Search results for: data acquisition
24217 Use of Life Cycle Data for State-Oriented Maintenance
Authors: Maximilian Winkens, Matthias Goerke
Abstract:
The state-oriented maintenance enables the preventive intervention before the failure of a component and guarantees avoidance of expensive breakdowns. Because the timing of the maintenance is defined by the component’s state, the remaining service life can be exhausted to the limit. The basic requirement for the state-oriented maintenance is the ability to define the component’s state. New potential for this is offered by gentelligent components. They are developed at the Corporative Research Centre 653 of the German Research Foundation (DFG). Because of their sensory ability they enable the registration of stresses during the component’s use. The data is gathered and evaluated. The methodology developed determines the current state of the gentelligent component based on the gathered data. This article presents this methodology as well as current research. The main focus of the current scientific work is to improve the quality of the state determination based on the life-cycle data analysis. The methodology developed until now evaluates the data of the usage phase and based on it predicts the timing of the gentelligent component’s failure. The real failure timing though, deviate from the predicted one because the effects from the production phase aren’t considered. The goal of the current research is to develop a methodology for state determination which considers both production and usage data.Keywords: state-oriented maintenance, life-cycle data, gentelligent component, preventive intervention
Procedia PDF Downloads 49524216 A Hybrid System for Boreholes Soil Sample
Authors: Ali Ulvi Uzer
Abstract:
Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.Keywords: feature selection, sequential forward selection, support vector machines, soil sample
Procedia PDF Downloads 45524215 Predicting Customer Purchasing Behaviour in Retail Marketing: A Research for a Supermarket Chain
Authors: Sabri Serkan Güllüoğlu
Abstract:
Analysis can be defined as the process of gathering, recording and researching data related to products and services, in order to learn something. But for marketers, analyses are not only used for learning but also an essential and critical part of the business, because this allows companies to offer products or services which are focused and well targeted. Market analysis also identify market trends, demographics, customer’s buying habits and important information on the competition. Data mining is used instead of traditional research, because it extracts predictive information about customer and sales from large databases. In contrast to traditional research, data mining relies on information that is already available. Simply the goal is to improve the efficiency of supermarkets. In this study, the purpose is to find dependency on products. For instance, which items are bought together, using association rules in data mining. Moreover, this information will be used for improving the profitability of customers such as increasing shopping time and sales of fewer sold items.Keywords: data mining, association rule mining, market basket analysis, purchasing
Procedia PDF Downloads 48324214 Predicting Medical Check-Up Patient Re-Coming Using Sequential Pattern Mining and Association Rules
Authors: Rizka Aisha Rahmi Hariadi, Chao Ou-Yang, Han-Cheng Wang, Rajesri Govindaraju
Abstract:
As the increasing of medical check-up popularity, there are a huge number of medical check-up data stored in database and have not been useful. These data actually can be very useful for future strategic planning if we mine it correctly. In other side, a lot of patients come with unpredictable coming and also limited available facilities make medical check-up service offered by hospital not maximal. To solve that problem, this study used those medical check-up data to predict patient re-coming. Sequential pattern mining (SPM) and association rules method were chosen because these methods are suitable for predicting patient re-coming using sequential data. First, based on patient personal information the data was grouped into … groups then discriminant analysis was done to check significant of the grouping. Second, for each group some frequent patterns were generated using SPM method. Third, based on frequent patterns of each group, pairs of variable can be extracted using association rules to get general pattern of re-coming patient. Last, discussion and conclusion was done to give some implications of the results.Keywords: patient re-coming, medical check-up, health examination, data mining, sequential pattern mining, association rules, discriminant analysis
Procedia PDF Downloads 64024213 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation
Procedia PDF Downloads 26624212 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities
Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan
Abstract:
The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility
Procedia PDF Downloads 7624211 Changes in the Subjective Interpretation of Poverty Due to COVID-19: The Case of a Peripheral County of Hungary
Authors: Eszter Siposne Nandori
Abstract:
