wajsberg algebra, BE algebra, quantum-B algebra

Procedia PDF Downloads 15
18897 Sewer Culvert Installation Method to Accommodate Underground Construction in an Urban Area with Narrow Streets

Authors: Osamu Igawa, Hiroshi Kouchiwa, Yuji Ito

Abstract:

In recent years, a reconstruction project for sewer pipelines has been progressing in Japan with the aim of renewing old sewer culverts. However, it is difficult to secure a sufficient base area for shafts in an urban area because many streets are narrow with a complex layout. As a result, construction in such urban areas is generally very demanding. In urban areas, there is a strong requirement for a safe, reliable and economical construction method that does not disturb the public’s daily life and urban activities. With this in mind, we developed a new construction method called the 'shield switching type micro-tunneling method' which integrates the micro-tunneling method and shield method. In this method, pipeline is constructed first for sections that are gently curved or straight using the economical micro-tunneling method, and then the method is switched to the shield method for sections with a sharp curve or a series of curves without establishing an intermediate shaft. This paper provides the information, features and construction examples of this newly developed method.

Keywords: micro-tunneling method, secondary lining applied RC segment, sharp curve, shield method, switching type

Procedia PDF Downloads 405
18896 Direct Transient Stability Assessment of Stressed Power Systems

Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara

Abstract:

This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.

Keywords: power system, transient stability, critical trajectory method, energy function method

Procedia PDF Downloads 386
18895 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer

Procedia PDF Downloads 420
18894 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs

Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu

Abstract:

This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.

Keywords: interpolation, approximate solution, collocation, differential system, half step, converges, block method, efficiency

Procedia PDF Downloads 337
18893 Development of 3D Particle Method for Calculating Large Deformation of Soils

Authors: Sung-Sik Park, Han Chang, Kyung-Hun Chae, Sae-Byeok Lee

Abstract:

In this study, a three-dimensional (3D) Particle method without using grid was developed for analyzing large deformation of soils instead of using ordinary finite element method (FEM) or finite difference method (FDM). In the 3D Particle method, the governing equations were discretized by various particle interaction models corresponding to differential operators such as gradient, divergence, and Laplacian. The Mohr-Coulomb failure criterion was incorporated into the 3D Particle method to determine soil failure. The yielding and hardening behavior of soil before failure was also considered by varying viscosity of soil. First of all, an unconfined compression test was carried out and the large deformation following soil yielding or failure was simulated by the developed 3D Particle method. The results were also compared with those of a commercial FEM software PLAXIS 3D. The developed 3D Particle method was able to simulate the 3D large deformation of soils due to soil yielding and calculate the variation of normal and shear stresses following clay deformation.

Keywords: particle method, large deformation, soil column, confined compressive stress

Procedia PDF Downloads 573
18892 The Implementation of Secton Method for Finding the Root of Interpolation Function

Authors: Nur Rokhman

Abstract:

A mathematical function gives relationship between the variables composing the function. Interpolation can be viewed as a process of finding mathematical function which goes through some specified points. There are many interpolation methods, namely: Lagrange method, Newton method, Spline method etc. For some specific condition, such as, big amount of interpolation points, the interpolation function can not be written explicitly. This such function consist of computational steps. The solution of equations involving the interpolation function is a problem of solution of non linear equation. Newton method will not work on the interpolation function, for the derivative of the interpolation function cannot be written explicitly. This paper shows the use of Secton method to determine the numerical solution of the function involving the interpolation function. The experiment shows the fact that Secton method works better than Newton method in finding the root of Lagrange interpolation function.

Keywords: Secton method, interpolation, non linear function, numerical solution

Procedia PDF Downloads 379
18891 Ductility Spectrum Method for the Design and Verification of Structures

Authors: B. Chikh, L. Moussa, H. Bechtoula, Y. Mehani, A. Zerzour

Abstract:

This study presents a new method, applicable to evaluation and design of structures has been developed and illustrated by comparison with the capacity spectrum method (CSM, ATC-40). This method uses inelastic spectra and gives peak responses consistent with those obtained when using the nonlinear time history analysis. Hereafter, the seismic demands assessment method is called in this paper DSM, Ductility Spectrum Method. It is used to estimate the seismic deformation of Single-Degree-Of-Freedom (SDOF) systems based on DDRS, Ductility Demand Response Spectrum, developed by the author.

