Search results for: granular particles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1905

Search results for: granular particles

525 The Measurements of Nitrogen Dioxide Pollution in Street Canyons

Authors: Aukse Miskinyte, Audrius Dedele

Abstract:

The impact of urban air pollution on human health effects has been revealed in epidemiological studies, which have assessed the associations between various types of gases and particles and negative health outcomes. The percentage of population living in urban areas is increasing, and the assessment of air pollution in certain zones in the city (like street canyons) that have higher level of air pollution and specific dispersion conditions is essential as these places tend to contain a lot of people. Street canyon is defined as a street surrounded by tall buildings on both sides that trapes traffic emissions and prevents pollution dispersion. The aim of this study was to determine the pollution of nitrogen dioxide in street canyons in Kaunas city during cold and warm seasons. The measurements were conducted using passive sampling technique during two-week period in two street canyon sites, whose axes are approximately north-south and north-northeast‒south-southwest. Both of these streets are two-lane roads of 7 meters width, one is in the central part of the city, and other is in the Old Town. The results of two-week measurements showed that the concentration of nitrogen dioxide was higher in summer season than in winter in both street canyon sites. The difference between the level of NO2 in winter and summer seasons was 5.1 and 19.4 µg/m3 in the first and in the second street canyon sites, respectively. The higher concentration of NO2 was determined in the second street canyon site than in the first, although there was calculated lower traffic intensity. These results could be related to the certain street canyon characteristics.

Keywords: air pollution, nitrogen dioxide, passive sampler, street canyon

Procedia PDF Downloads 272
524 Full-Field Estimation of Cyclic Threshold Shear Strain

Authors: E. E. S. Uy, T. Noda, K. Nakai, J. R. Dungca

Abstract:

Cyclic threshold shear strain is the cyclic shear strain amplitude that serves as the indicator of the development of pore water pressure. The parameter can be obtained by performing either cyclic triaxial test, shaking table test, cyclic simple shear or resonant column. In a cyclic triaxial test, other researchers install measuring devices in close proximity of the soil to measure the parameter. In this study, an attempt was made to estimate the cyclic threshold shear strain parameter using full-field measurement technique. The technique uses a camera to monitor and measure the movement of the soil. For this study, the technique was incorporated in a strain-controlled consolidated undrained cyclic triaxial test. Calibration of the camera was first performed to ensure that the camera can properly measure the deformation under cyclic loading. Its capacity to measure deformation was also investigated using a cylindrical rubber dummy. Two-dimensional image processing was implemented. Lucas and Kanade optical flow algorithm was applied to track the movement of the soil particles. Results from the full-field measurement technique were compared with the results from the linear variable displacement transducer. A range of values was determined from the estimation. This was due to the nonhomogeneous deformation of the soil observed during the cyclic loading. The minimum values were in the order of 10-2% in some areas of the specimen.

Keywords: cyclic loading, cyclic threshold shear strain, full-field measurement, optical flow

Procedia PDF Downloads 234
523 Development of Mineral Carbonation Process from Ultramafic Tailings, Enhancing the Reactivity of Feedstocks

Authors: Sara Gardideh, Mansoor Barati

Abstract:

The mineral carbonation approach for reducing global warming has garnered interest on a worldwide scale. Due to the benefits of permanent storage and abundant mineral resources, mineral carbonation (MC) is one of the most effective strategies for sequestering CO₂. The combination of mineral processing for primary metal recovery and mineral carbonation for carbon sequestration is an emerging field of study with the potential to minimize capital costs. A detailed study of low-pressures–solid carbonation of ultramafic tailings in a dry environment has been accomplished. In order to track the changing structure of serpentine minerals and their reactivity as a function of temperature (300-900 ᵒC), CO₂ partial pressure (25-90 mol %), and thermal preconditioning, thermogravimetry has been utilized. The incongruent CO₂ van der Waals molecular diameters with the octahedral-tetrahedral lattice constants of serpentine were used to explain the mild carbonation reactivity. Serpentine requires additional thermal-treatment to remove hydroxyl groups, resulting in the chemical transformation to pseudo-forsterite, which is a mineral composed of isolated SiO₄ tetrahedra linked by octahedrally coordinated magnesium ions. The heating treatment above 850 ᵒC is adequate to remove chemically bound water from the lattice. Particles with a diameter < 34 (μm) are desirable, and thermally treated serpentine at 850 ᵒC for 2.30 hours reached 65% CO₂ storage capacity. The decrease in particle size, increase in temperature, and magnetic separation can dramatically enhance carbonation.