The paper describes how the subjective interpretation of poverty changed during the COVID-19 pandemic. The results of data collection at the end of 2020 are compared to the results of a similar survey from 2019. The methods of systematic data collection are used to collect data about the beliefs of the population about poverty. The analysis is carried out in Borsod-Abaúj-Zemplén County, one of the most backward areas in Hungary. The paper concludes that poverty is mainly linked to material values, and it did not change from 2019 to 2020. Some slight changes, however, highlight the effect of the pandemic: poverty is increasingly seen as a generational problem in 2020, and another important change is that isolation became more closely related to poverty.Keywords: Hungary, interpretation of poverty, pandemic, systematic data collection, subjective poverty
Procedia PDF Downloads 12624210 Aviation versus Aerospace: A Differential Analysis of Workforce Jobs via Text Mining
Authors: Sarah Werner, Michael J. Pritchard
Abstract:
From pilots to engineers, the skills development within the aerospace industry is exceptionally broad. Employers often struggle with finding the right mixture of qualified skills to fill their organizational demands. This effort to find qualified talent is further complicated by the industrial delineation between two key areas: aviation and aerospace. In a broad sense, the aerospace industry overlaps with the aviation industry. In turn, the aviation industry is a smaller sector segment within the context of the broader definition of the aerospace industry. Furthermore, it could be conceptually argued that -in practice- there is little distinction between these two sectors (i.e., aviation and aerospace). However, through our unstructured text analysis of over 6,000 job listings captured, our team found a clear delineation between aviation-related jobs and aerospace-related jobs. Using techniques in natural language processing, our research identifies an integrated workforce skill pattern that clearly breaks between these two sectors. While the aviation sector has largely maintained its need for pilots, mechanics, and associated support personnel, the staffing needs of the aerospace industry are being progressively driven by integrative engineering needs. Increasingly, this is leading many aerospace-based organizations towards the acquisition of 'system level' staffing requirements. This research helps to better align higher educational institutions with the current industrial staffing complexities within the broader aerospace sector.Keywords: aerospace industry, job demand, text mining, workforce development
Procedia PDF Downloads 27324209 An Encapsulation of a Navigable Tree Position: Theory, Specification, and Verification
Authors: Nicodemus M. J. Mbwambo, Yu-Shan Sun, Murali Sitaraman, Joan Krone
Abstract:
This paper presents a generic data abstraction that captures a navigable tree position. The mathematical modeling of the abstraction encapsulates the current tree position, which can be used to navigate and modify the tree. The encapsulation of the tree position in the data abstraction specification avoids the use of explicit references and aliasing, thereby simplifying verification of (imperative) client code that uses the data abstraction. To ease the tasks of such specification and verification, a general tree theory, rich with mathematical notations and results, has been developed. The paper contains an example to illustrate automated verification ramifications. With sufficient tree theory development, automated proving seems plausible even in the absence of a special-purpose tree solver.Keywords: automation, data abstraction, maps, specification, tree, verification
Procedia PDF Downloads 16624208 The Quality of the Presentation Influence the Audience Perceptions
Authors: Gilang Maulana, Dhika Rahma Qomariah, Yasin Fadil
Abstract:
Purpose: This research meant to measure the magnitude of the influence of the quality of the presentation to the targeted audience perception in catching information presentation. Design/Methodology/Approach: This research uses a quantitative research method. The kind of data that uses in this research is the primary data. The population in this research are students the economics faculty of Semarang State University. The sampling techniques uses in this research is purposive sampling. The retrieving data uses questionnaire on 30 respondents. The data analysis uses descriptive analysis. Result: The quality of presentation influential positive against perception of the audience. This proved that the more qualified presentation will increase the perception of the audience. Limitation: Respondents were limited to only 30 people.Keywords: quality of presentation, presentation, audience, perception, semarang state university
Procedia PDF Downloads 39224207 Examining Statistical Monitoring Approach against Traditional Monitoring Techniques in Detecting Data Anomalies during Conduct of Clinical Trials
Authors: Sheikh Omar Sillah
Abstract:
Introduction: Monitoring is an important means of ensuring the smooth implementation and quality of clinical trials. For many years, traditional site monitoring approaches have been critical in detecting data errors but not optimal in identifying fabricated and implanted data as well as non-random data distributions that may significantly invalidate study results. The objective of this paper was to provide recommendations based on best statistical monitoring practices for detecting data-integrity issues suggestive of fabrication and implantation early in the study conduct to allow implementation of meaningful corrective and preventive actions. Methodology: Electronic bibliographic databases (Medline, Embase, PubMed, Scopus, and Web of Science) were used for the literature search, and both qualitative and quantitative studies were sought. Search results were uploaded into Eppi-Reviewer Software, and only publications written in the English language from 2012 were included in the review. Gray literature not considered to present reproducible methods was excluded. Results: A total of 18 peer-reviewed publications were included in the review. The publications demonstrated that traditional site monitoring techniques are not efficient in detecting data anomalies. By specifying project-specific parameters such as laboratory reference range values, visit schedules, etc., with appropriate interactive data monitoring, statistical monitoring can offer early signals of data anomalies to study teams. The review further revealed that statistical monitoring is useful to identify unusual data patterns that might be revealing issues that could impact data integrity or may potentially impact study participants' safety. However, subjective measures may not be good candidates for statistical monitoring. Conclusion: The statistical monitoring approach requires a combination of education, training, and experience sufficient to implement its principles in detecting data anomalies for the statistical aspects of a clinical trial.Keywords: statistical monitoring, data anomalies, clinical trials, traditional monitoring
Procedia PDF Downloads 7724206 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data
Authors: Yuqing Chen, Ying Xu, Renfa Li
Abstract:
The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier
Procedia PDF Downloads 38424205 Field Production Data Collection, Analysis and Reporting Using Automated System
Authors: Amir AlAmeeri, Mohamed Ibrahim
Abstract:
Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast
Procedia PDF Downloads 15624204 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 46624203 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO
Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky
Abstract:
The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.Keywords: aeronautics, big data, data processing, machine learning, S1000D
Procedia PDF Downloads 15724202 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines
Authors: Xiaogang Li, Jieqiong Miao
Abstract:
As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square errorKeywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error
Procedia PDF Downloads 46124201 Development of a Data Security Model Using Steganography
Authors: Terungwa Simon Yange, Agana Moses A.
Abstract:
This paper studied steganography and designed a simplistic approach to a steganographic tool for hiding information in image files with the view of addressing the security challenges with data by hiding data from unauthorized users to improve its security. The Structured Systems Analysis and Design Method (SSADM) was used in this work. The system was developed using Java Development Kit (JDK) 1.7.0_10 and MySQL Server as its backend. The system was tested with some hypothetical health records which proved the possibility of protecting data from unauthorized users by making it secret so that its existence cannot be easily recognized by fraudulent users. It further strengthens the confidentiality of patient records kept by medical practitioners in the health setting. In conclusion, this work was able to produce a user friendly steganography software that is very fast to install and easy to operate to ensure privacy and secrecy of sensitive data. It also produced an exact copy of the original image and the one carrying the secret message when compared with each.Keywords: steganography, cryptography, encryption, decryption, secrecy
Procedia PDF Downloads 26624200 Analysis of Citation Rate and Data Reuse for Openly Accessible Biodiversity Datasets on Global Biodiversity Information Facility
Authors: Nushrat Khan, Mike Thelwall, Kayvan Kousha
Abstract:
Making research data openly accessible has been mandated by most funders over the last 5 years as it promotes reproducibility in science and reduces duplication of effort to collect the same data. There are evidence that articles that publicly share research data have higher citation rates in biological and social sciences. However, how and whether shared data is being reused is not always intuitive as such information is not easily accessible from the majority of research data repositories. This study aims to understand the practice of data citation and how data is being reused over the years focusing on biodiversity since research data is frequently reused in this field. Metadata of 38,878 datasets including citation counts were collected through the Global Biodiversity Information Facility (GBIF) API for this purpose. GBIF was used as a data source since it provides citation count for datasets, not a commonly available feature for most repositories. Analysis of dataset types, citation counts, creation and update time of datasets suggests that citation rate varies for different types of datasets, where occurrence datasets that have more granular information have higher citation rates than checklist and metadata-only datasets. Another finding is that biodiversity datasets on GBIF are frequently updated, which is unique to this field. Majority of the datasets from the earliest