Search results for: low order model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27283

Search results for: low order model

25873 Digital Literacy, Assessment and Higher Education

Authors: James Moir

Abstract:

Recent evidence suggests that academic staff face difficulties in applying new technologies as a means of assessing higher order assessment outcomes such as critical thinking, problem solving and creativity. Although higher education institutional mission statements and course unit outlines purport the value of these higher order skills there is still some question about how well academics are equipped to design curricula and, in particular, assessment strategies accordingly. Despite a rhetoric avowing the benefits of these higher order skills, it has been suggested that academics set assessment tasks up in such a way as to inadvertently lead students on the path towards lower order outcomes. This is a controversial claim, and one that this papers seeks to explore and critique in terms of challenging the conceptual basis of assessing higher order skills through new technologies. It is argued that the use of digital media in higher education is leading to a focus on students’ ability to use and manipulate of these products as an index of their flexibility and adaptability to the demands of the knowledge economy. This focus mirrors market flexibility and encourages programmes and courses of study to be rhetorically packaged as such. Curricular content has become a means to procure more or less elaborate aggregates of attributes. Higher education is now charged with producing graduates who are entrepreneurial and creative in order to drive forward economic sustainability. It is argued that critical independent learning can take place through the democratisation afforded by cultural and knowledge digitization and that assessment needs to acknowledge the changing relations between audience and author, expert and amateur, creator and consumer.

Keywords: higher education, curriculum, new technologies, assessment, higher order skills

Procedia PDF Downloads 375
25872 Exploring the Energy Model of Cumulative Grief

Authors: Masica Jordan Alston, Angela N. Bullock, Angela S. Henderson, Stephanie Strianse, Sade Dunn, Joseph Hackett, Alaysia Black Hackett, Marcus Mason

Abstract:

The Energy Model of Cumulative Grief was created in 2018. The Energy Model of Cumulative Grief utilizes historic models of grief stage theories. The innovative model is additionally unique due to its focus on cultural responsiveness. The Energy Model of Cumulative Grief helps to train practitioners who work with clients dealing with grief and loss. This paper assists in introducing the world to this innovative model and exploring how this model positively impacted a convenience sample of 140 practitioners and individuals experiencing grief and loss. Respondents participated in Webinars provided by the National Grief and Loss Center of America (NGLCA). Participants in this cross-sectional research design study completed one of three Grief and Loss Surveys created by the Grief and Loss Centers of America. Data analysis for this study was conducted via SPSS and Survey Hero to examine survey results for respondents. Results indicate that the Energy Model of Cumulative Grief was an effective resource for participants in addressing grief and loss. The majority of participants found the Webinars to be helpful and a conduit to providing them with higher levels of hope. The findings suggest that using The Energy Model of Cumulative Grief is effective in providing culturally responsive grief and loss resources to practitioners and clients. There are far reaching implications with the use of technology to provide hope to those suffering from grief and loss worldwide through The Energy Model of Cumulative Grief.

Keywords: grief, loss, grief energy, grieving brain

Procedia PDF Downloads 84
25871 An Investigation of Influential Factors in Adopting the Cloud Computing in Saudi Arabia: An Application of Technology Acceptance Model

Authors: Shayem Saleh ALresheedi, Lu Song Feng, Abdulaziz Abdulwahab M. Fatani

Abstract:

Cloud computing is an emerging concept in the technological sphere. Its development enables many applications to avail information online and on demand. It is becoming an essential element for businesses due to its ability to diminish the costs of IT infrastructure and is being adopted in Saudi Arabia. However, there exist many factors that affect its adoption. Several researchers in the field have ignored the study of the TAM model for identifying the relevant factors and their impact for adopting of cloud computing. This study focuses on evaluating the acceptability of cloud computing and analyzing its impacting factors using Technology Acceptance Model (TAM) of technology adoption in Saudi Arabia. It suggests a model to examine the influential factors of the TAM model along with external factors of technical support in adapting the cloud computing. The proposed model has been tested through the use of multiple hypotheses based on calculation tools and collected data from customers through questionnaires. The findings of the study prove that the TAM model along with external factors can be applied in measuring the expected adoption of cloud computing. The study presents an investigation of influential factors and further recommendation in adopting cloud computing in Saudi Arabia.

