Introducing Quantum-Weijsberg Algebras by Redefining Quantum-MV Algebras: Characterization, Properties, and Other Important Results
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 88160
Introducing Quantum-Weijsberg Algebras by Redefining Quantum-MV Algebras: Characterization, Properties, and Other Important Results

Authors: Lavinia Ciungu

Abstract:

In the last decades, developing algebras related to the logical foundations of quantum mechanics became a central topic of research. Generally known as quantum structures, these algebras serve as models for the formalism of quantum mechanics. In this work, we introduce the notion of quantum-Wajsberg algebras by redefining the quantum-MV algebras starting from involutive BE algebras. We give a characterization of quantum-Wajsberg algebras, investigate their properties, and show that, in general, quantum-Wajsberg algebras are not (commutative) quantum-B algebras. We also define the ∨-commutative quantum-Wajsberg algebras and study their properties. Furthermore, we prove that any Wajsberg algebra (bounded ∨-commutative BCK algebra) is a quantum-Wajsberg algebra, and we give a condition for a quantum-Wajsberg algebra to be a Wajsberg algebra. We prove that Wajsberg algebras are both quantum-Wajsberg algebras and commutative quantum-B algebras. We establish the connection between quantum-Wajsberg algebras and quantum-MV algebras, proving that the quantum-Wajsberg algebras are term equivalent to quantum-MV algebras. We show that, in general, the quantum-Wajsberg algebras are not commutative quantum-B algebras and if a quantum-Wajsberg algebra is self-distributive, then the corresponding quantum-MV algebra is an MV algebra. Our study could be a starting point for the development of other implicative counterparts of certain existing algebraic quantum structures.

Keywords: quantum-Wajsberg algebra, quantum-MV algebra, MV algebra, Wajsberg algebra, BE algebra, quantum-B algebra

Procedia PDF Downloads 23