year of 2007 were updated after 11 years, with no dataset that was not updated since creation. For each year between 2007 and 2017, we compared the correlations between update time and citation rate of four different types of datasets. While recent datasets do not show any correlations, 3 to 4 years old datasets show weak correlation where datasets that were updated more recently received high citations. The results are suggestive that it takes several years to cumulate citations for research datasets. However, this investigation found that when searched on Google Scholar or Scopus databases for the same datasets, the number of citations is often not the same as GBIF. Hence future aim is to further explore the citation count system adopted by GBIF to evaluate its reliability and whether it can be applicable to other fields of studies as well.Keywords: data citation, data reuse, research data sharing, webometrics
Procedia PDF Downloads 17824199 Significance of Transient Data and Its Applications in Turbine Generators
Authors: Chandra Gupt Porwal, Preeti C. Porwal
Abstract:
Transient data reveals much about the machine's condition that steady-state data cannot. New technologies make this information much more available for evaluating the mechanical integrity of a machine train. Recent surveys at various stations indicate that simplicity is preferred over completeness in machine audits throughout the power generation industry. This is most clearly shown by the number of rotating machinery predictive maintenance programs in which only steady-state vibration amplitude is trended while important transient vibration data is not even acquired. Efforts have been made to explain what transient data is, its importance, the types of plots used for its display, and its effective utilization for analysis. In order to demonstrate the value of measuring transient data and its practical application in rotating machinery for resolving complex and persistent issues with turbine generators, the author presents a few case studies that highlight the presence of rotor instabilities due to the shaft moving towards the bearing centre in a 100 MM LMZ unit located in the Northern Capital Region (NCR), heavy misalignment noticed—especially after 2993 rpm—caused by loose coupling bolts, which prevented the machine from being synchronized for more than four months in a 250 MW KWU unit in the Western Region (WR), and heavy preload noticed at Intermediate pressure turbine (IPT) bearing near HP- IP coupling, caused by high points on coupling faces at a 500 MW KWU unit in the Northern region (NR), experienced at Indian power plants.Keywords: transient data, steady-state-data, intermediate -pressure-turbine, high-points
Procedia PDF Downloads 6924198 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 16924197 Visual Analytics in K 12 Education: Emerging Dimensions of Complexity
Authors: Linnea Stenliden
Abstract:
The aim of this paper is to understand emerging learning conditions, when a visual analytics is implemented and used in K 12 (education). To date, little attention has been paid to the role visual analytics (digital media and technology that highlight visual data communication in order to support analytical tasks) can play in education, and to the extent to which these tools can process actionable data for young students. This study was conducted in three public K 12 schools, in four social science classes with students aged 10 to 13 years, over a period of two to four weeks at each school. Empirical data were generated using video observations and analyzed with help of metaphors by Latour. The learning conditions are found to be distinguished by broad complexity characterized by four dimensions. These emerge from the actors’ deeply intertwined relations in the activities. The paper argues in relation to the found dimensions that novel approaches to teaching and learning could benefit students’ knowledge building as they work with visual analytics, analyzing visualized data.Keywords: analytical reasoning, complexity, data use, problem space, visual analytics, visual storytelling, translation
Procedia PDF Downloads 37624196 Use of Alternative Water Sources Based on a Rainwater in the Multi-Dwelling Urban Building 2030
Authors: Monika Lipska
Abstract:
Drinking water is water with a very high quality, and as such represents only 2.5% of the total quantity of all water in the world. For many years we have observed continuous increase in its consumption as a result of many factors such as: Growing world population (7 billion in 2011r.), increase of human lives comfort and – above all – the economic growth. Due to the rocketing consumption and growing costs of production of water with such high-quality parameters, we experience accelerating interest in alternative sources of obtaining potable water. One of the ways of saving this valuable material is using rainwater in the Urban Building. With an exponentially growing demand, the acquisition of additional sources of water is necessary to maintain the proper balance of all ecosystems. The first part of the paper describes what rainwater is and what are its potential sources and means of use, while the main part of the article focuses on the description of the methods of obtaining water from rain on the example of new urban building in Poland. It describes the method and installations of rainwater in the new urban building (“MBJ2030”). The paper addresses also the issue of monitoring of the whole recycling systems as well as the particular quality indicators important because of identification of the potential risks to human health. The third part describes the legal arrangements concerning the recycling of rainwater existing in different European Union countries with particular reference to Poland on example the new urban building in Warsaw.Keywords: rainwater, potable water, non-potable water, Poland