Keywords: cloud computing, acceptability, adoption, determinants

Procedia PDF Downloads 193
25870 3D Point Cloud Model Color Adjustment by Combining Terrestrial Laser Scanner and Close Range Photogrammetry Datasets

Authors: M. Pepe, S. Ackermann, L. Fregonese, C. Achille

Abstract:

3D models obtained with advanced survey techniques such as close-range photogrammetry and laser scanner are nowadays particularly appreciated in Cultural Heritage and Archaeology fields. In order to produce high quality models representing archaeological evidences and anthropological artifacts, the appearance of the model (i.e. color) beyond the geometric accuracy, is not a negligible aspect. The integration of the close-range photogrammetry survey techniques with the laser scanner is still a topic of study and research. By combining point cloud data sets of the same object generated with both technologies, or with the same technology but registered in different moment and/or natural light condition, could construct a final point cloud with accentuated color dissimilarities. In this paper, a methodology to uniform the different data sets, to improve the chromatic quality and to highlight further details by balancing the point color will be presented.

Keywords: color models, cultural heritage, laser scanner, photogrammetry

Procedia PDF Downloads 280
25869 Utilization of an Object Oriented Tool to Perform Model-Based Safety Analysis According to Extended Failure System Models

Authors: Royia Soliman, Salma ElAnsary, Akram Amin Abdellatif, Florian Holzapfel

Abstract:

Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share a common system model created using a model-based development process. The model can also be extended by the failure modes of the system components. There are two famous approaches for the addition of fault behaviors to system models. The first one is to enclose the failure into the system design directly. The second approach is to develop a fault model separately from the system model, thus combining both independent models for safety analysis. This paper introduces a hybrid approach of MBSA. The approach tries to use informal abstracted models to investigate failure behaviors. The approach will combine various concepts such as directed graph traversal, event lists and Constraint Satisfaction Problems (CSP). The approach is implemented using an Object Oriented programming language. The components are abstracted to its failure logic and relationships of connected components. The implemented approach is tested on various flight control systems, including electrical and multi-domain examples. The various tests are analyzed, and a comparison to different approaches is represented.

Keywords: flight control systems, model based safety analysis, safety assessment analysis, system modelling

Procedia PDF Downloads 164
25868 An Alternative Stratified Cox Model for Correlated Variables in Infant Mortality

Authors: K. A. Adeleke

Abstract:

Often in epidemiological research, introducing stratified Cox model can account for the existence of interactions of some inherent factors with some major/noticeable factors. This research work aimed at modelling correlated variables in infant mortality with the existence of some inherent factors affecting the infant survival function. An alternative semiparametric Stratified Cox model is proposed with a view to take care of multilevel factors that have interactions with others. This, however, was used as a tool to model infant mortality data from Nigeria Demographic and Health Survey (NDHS) with some multilevel factors (Tetanus, Polio, and Breastfeeding) having correlation with main factors (Sex, Size, and Mode of Delivery). Asymptotic properties of the estimators are also studied via simulation. The tested model via data showed good fit and performed differently depending on the levels of the interaction of the strata variable Z*. An evidence that the baseline hazard functions and regression coefficients are not the same from stratum to stratum provides a gain in information as against the usage of Cox model. Simulation result showed that the present method produced better estimates in terms of bias, lower standard errors, and or mean square errors.