Keywords: seismic demand, capacity, inelastic spectra, design and structure

Procedia PDF Downloads 396
18890 Classifying and Analysis 8-Bit to 8-Bit S-Boxes Characteristic Using S-Box Evaluation Characteristic

Authors: Muhammad Luqman, Yusuf Kurniawan

Abstract:

S-Boxes is one of the linear parts of the cryptographic algorithm. The existence of S-Box in the cryptographic algorithm is needed to maintain non-linearity of the algorithm. Nowadays, modern cryptographic algorithms use an S-Box as a part of algorithm process. Despite the fact that several cryptographic algorithms today reuse theoretically secure and carefully constructed S-Boxes, there is an evaluation characteristic that can measure security properties of S-Boxes and hence the corresponding primitives. Analysis of an S-Box usually is done using manual mathematics calculation. Several S-Boxes are presented as a Truth Table without any mathematical background algorithm. Then, it’s rather difficult to determine the strength of Truth Table S-Box without a mathematical algorithm. A comprehensive analysis should be applied to the Truth Table S-Box to determine the characteristic. Several important characteristics should be owned by the S-Boxes, they are Nonlinearity, Balancedness, Algebraic degree, LAT, DAT, differential delta uniformity, correlation immunity and global avalanche criterion. Then, a comprehensive tool will be present to automatically calculate the characteristics of S-Boxes and determine the strength of S-Box. Comprehensive analysis is done on a deterministic process to produce a sequence of S-Boxes characteristic and give advice for a better S-Box construction.

Keywords: cryptographic properties, Truth Table S-Boxes, S-Boxes characteristic, deterministic process

Procedia PDF Downloads 363
18889 A Nonlinear Dynamical System with Application

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.

Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model

Procedia PDF Downloads 254
18888 Top-Down Construction Method in Concrete Structures: Advantages and Disadvantages of This Construction Method

Authors: Hadi Rouhi Belvirdi

Abstract:

The construction of underground structures using the traditional method, which begins with excavation and the implementation of the foundation of the underground structure, continues with the construction of the main structure from the ground up, and concludes with the completion of the final ceiling, is known as the Bottom-Up Method. In contrast to this method, there is an advanced technique called the Top-Down Method, which has practically replaced the traditional construction method in large projects in industrialized countries in recent years. Unlike the traditional approach, this method starts with the construction of surrounding walls, columns, and the final ceiling and is completed with the excavation and construction of the foundation of the underground structure. Some of the most significant advantages of this method include the elimination or minimization of formwork surfaces, the removal of temporary bracing during excavation, the creation of some traffic facilities during the construction of the structure, and the possibility of using it in limited and high-traffic urban spaces. Despite these numerous advantages, unfortunately, there is still insufficient awareness of this method in our country, to the extent that it can be confidently stated that most stakeholders in the construction industry are unaware of the existence of such a construction method. However, it can be utilized as a very important execution option alongside other conventional methods in the construction of underground structures. Therefore, due to the extensive practical capabilities of this method, this article aims to present a methodology for constructing underground structures based on the aforementioned advanced method to the scientific community of the country, examine the advantages and limitations of this method and their impacts on time and costs, and discuss its application in urban spaces. Finally, some underground structures executed in the Ahvaz urban rail, which are being implemented using this advanced method to the best of our best knowledge, will be introduced.

Keywords: top-down method, bottom-up method, underground structure, construction method

Procedia PDF Downloads 12
18887 Stating Best Commercialization Method: An Unanswered Question from Scholars and Practitioners

Authors: Saheed A. Gbadegeshin

Abstract:

Commercialization method is a means to make inventions available at the market for final consumption. It is described as an important tool for keeping business enterprises sustainable and improving national economic growth. Thus, there are several scholarly publications on it, either presenting or testing different methods for commercialization. However, young entrepreneurs, technologists and scientists would like to know the best method to commercialize their innovations. Then, this question arises: What is the best commercialization method? To answer the question, a systematic literature review was conducted, and practitioners were interviewed. The literary results revealed that there are many methods but new methods are needed to improve commercialization especially during these times of economic crisis and political uncertainty. Similarly, the empirical results showed there are several methods, but the best method is the one that reduces costs, reduces the risks associated with uncertainty, and improves customer participation and acceptability. Therefore, it was concluded that new commercialization method is essential for today's high technologies and a method was presented.