Procedia PDF Downloads 41424195 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning
Authors: A. D. Tayal
Abstract:
The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.Keywords: data, innovation, renewable, solar
Procedia PDF Downloads 36424194 Error Analysis: Examining Written Errors of English as a Second Language (ESL) Spanish Speaking Learners
Authors: Maria Torres
Abstract:
After the acknowledgment of contrastive analysis, Pit Coder’s establishment of error analysis revolutionized the way instructors analyze and examine students’ writing errors. One question that relates to error analysis with speakers of a first language, in this case, Spanish, who are learning a second language (English), is the type of errors that these learners make along with the causes of these errors. Many studies have looked at the way the native tongue influences second language acquisition, but this method does not take into account other possible sources of students’ errors. This paper examines writing samples from an advanced ESL class whose first language is Spanish at non-profit organization, Learning Quest Stanislaus Literacy Center. Through error analysis, errors in the students’ writing were identified, described, and classified. The purpose of this paper was to discover the type and origin of their errors which generated appropriate treatments. The results in this paper show that the most frequent errors in the advanced ESL students’ writing pertain to interlanguage and a small percentage from an intralanguage source. Lastly, the least type of errors were ones that originate from negative transfer. The results further solidify the idea that there are other errors and sources of errors to account for rather than solely focusing on the difference between the students’ mother and target language. This presentation will bring to light some strategies and techniques that address the issues found in this research. Taking into account the amount of error pertaining to interlanguage, an ESL teacher should provide metalinguistic awareness of the students’ errors.Keywords: error analysis, ESL, interlanguage, intralangauge
Procedia PDF Downloads 29824193 The Markers -mm and dämmo in Amharic: Developmental Approach
Authors: Hayat Omar
Abstract:
Languages provide speakers with a wide range of linguistic units to organize and deliver information. There are several ways to verbally express the mental representations of events. According to the linguistic tools they have acquired, speakers select the one that brings out the most communicative effect to convey their message. Our study focuses on two markers, -mm and dämmo, in Amharic (Ethiopian Semitic language). Our aim is to examine, from a developmental perspective, how they are used by speakers. We seek to distinguish the communicative and pragmatic functions indicated by means of these markers. To do so, we created a corpus of sixty narrative productions of children from 5-6, 7-8 to 10-12 years old and adult Amharic speakers. The experimental material we used to collect our data is a series of pictures without text 'Frog, Where are you?'. Although -mm and dämmo are each used in specific contexts, they are sometimes analyzed as being interchangeable. The suffix -mm is complex and multifunctional. It marks the end of the negative verbal structure, it is found in the relative structure of the imperfect, it creates new words such as adverbials or pronouns, it also serves to coordinate words, sentences and to mark the link between macro-propositions within a larger textual unit. -mm was analyzed as marker of insistence, topic shift marker, element of concatenation, contrastive focus marker, 'bisyndetic' coordinator. On the other hand, dämmo has limited function and did not attract the attention of many authors. The only approach we could find analyzes it in terms of 'monosyndetic' coordinator. The paralleling of these two elements made it possible to understand their distinctive functions and refine their description. When it comes to marking a referent, the choice of -mm or dämmo is not neutral, depending on whether the tagged argument is newly introduced, maintained, promoted or reintroduced. The presence of these morphemes explains the inter-phrastic link. The information is seized by anaphora or presupposition: -mm goes upstream while dämmo arrows downstream, the latter requires new information. The speaker uses -mm or dämmo according to what he assumes to be known to his interlocutors. The results show that -mm and dämmo, although all the speakers use them both, do not always have the same scope according to the speaker and vary according to the age. dämmo is mainly used to mark a contrastive topic to signal the concomitance of events. It is more commonly used in young children’s narratives (F(3,56) = 3,82, p < .01). Some values of -mm (additive) are acquired very early while others are rather late and increase with age (F(3,56) = 3,2, p < .03). The difficulty is due not only because of its synthetic structure but primarily because it is multi-purpose and requires a memory work. It highlights the constituent on which it operates to clarify how the message should be interpreted.Keywords: acquisition, cohesion, connection, contrastive topic, contrastive focus, discourse marker, pragmatics