Keywords: stratified Cox, semiparametric model, infant mortality, multilevel factors, cofounding variables

Procedia PDF Downloads 557
25867 Non-Universality in Barkhausen Noise Signatures of Thin Iron Films

Authors: Arnab Roy, P. S. Anil Kumar

Abstract:

We discuss angle dependent changes to the Barkhausen noise signatures of thin epitaxial Fe films upon altering the angle of the applied field. We observe a sub-critical to critical phase transition in the hysteresis loop of the sample upon increasing the out-of-plane component of the applied field. The observations are discussed in the light of simulations of a 2D Gaussian Random Field Ising Model with references to a reducible form of the Random Anisotropy Ising Model.

Keywords: Barkhausen noise, Planar Hall effect, Random Field Ising Model, Random Anisotropy Ising Model

Procedia PDF Downloads 388
25866 AER Model: An Integrated Artificial Society Modeling Method for Cloud Manufacturing Service Economic System

Authors: Deyu Zhou, Xiao Xue, Lizhen Cui

Abstract:

With the increasing collaboration among various services and the growing complexity of user demands, there are more and more factors affecting the stable development of the cloud manufacturing service economic system (CMSE). This poses new challenges to the evolution analysis of the CMSE. Many researchers have modeled and analyzed the evolution process of CMSE from the perspectives of individual learning and internal factors influencing the system, but without considering other important characteristics of the system's individuals (such as heterogeneity, bounded rationality, etc.) and the impact of external environmental factors. Therefore, this paper proposes an integrated artificial social model for the cloud manufacturing service economic system, which considers both the characteristics of the system's individuals and the internal and external influencing factors of the system. The model consists of three parts: the Agent model, environment model, and rules model (Agent-Environment-Rules, AER): (1) the Agent model considers important features of the individuals, such as heterogeneity and bounded rationality, based on the adaptive behavior mechanisms of perception, action, and decision-making; (2) the environment model describes the activity space of the individuals (real or virtual environment); (3) the rules model, as the driving force of system evolution, describes the mechanism of the entire system's operation and evolution. Finally, this paper verifies the effectiveness of the AER model through computational and experimental results.

Keywords: cloud manufacturing service economic system (CMSE), AER model, artificial social modeling, integrated framework, computing experiment, agent-based modeling, social networks

Procedia PDF Downloads 79
25865 Improving Post Release Outcomes

Authors: Michael Airton

Abstract:

This case study examines the development of a new service delivery model for prisons that focuses on using NGO’s to provide more effective case management and post release support functions. The model includes the co-design of the service delivery model and innovative commercial agreements that encourage embedded service providers within the prison and continuity of services post release with outcomes based payment mechanisms. The collaboration of prison staff, probation and parole officers and NGO’s is critical to the success of the model and its ability to deliver value and positive outcomes in relation to desistance from offending.

Keywords: collaborative service delivery, desistance, non-government organisations, post release support services

Procedia PDF Downloads 389
25864 Kinematic Hardening Parameters Identification with Respect to Objective Function

Authors: Marina Franulovic, Robert Basan, Bozidar Krizan

Abstract:

Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling.

Keywords: genetic algorithm, kinematic hardening, material model, objective function

Procedia PDF Downloads 332
25863 Virtual Conciliation in Colombia: Evaluation of Maturity Level within the Framework of E-Government

Authors: Jenny Paola Forero Pachón, Sonia Cristina Gamboa Sarmiento, Luis Carlos Gómez Flórez

Abstract:

The Colombian government has defined an e-government strategy to take advantage of Information Technologies (IT) in order to contribute to the building of a more efficient, transparent and participative State that provides better services to citizens and businesses. In this regard, the Justice sector is one of the government sectors where IT has generated more expectation considering that the country has a judicial processes backlog. This situation has led to the search for alternative forms of access to justice that speed up the process while providing a low cost for citizens. To this end, the Colombian government has authorized the use of Alternative Dispute Resolution methods (ADR), a remedy where disputes can be resolved more quickly compared to judicial processes while facilitating greater communication between the parties, without recourse to judicial authority. One of these methods is conciliation, which includes a special modality that takes advantage of IT for the development of itself known as virtual conciliation. With this option the conciliation is supported by information systems, applications or platforms and communications are provided through it. This paper evaluates the level of maturity in how the service of virtual conciliation is under the framework of this strategy. This evaluation is carried out considering Shahkooh's 5-phase model for e-government. As a result, it is evident that in the context of conciliation, maturity does not reach the necessary level in the model so that it can be considered as virtual conciliation; therefore, it is necessary to define strategies to maximize the potential of IT in this context.