Keywords: particle size, thermogravimetry, thermal-treatment, serpentine

Procedia PDF Downloads 90
522 Characterization of Aluminosilicates and Verification of Their Impact on Quality of Ceramic Proppants Intended for Shale Gas Output

Authors: Joanna Szymanska, Paulina Wawulska-Marek, Jaroslaw Mizera

Abstract:

Nowadays, the rapid growth of global energy consumption and uncontrolled depletion of natural resources become a serious problem. Shale rocks are the largest and potential global basins containing hydrocarbons, trapped in closed pores of the shale matrix. Regardless of the shales origin, mining conditions are extremely unfavourable due to high reservoir pressure, great depths, increased clay minerals content and limited permeability (nanoDarcy) of the rocks. Taking into consideration such geomechanical barriers, effective extraction of natural gas from shales with plastic zones demands effective operations. Actually, hydraulic fracturing is the most developed technique based on the injection of pressurized fluid into a wellbore, to initiate fractures propagation. However, a rapid drop of pressure after fluid suction to the ground induces a fracture closure and conductivity reduction. In order to minimize this risk, proppants should be applied. They are solid granules transported with hydraulic fluids to locate inside the rock. Proppants act as a prop for the closing fracture, thus gas migration to a borehole is effective. Quartz sands are commonly applied proppants only at shallow deposits (USA). Whereas, ceramic proppants are designed to meet rigorous downhole conditions to intensify output. Ceramic granules predominate with higher mechanical strength, stability in strong acidic environment, spherical shape and homogeneity as well. Quality of ceramic proppants is conditioned by raw materials selection. Aim of this study was to obtain the proppants from aluminosilicates (the kaolinite subgroup) and mix of minerals with a high alumina content. These loamy minerals contain a tubular and platy morphology that improves mechanical properties and reduces their specific weight. Moreover, they are distinguished by well-developed surface area, high porosity, fine particle size, superb dispersion and nontoxic properties - very crucial for particles consolidation into spherical and crush-resistant granules in mechanical granulation process. The aluminosilicates were mixed with water and natural organic binder to improve liquid-bridges and pores formation between particles. Afterward, the green proppants were subjected to sintering at high temperatures. Evaluation of the minerals utility was based on their particle size distribution (laser diffraction study) and thermal stability (thermogravimetry). Scanning Electron Microscopy was useful for morphology and shape identification combined with specific surface area measurement (BET). Chemical composition was verified by Energy Dispersive Spectroscopy and X-ray Fluorescence. Moreover, bulk density and specific weight were measured. Such comprehensive characterization of loamy materials confirmed their favourable impact on the proppants granulation. The sintered granules were analyzed by SEM to verify the surface topography and phase transitions after sintering. Pores distribution was identified by X-Ray Tomography. This method enabled also the simulation of proppants settlement in a fracture, while measurement of bulk density was essential to predict their amount to fill a well. Roundness coefficient was also evaluated, whereas impact on mining environment was identified by turbidity and solubility in acid - to indicate risk of the material decay in a well. The obtained outcomes confirmed a positive influence of the loamy minerals on ceramic proppants properties with respect to the strict norms. This research is perspective for higher quality proppants production with costs reduction.

Keywords: aluminosilicates, ceramic proppants, mechanical granulation, shale gas

Procedia PDF Downloads 163
521 Heat Transfer Enhancement of Structural Concretes Made of Macro-Encapsulated Phase Change Materials

Authors: Ehsan Mohseni, Waiching Tang, Shanyong Wang

Abstract:

Low thermal conductivity of phase change materials (PCMs) affects the thermal performance and energy storage efficiency of latent heat thermal energy storage systems. In the current research, a structural lightweight concrete with function of indoor temperature control was developed using thermal energy storage aggregates (TESA) and nano-titanium (NT). The macro-encapsulated technique was served to incorporate the PCM into the lightweight aggregate through vacuum impregnation. The compressive strength was measured, and the thermal performance of concrete panel was evaluated by using a self-designed environmental chamber. The impact of NT on microstructure was also assessed via scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) tests. The test results indicated that NT was able to increase the compressive strength by filling the micro pores and making the microstructure denser and more homogeneous. In addition, the environmental chamber experiment showed that introduction of NT into TESA improved the heat transfer of composites noticeably. The changes were illustrated by the reduction in peak temperatures in the centre, outside and inside surfaces of concrete panels by the inclusion of NT. It can be concluded that NT particles had the capability to decrease the energy consumption and obtain higher energy storage efficiency by the reduction of indoor temperature.