Procedia PDF Downloads 13424192 A New Paradigm to Make Cloud Computing Greener
Authors: Apurva Saxena, Sunita Gond
Abstract:
Demand of computation, data storage in large amount are rapidly increases day by day. Cloud computing technology fulfill the demand of today’s computation but this will lead to high power consumption in cloud data centers. Initiative for Green IT try to reduce power consumption and its adverse environmental impacts. Paper also focus on various green computing techniques, proposed models and efficient way to make cloud greener.Keywords: virtualization, cloud computing, green computing, data center
Procedia PDF Downloads 55424191 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend
Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes
Abstract:
This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.Keywords: diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions
Procedia PDF Downloads 35024190 Physiological Action of Anthraquinone-Containing Preparations
Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina, Evgenii N. Kojaev
Abstract:
In review the generalized data about biological activity of anthraquinone-containing plants and specimens on their basis is presented. Data of traditional medicine, results of bioscreening and clinical researches of specimens are analyzed.Keywords: anthraquinones, physiologically active substances, phytopreparation, Ramon
Procedia PDF Downloads 37624189 Personal Data Protection: A Legal Framework for Health Law in Turkey
Authors: Veli Durmus, Mert Uydaci
Abstract:
Every patient who needs to get a medical treatment should share health-related personal data with healthcare providers. Therefore, personal health data plays an important role to make health decisions and identify health threats during every encounter between a patient and caregivers. In other words, health data can be defined as privacy and sensitive information which is protected by various health laws and regulations. In many cases, the data are an outcome of the confidential relationship between patients and their healthcare providers. Globally, almost all nations have own laws, regulations or rules in order to protect personal data. There is a variety of instruments that allow authorities to use the health data or to set the barriers data sharing across international borders. For instance, Directive 95/46/EC of the European Union (EU) (also known as EU Data Protection Directive) establishes harmonized rules in European borders. In addition, the General Data Protection Regulation (GDPR) will set further common principles in 2018. Because of close policy relationship with EU, this study provides not only information on regulations, directives but also how they play a role during the legislative process in Turkey. Even if the decision is controversial, the Board has recently stated that private or public healthcare institutions are responsible for the patient call system, for doctors to call people waiting outside a consultation room, to prevent unlawful processing of personal data and unlawful access to personal data during the treatment. In Turkey, vast majority private and public health organizations provide a service that ensures personal data (i.e. patient’s name and ID number) to call the patient. According to the Board’s decision, hospital or other healthcare institutions are obliged to take all necessary administrative precautions and provide technical support to protect patient privacy. However, this application does not effectively and efficiently performing in most health services. For this reason, it is important to draw a legal framework of personal health data by stating what is the main purpose of this regulation and how to deal with complicated issues on personal health data in Turkey. The research is descriptive on data protection law for health care setting in Turkey. Primary as well as secondary data has been used for the study. The primary data includes the information collected under current national and international regulations or law. Secondary data include publications, books, journals, empirical legal studies. Consequently, privacy and data protection regimes in health law show there are some obligations, principles and procedures which shall be binding upon natural or legal persons who process health-related personal data. A comparative approach presents there are significant differences in some EU member states due to different legal competencies, policies, and cultural factors. This selected study provides theoretical and practitioner implications by highlighting the need to illustrate the relationship between privacy and confidentiality in Personal Data Protection in Health Law. Furthermore, this paper would help to define the legal framework for the health law case studies on data protection and privacy.Keywords: data protection, personal data, privacy, healthcare, health law
Procedia PDF Downloads 22424188 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling
Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König
Abstract:
As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling
Procedia PDF Downloads 513