Keywords: alternative dispute resolution, e-government, evaluation of maturity, Shahkooh model, virtual conciliation

Procedia PDF Downloads 253
25862 Information Management Approach in the Prediction of Acute Appendicitis

Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki

Abstract:

This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.

Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree

Procedia PDF Downloads 350
25861 Exploiting Domino Games "Cassava H154M" in Order to Improve Students' Understanding about the Value of Trigonometry in Various Quadrants

Authors: Hisyam Hidayatullah

Abstract:

Utilization game on a lesson needs to be done in order to provide proper motoric learning model to improve students' skills. Approach to the game, as one of the models of a motoric learning, is intended to improve student learning outcomes math trigonometry materials generally that prioritize a Memory or rote. The purpose of this study is producting innovation to improve a cognitive abilities of students in the field, to improve student performance, and ultimately to improve student understanding in determining a value of trigonometry in various quadrants, and it apply a approach to the game Domino "Cassava H154M" who is adopted from cassava game and it has made total revised in cassava content. The game is divided into 3 sessions: sine cassava, cosine cassava and cassava tangent. Researchers using action of research method, which consists of several stages such as: planning, implementation, observation, reporting and evaluation. Researchers found that a game approaches can improve student learning outcomes, enhance students' creativity in terms of their motoric learning, and creating a supportive learning environment.

Keywords: cassava "H154M", motoric, value of trigonometry, quadrant

Procedia PDF Downloads 325
25860 Mathematical Model for Interaction Energy of Toroidal Molecules and Other Nanostructures

Authors: Pakhapoom Sarapat, James M. Hill, Duangkamon Baowan

Abstract:

Carbon nanotori provide several properties such as high tensile strength and heat resistance. They are promised to be ideal structures for encapsulation, and their encapsulation ability can be determined by the interaction energy between the carbon nanotori and the encapsulated nanostructures. Such interaction energy is evaluated using Lennard-Jones potential and continuum approximation. Here, four problems relating to toroidal molecules are determined in order to find the most stable configuration. Firstly, the interaction energy between a carbon nanotorus and an atom is examined. The second problem relates to the energy of a fullerene encapsulated inside a carbon nanotorus. Next, the interaction energy between two symmetrically situated and parallel nanotori is considered. Finally, the classical mechanics is applied to model the interaction energy between the toroidal structure of cyclodextrin and the spherical DNA molecules. These mathematical models might be exploited to study a number of promising devices for future developments in bio and nanotechnology.

Keywords: carbon nanotori, continuum approximation, interaction energy, Lennard-Jones potential, nanotechnology

Procedia PDF Downloads 147
25859 A Model of Empowerment Evaluation of Knowledge Management in Private Banks Using Fuzzy Inference System

Authors: Nazanin Pilevari, Kamyar Mahmoodi

Abstract:

The purpose of this research is to provide a model based on fuzzy inference system for evaluating empowerment of Knowledge management. The first prototype of the research was developed based on the study of literature. In the next step, experts were provided with these models and after implementing consensus-based reform, the views of Fuzzy Delphi experts and techniques, components and Index research model were finalized. Culture, structure, IT and leadership were considered as dimensions of empowerment. Then, In order to collect and extract data for fuzzy inference system based on knowledge and Experience, the experts were interviewed. The values obtained from designed fuzzy inference system, made review and assessment of the organization's empowerment of Knowledge management possible. After the design and validation of systems to measure indexes ,empowerment of Knowledge management and inputs into fuzzy inference) in the AYANDEH Bank, a questionnaire was used. In the case of this bank, the system output indicates that the status of empowerment of Knowledge management, culture, organizational structure and leadership are at the moderate level and information technology empowerment are relatively high. Based on these results, the status of knowledge management empowerment in AYANDE Bank, was moderate. Eventually, some suggestions for improving the current situation of banks were provided. According to studies of research history, the use of powerful tools in Fuzzy Inference System for assessment of Knowledge management and knowledge management empowerment such an assessment in the field of banking, are the innovation of this Research.