Keywords: commercialization method, technology, knowledge, intellectual property, innovation, invention

Procedia PDF Downloads 342
18886 An Attempt to Improve Student´s Understanding on Thermal Conductivity Using Thermal Cameras

Authors: Mariana Faria Brito Francisquini

Abstract:

Many thermal phenomena are present and play a substantial role in our daily lives. This presence makes the study of this area at both High School and University levels a very widely explored topic in the literature. However, a lot of important concepts to a meaningful understanding of the world are neglected at the expense of a traditional approach with senseless algebraic problems. In this work, we intend to show how the introduction of new technologies in the classroom, namely thermal cameras, can work in our favor to make a clearer understanding of many of these concepts, such as thermal conductivity. The use of thermal cameras in the classroom tends to diminish the everlasting abstractness in thermal phenomena as they enable us to visualize something that happens right before our eyes, yet we cannot see it. In our study, we will provide the same amount of heat to metallic cylindrical rods of the same length, but different materials in order to study the thermal conductivity of each one. In this sense, the thermal camera allows us to visualize the increase in temperature along each rod in real time enabling us to infer how heat is being transferred from one part of the rod to another. Therefore, we intend to show how this approach can contribute to the exposure of students to more enriching, intellectually prolific, scenarios than those provided by traditional approaches.

Keywords: teaching physics, thermal cameras, thermal conductivity, thermal physics

Procedia PDF Downloads 282
18885 Critical Comparison of Two Teaching Methods: The Grammar Translation Method and the Communicative Teaching Method

Authors: Aicha Zohbie

Abstract:

The purpose of this paper is to critically compare two teaching methods: the communicative method and the grammar-translation method. The paper presents the importance of language awareness as an approach to teaching and learning language and some challenges that language teachers face. In addition, the paper strives to determine whether the adoption of communicative teaching methods or the grammar teaching method would be more effective to teach a language. A variety of features are considered for comparing the two methods: the purpose of each method, techniques used, teachers’ and students’ roles, the use of L1, the skills that are emphasized, the correction of students’ errors, and the students’ assessments. Finally, the paper includes suggestions and recommendations for implementing an approach that best meets the students’ needs in a classroom.

Keywords: language teaching methods, language awareness, communicative method grammar translation method, advantages and disadvantages

Procedia PDF Downloads 151
18884 Numerical Iteration Method to Find New Formulas for Nonlinear Equations

Authors: Kholod Mohammad Abualnaja

Abstract:

A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient.

Keywords: variational iteration method, nonlinear equations, Lagrange multiplier, algorithms

Procedia PDF Downloads 545
18883 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments

Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady

Abstract:

In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.

Keywords: cable ampacity, finite element method, underground cable, thermal rating

Procedia PDF Downloads 379
18882 Multistage Adomian Decomposition Method for Solving Linear and Non-Linear Stiff System of Ordinary Differential Equations

Authors: M. S. H. Chowdhury, Ishak Hashim

Abstract:

In this paper, linear and non-linear stiff systems of ordinary differential equations are solved by the classical Adomian decomposition method (ADM) and the multi-stage Adomian decomposition method (MADM). The MADM is a technique adapted from the standard Adomian decomposition method (ADM) where standard ADM is converted into a hybrid numeric-analytic method called the multistage ADM (MADM). The MADM is tested for several examples. Comparisons with an explicit Runge-Kutta-type method (RK) and the classical ADM demonstrate the limitations of ADM and promising capability of the MADM for solving stiff initial value problems (IVPs).

Keywords: stiff system of ODEs, Runge-Kutta Type Method, Adomian decomposition method, Multistage ADM

Procedia PDF Downloads 437
18881 A Method for Measurement and Evaluation of Drape of Textiles

Authors: L. Fridrichova, R. Knížek, V. Bajzík

Abstract:

Drape is one of the important visual characteristics of the fabric. This paper is introducing an innovative method of measurement and evaluation of the drape shape of the fabric. The measuring principle is based on the possibility of multiple vertical strain of the fabric. This method more accurately simulates the real behavior of the fabric in the process of draping. The method is fully automated, so the sample can be measured by using any number of cycles in any time horizon. Using the present method of measurement, we are able to describe the viscoelastic behavior of the fabric.