Keywords: heat transfer, macro-encapsulation, microstructure properties, nanoparticles, phase change material

Procedia PDF Downloads 105
520 Association of Airborne Emissions with Pulmonary Dysfunction, XRCC1 Gene Polymorphism, and Some Inflammatory Markers in Aluminum Workers

Authors: Gehan Moubarz, Atef M. F. Mohammed, Inas A. Saleh, Heba Mahdy-Abdallah, Amal Saad-Hussein

Abstract:

This study estimates the association between respiratory outcomes among employees of a secondary aluminum plant and airborne pollutants. Additionally, it looks into the relationship between pulmonary dysfunction in workers and XRCC1 gene polymorphisms. 110 exposed workers and 58 non-exposed workers participated in the study. Measurements have been conducted on SO₂, NO₂, and particulate particles. Pulmonary function was tested. Eosinophil cationic protein (ECP), C-reactive protein (CRP), matrix metalloproteinase-1 (MMP-1), interleukin 6 (IL6), GM-CSF, X-Ray Repair Cross Complementing 1 (XRCC1) protein, and genotyping of XRCC1 gene polymorphisms were examined. Results: The annual average concentrations of (PM₂.₅, PM₁₀, TSP, SO₂, and NO₂) were lower than the permissible limit. The areas around ovens, evaporators, and cold rolling mills exhibited the highest amounts. The majority of employees in these departments had impaired lung function. With longer exposure times, the exposed group's FEV1% and FVC% considerably reduced. The exposed workers had considerably higher XRCC1 levels. The evaluated inflammatory biomarkers showed no statistically significant difference. Conclusion: Aluminum workers are at risk of developing respiratory disorders. The level of serum XRCC1 may act as a biomarker that might be very useful for detecting susceptible workers.

Keywords: aluminum industry, particulate matter, SO₂, NO₂, lung function, XRCC1 gene polymorphism, XRCC1 protein, inflammatory biomarkers

Procedia PDF Downloads 11
519 Changes in Air Quality inside Vehicles and in Working Conditions of Professional Drivers during COVID-19 Pandemic in Paris Area

Authors: Melissa Hachem, Lynda Bensefa-Colas, Isabelle Momas

Abstract:

We evaluated the impact of the first lockdown restriction measures (March-May 2020) in the Paris area on (1) the variation of in-vehicle ultrafine particle (UFP) and black carbon (BC) concentrations between pre-and post-lockdown period and (2) the professional drivers working conditions and practices. The study was conducted on 33 Parisian taxi drivers. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively, on two typical working days before and after the first lockdown. The job-related characteristics were self-reported. Our results showed that after the first lockdown, the number of clients significantly decreased as well as the taxi driver's journey duration. Taxi drivers significantly opened their windows more and reduced the use of air recirculation. UFP decreased significantly by 32% and BC by 31% after the first lockdown, with a weaker positive correlation compared to before the lockdown. The reduction of in-vehicle UFP was explained mainly by the reduction of traffic flow and ventilation settings, though the latter probably varied according to the traffic condition. No predictor explained the variation of in-vehicle BC concentration between pre-and post-lockdown periods, suggesting different sources of UFP and BC. The road traffic was not anymore the dominant source of BC post-lockdown. We emphasize the role of traffic emissions on in-vehicle air pollution and that preventive measures such as ventilation settings will help to better manage air quality inside a vehicle in order to minimize exposure of professional drivers, as well as passengers, to air pollutants.

Keywords: black carbon, COVID-19, France, lockdown, taxis, ultrafine particles

Procedia PDF Downloads 192
518 Awareness regarding Radiation Protection among the Technicians Practicing in Bharatpur, Chitwan, Nepal

Authors: Jayanti Gyawali, Deepak Adhikari, Mukesh Mallik, Sanjay Sah

Abstract:

Radiation is defined as an emission or transmission of energy in form of waves or particles through space or material medium. The major imaging tools used in diagnostic radiology is based on the use of ionizing radiation. A cross-sectional study was carried out during July- August, 2015 among technicians in 15 different hospitals of Bharatpur, Chitwan, Nepal to assess awareness regarding radiation protection and their current practice. The researcher was directly engaged for data collection using self-administered semi-structured questionnaire. The findings of the study are presented in socio-demographic characteristics of respondents, current practice of respondents and knowledge regarding radiation protection. The result of this study demonstrated that despite the importance of radiation and its consequent hazards, the level of knowledge among technicians is only 60.23% and their current practice is 76.84%. The difference in the mean score of knowledge and practice might have resulted due to technicians’s regular work and lack of updates. The study also revealed that there is no significant (p>0.05) difference in knowledge level of technicians practicing in different hospitals. But the mean difference in practice scores of different hospital is significant (p<0.05) i.e. i.e. the cancer hospital with large volumes of regular radiological cases and radiation therapies for cancer treatment has better practice in comparison to other hospitals. The deficiency in knowledge of technicians might alter the expected benefits, compared to the risk involved, and can cause erroneous medical diagnosis and radiation hazard. Therefore, this study emphasizes the need for all technicians to update themselves with the appropriate knowledge and current practice about ionizing and non-ionizing radiation.