Keywords: knowledge management, knowledge management empowerment, fuzzy inference system, fuzzy Delphi

Procedia PDF Downloads 359
25858 Optimal Location of the I/O Point in the Parking System

Authors: Jing Zhang, Jie Chen

Abstract:

In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.

Keywords: parking system, optimal location, response time, S/R machine

Procedia PDF Downloads 409
25857 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.

Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer

Procedia PDF Downloads 150
25856 Development of a Fuzzy Logic Based Model for Monitoring Child Pornography

Authors: Mariam Ismail, Kazeem Rufai, Jeremiah Balogun

Abstract:

A study was conducted to apply fuzzy logic to the development of a monitoring model for child pornography based on associated risk factors, which can be used by forensic experts or integrated into forensic systems for the early detection of child pornographic activities. A number of methods were adopted in the study, which includes an extensive review of related works was done in order to identify the factors that are associated with child pornography following which they were validated by an expert sex psychologist and guidance counselor, and relevant data was collected. Fuzzy membership functions were used to fuzzify the associated variables identified alongside the risk of the occurrence of child pornography based on the inference rules that were provided by the experts consulted, and the fuzzy logic expert system was simulated using the Fuzzy Logic Toolbox available in the MATLAB Software Release 2016. The results of the study showed that there were 4 categories of risk factors required for assessing the risk of a suspect committing child pornography offenses. The results of the study showed that 2 and 3 triangular membership functions were used to formulate the risk factors based on the 2 and 3 number of labels assigned, respectively. The results of the study showed that 5 fuzzy logic models were formulated such that the first 4 was used to assess the impact of each category on child pornography while the last one takes the 4 outputs from the 4 fuzzy logic models as inputs required for assessing the risk of child pornography. The following conclusion was made; there were factors that were related to personal traits, social traits, history of child pornography crimes, and self-regulatory deficiency traits by the suspects required for the assessment of the risk of child pornography crimes committed by a suspect. Using the values of the identified risk factors selected for this study, the risk of child pornography can be easily assessed from their values in order to determine the likelihood of a suspect perpetuating the crime.

Keywords: fuzzy, membership functions, pornography, risk factors

Procedia PDF Downloads 129
25855 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 339
25854 Two Quasiparticle Rotor Model for Deformed Nuclei

Authors: Alpana Goel, Kawalpreet Kalra

Abstract:

The study of level structures of deformed nuclei is the most complex topic in nuclear physics. For the description of level structure, a simple model is good enough to bring out the basic features which may then be further refined. The low lying level structures of these nuclei can, therefore, be understood in terms of Two Quasiparticle plus axially symmetric Rotor Model (TQPRM). The formulation of TQPRM for deformed nuclei has been presented. The analysis of available experimental data on two quasiparticle rotational bands of deformed nuclei present unusual features like signature dependence, odd-even staggering, signature inversion and signature reversal in two quasiparticle rotational bands of deformed nuclei. These signature effects are well discussed within the framework of TQPRM. The model is well efficient in reproducing the large odd-even staggering and anomalous features observed in even-even and odd-odd deformed nuclei. The effect of particle-particle and the Coriolis coupling is well established from the model. Detailed description of the model with implications to deformed nuclei is presented in the paper.

Keywords: deformed nuclei, signature effects, signature inversion, signature reversal

Procedia PDF Downloads 158
25853 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication

Authors: M. Guemmadi, A. Ouibrahim

Abstract:

This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.

Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity

Procedia PDF Downloads 542
25852 Design of an Electric Vehicle Model with a Dynamo Drive Setup Using Model-Based Development (MBD) (EV Using MBD)

Authors: Gondu Vykunta Rao, Madhuri Bayya, Aruna Bharathi M., Paramesw Chidamparam, B. Murali

Abstract:

The increase in software content in today’s electric vehicles is increasing attention to having vast, unique topographies from low emission to high efficiency, whereas the chemical batteries have huge short comes, such as limited cycle life, power density, and cost. As for understanding and visualization, the companies are turning toward the virtual vehicle to test their design in software which is known as a simulation in the loop (SIL). In this project, in addition to the electric vehicle (EV) technology, we are adding a dynamo with the vehicle for regenerative braking. Traditionally the principle of dynamos is used in lighting the purpose of the bicycle. Here by using the same mechanism, we are running the vehicle as well as charging the vehicle from system-level simulation to the model in the loop and then to the Hardware in Loop (HIL) by using model-based development.

Keywords: electric vehicle, simulation in the loop (SIL), model in loop (MIL), hardware in loop (HIL), dynamos, model-based development (MBD), permanent magnet synchronous motor (PMSM), current control (CC), field-oriented control (FOC), regenerative braking

Procedia PDF Downloads 122
25851 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model

Authors: Didier Auroux, Vladimir Groza

Abstract:

This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.

Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization

Procedia PDF Downloads 316
25850 A Block World Problem Based Sudoku Solver

Authors: Luciana Abednego, Cecilia Nugraheni

Abstract:

There are many approaches proposed for solving Sudoku puzzles. One of them is by modelling the puzzles as block world problems. There have been three model for Sudoku solvers based on this approach. Each model expresses Sudoku solver as a parameterized multi agent systems. In this work, we propose a new model which is an improvement over the existing models. This paper presents the development of a Sudoku solver that implements all the proposed models. Some experiments have been conducted to determine the performance of each model.

Keywords: Sudoku puzzle, Sudoku solver, block world problem, parameterized multi agent systems

Procedia PDF Downloads 341
25849 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems

Authors: Bruno Trstenjak, Dzenana Donko

Abstract:

Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.

Keywords: case based reasoning, classification, expert's knowledge, hybrid model

Procedia PDF Downloads 367
25848 Development of a Human Vibration Model Considering Muscles and Stiffness of Intervertebral Discs

Authors: Young Nam Jo, Moon Jeong Kang, Hong Hee Yoo

Abstract:

Most human vibration models have been modeled as a multibody system consisting of some rigid bodies and spring-dampers. These models are developed for certain posture and conditions. So, the models cannot be used in vibration analysis in various posture and conditions. The purpose of this study is to develop a human vibration model that represent human vibration characteristics under various conditions by employing a musculoskeletal model. To do this, the human vibration model is developed based on biomechanical models. In addition, muscle models are employed instead of spring-dampers. Activations of muscles are controlled by PD controller to maintain body posture under vertical vibration is applied. Each gain value of the controller is obtained to minimize the difference of apparent mass and acceleration transmissibility between experim ent and analysis by using an optimization method.

Keywords: human vibration analysis, hill type muscle model, PD control, whole-body vibration

Procedia PDF Downloads 448
25847 Building a Model for Information Literacy Education in School Settings

Authors: Tibor Koltay

Abstract:

Among varied new literacies, information literacy is not only the best-known one but displays numerous models and frameworks. Nonetheless, there is still a lack of its complex theoretical model that could be applied to information literacy education in public (K12) education, which often makes use of constructivist approaches. This paper aims to present the main features of such a model. To develop a complex model, the literature and practice of phenomenographic and sociocultural theories, as well as discourse analytical approaches to information literacy, have been reviewed. Besides these constructivist and expressive based educational approaches, the new model is intended to include the innovation of coupling them with a cognitive model that takes developing informational and operational knowledge into account. The convergences between different literacies (information literacy, media literacy, media and information literacy, and data literacy) were taken into account, as well. The model will also make use of a three-country survey that examined secondary school teachers’ attitudes to information literacy. The results of this survey show that only a part of the respondents feel properly prepared to teach information literacy courses, and think that they can teach information literacy skills by themselves, while they see a librarian as an expert in educating information literacy. The use of the resulting model is not restricted to enhancing theory. It is meant to raise the level of awareness about information literacy and related literacies, and the next phase of the model’s development will be a pilot study that verifies the usefulness of the methodology for practical information literacy education in selected Hungarian secondary schools.

Keywords: communication, data literacy, discourse analysis, information literacy education, media and information literacy media literacy, phenomenography, public education, sociocultural theory

Procedia PDF Downloads 147
25846 Does Stock Markets Asymmetric Information Affect Foreign Capital Flows?

Authors: Farid Habibi Tanha, Mojtaba Jahanbazi, Morteza Foroutan, Rasidah Mohd Rashid

Abstract:

This paper depicts the effects of asymmetric information in determining capital inflows to be captured through stock market microstructure. The model can explain several stylized facts regarding the capital immobility. The first phase of the research involves in collecting and refining 150,000,000 daily data of 11 stock markets over a period of one decade in an effort to minimize the impact of survivorship bias. Three micro techniques were used to measure information asymmetries. The final phase analyzes the model through panel data approach. As a unique contribution, this research will provide valuable information regarding negative effects of information asymmetries in stock markets on attracting foreign investments. The results of this study can be directly considered by policy makers to monitor and control changes of capital flow in order to keep market conditions in a healthy manner, by preventing and managing possible shocks to avoid sudden reversals and market failures.

Keywords: asymmetric information, capital inflow, market microstructure, investment

Procedia PDF Downloads 321
25845 Consensus Problem of High-Order Multi-Agent Systems under Predictor-Based Algorithm

Authors: Cheng-Lin Liu, Fei Liu

Abstract:

For the multi-agent systems with agent's dynamics described by high-order integrator, and usual consensus algorithm composed of the state coordination control parts is proposed. Under communication delay, consensus algorithm in asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. To recover the original consensus state of the high-order agents without communication delay, besides, a predictor-based consensus algorithm is constructed via multiplying the delayed neighboring agents' states by a delay-related compensation part, and sufficient consensus condition is also obtained. Simulation illustrates the correctness of the results.

Keywords: high-order dynamic agents, communication delay, consensus, predictor-based algorithm

Procedia PDF Downloads 570
25844 Applying of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Estimation of Flood Hydrographs

Authors: Amir Ahmad Dehghani, Morteza Nabizadeh

Abstract:

This paper presents the application of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to flood hydrograph modeling of Shahid Rajaee reservoir dam located in Iran. This was carried out using 11 flood hydrographs recorded in Tajan river gauging station. From this dataset, 9 flood hydrographs were chosen to train the model and 2 flood hydrographs to test the model. The different architectures of neuro-fuzzy model according to the membership function and learning algorithm were designed and trained with different epochs. The results were evaluated in comparison with the observed hydrographs and the best structure of model was chosen according the least RMSE in each performance. To evaluate the efficiency of neuro-fuzzy model, various statistical indices such as Nash-Sutcliff and flood peak discharge error criteria were calculated. In this simulation, the coordinates of a flood hydrograph including peak discharge were estimated using the discharge values occurred in the earlier time steps as input values to the neuro-fuzzy model. These results indicate the satisfactory efficiency of neuro-fuzzy model for flood simulating. This performance of the model demonstrates the suitability of the implemented approach to flood management projects.

Keywords: adaptive neuro-fuzzy inference system, flood hydrograph, hybrid learning algorithm, Shahid Rajaee reservoir dam

Procedia PDF Downloads 478