Keywords: drape, drape shape, automated drapemeter, fabric

Procedia PDF Downloads 656
18880 Reflection on Using Bar Model Method in Learning and Teaching Primary Mathematics: A Hong Kong Case Study

Authors: Chui Ka Shing

Abstract:

This case study research attempts to examine the use of the Bar Model Method approach in learning and teaching mathematics in a primary school in Hong Kong. The objectives of the study are to find out to what extent (a) the Bar Model Method approach enhances the construction of students’ mathematics concepts, and (b) the school-based mathematics curriculum development with adopting the Bar Model Method approach. This case study illuminates the effectiveness of using the Bar Model Method to solve mathematics problems from Primary 1 to Primary 6. Some effective pedagogies and assessments were developed to strengthen the use of the Bar Model Method across year levels. Suggestions including school-based curriculum development for using Bar Model Method and further study were discussed.

Keywords: bar model method, curriculum development, mathematics education, problem solving

Procedia PDF Downloads 220
18879 An Analytical Method for Bending Rectangular Plates with All Edges Clamped Supported

Authors: Yang Zhong, Heng Liu

Abstract:

The decoupling method and the modified Naiver method are combined for accurate bending analysis of rectangular thick plates with all edges clamped supported. The basic governing equations for Mindlin plates are first decoupled into independent partial differential equations which can be solved separately. Using modified Navier method, the analytic solution of rectangular thick plate with all edges clamped supported is then derived. The solution method used in this paper leave out the complicated derivation for calculating coefficients and obtain the solution to problems directly. Numerical comparisons show the correctness and accuracy of the results at last.

Keywords: Mindlin plates, decoupling method, modified Navier method, bending rectangular plates

Procedia PDF Downloads 600
18878 Modern Methods of Technology and Organization of Production of Construction Works during the Implementation of Construction 3D Printers

Authors: Azizakhanim Maharramli

Abstract:

The gradual transition from entrenched traditional technology and organization of construction production to innovative additive construction technology inevitably meets technological, technical, organizational, labour, and, finally, social difficulties. Therefore, the chosen nodal method will lead to the elimination of the above difficulties, combining some of the usual methods of construction and the myth in world practice that the labour force is subjected to a strong stream of reduction. The nodal method of additive technology will create favourable conditions for the optimal degree of distribution of labour across facilities due to the consistent performance of homogeneous work and the introduction of additive technology and traditional technology into construction production.

Keywords: parallel method, sequential method, stream method, combined method, nodal method

Procedia PDF Downloads 94
18877 About Some Results of the Determination of Alcohol in Moroccan Gasoline-Alcohol Mixtures

Authors: Mahacine Amrani

Abstract:

A simple and rapid method for the determination of alcohol in gasoline-alcohol mixtures using density measurements is described. The method can determine a minimum of 1% of alcohol by volume. The precision of the method is ± 3%.The method is more useful for field test in the quality assessment of alcohol blended fuels.

Keywords: gasoline-alcohol, mixture, alcohol determination, density, measurement, Morocco

Procedia PDF Downloads 322
18876 The Finite Element Method for Nonlinear Fredholm Integral Equation of the Second Kind

Authors: Melusi Khumalo, Anastacia Dlamini

Abstract:

In this paper, we consider a numerical solution for nonlinear Fredholm integral equations of the second kind. We work with uniform mesh and use the Lagrange polynomials together with the Galerkin finite element method, where the weight function is chosen in such a way that it takes the form of the approximate solution but with arbitrary coefficients. We implement the finite element method to the nonlinear Fredholm integral equations of the second kind. We consider the error analysis of the method. Furthermore, we look at a specific example to illustrate the implementation of the finite element method.

Keywords: finite element method, Galerkin approach, Fredholm integral equations, nonlinear integral equations

Procedia PDF Downloads 376
18875 An Online 3D Modeling Method Based on a Lossless Compression Algorithm

Authors: Jiankang Wang, Hongyang Yu

Abstract:

This paper proposes a portable online 3D modeling method. The method first utilizes a depth camera to collect data and compresses the depth data using a frame-by-frame lossless data compression method. The color image is encoded using the H.264 encoding format. After the cloud obtains the color image and depth image, a 3D modeling method based on bundlefusion is used to complete the 3D modeling. The results of this study indicate that this method has the characteristics of portability, online, and high efficiency and has a wide range of application prospects.

Keywords: 3D reconstruction, bundlefusion, lossless compression, depth image

Procedia PDF Downloads 82