Keywords: technicians, knowledge, Nepal, radiation

Procedia PDF Downloads 330
517 Preparation of Chromium Nanoparticles on Carbon Substrate from Tannery Waste Solution by Chemical Method Compared to Electrokinetic Process

Authors: Mahmoud A. Rabah, Said El Sheikh

Abstract:

This work shows the preparation of chromium nanoparticles from tannery waste solution on glassy carbon by chemical method compared to electrokinetic process. The waste solution contains free and soluble fats, calcium, iron, magnesium and high sodium in addition to the chromium ions. Filtration helps removal of insoluble matters. Diethyl ether successfully extracted soluble fats. The method started by removing calcium as insoluble oxalate salts at hot conditions in a faint acidic medium. The filtrate contains iron, magnesium, chromium ions and sodium chloride in excess. Chromium was separated selectively as insoluble hydroxide sol-gel at pH 6.5, filtered and washed with distilled water. Part of the gel reacted with sulfuric acid to produce chromium sulfate solution having 15-25 g/L concentration. Electrokinetic deposition of chromium nanoparticles on a carbon cathode was carried out using platinum anode under different galvanostatic conditions. The chemical method involved impregnating the carbon specimens with chromium hydroxide gel followed by reduction using hydrazine hydrate or by thermal reduction using hydrogen gas at 1250°C. Chromium grain size was characterized by TEM, FT-IR and SEM. Properties of the Cr grains were correlated to the conditions of the preparation process. Electrodeposition was found to control chromium particles to be more identical in size and shape as compared to the chemical method.

Keywords: chromium, electrodeposition, nanoparticles, tannery waste solution

Procedia PDF Downloads 409
516 Hydrodeoxygenation of Furfural over RU Sub-Nano Particles Supported on Al₂O₃-SIO₂ Mixed Oxides

Authors: Chaima Zoulikha Tabet Zatla, Nihel Dib, Sumeya Bedrane, Juan Carlos Hernandez Garrido, Redouane Bachir, Miguel Angel Cauqui, Jose Juan Calvino Gamez

Abstract:

These last year's our planet has witnessed global warming, which is a serious threat to our lives; it has many causes, such as the CO₂ excess in the atmosphere that results from our activity, for the purpose of living in a neater and better environment, working and improving an eco-responsible energy system is a must. Valorization of biomass to produce biofuels is among the most compelling routes to decrease air pollution without considerable modification in current vehicle technology. Effective transformation of lignocellulosic biomass-derived compounds into liquid fuels and value-added chemicals is an economically viable solution. Presently, very competitive technics for the conversion of lignocellulosic biomass into platform chemicals, such as furfural and Hydroxymethylfurfural (HMF), are used. Furfural (C₅H₄O₂) is a major hemi cellulosic biomass-derived platform molecule. In our work, we focus on the valorization of lignocellulosic biomass derivative furfural that is transformed into biofuel through a hydrodeoxygenation reaction in general and involving a catalytic process. In order to get to this point, we are synthesizing and characterizing a series of catalysts with different amounts of Ru (0.5%, 1% and 2%) supported on alumina-silica mixed oxides with various molar ratios (Si/Al = 2.5; 5; 7; 10; 15). These catalysts will be characterized by numerous technics such as N₂ adsorption/desorption, Pyridine adsorption (acidity measure), FTIR, X-rays diffraction, AAS, TEM and SEM.

Keywords: furfural, ruthenium, silica-alumina, biomass, biofuel

Procedia PDF Downloads 84
515 Agriculture Water Quality Evaluation in Minig Basin

Authors: Ben Salah Nahla

Abstract:

The problem of water in Tunisia affects the quality and quantity. Tunisia is in a situation of water shortage. It was estimated that 4.6 Mm3/an. Moreover, the quality of water in Tunisia is also mediocre. In fact, 50% of the water has a high salinity (> 1.5g/l). There are several parameters which affect water quality such as sodium, fluoride. An excess of this parameter may induce some human health. Furthermore, the mining basin area has a problem of industrial waste. This problem may affect the water quality of the groundwater. Therefore, the purpose of this work is to assess the water quality in Basin Mining and the impact of fluorine. For this research, some water samples were done in the field and specific water analysis was implemented in the laboratory. Sampling is carried out on eight drilling in the area of the mining region. In the following, we will look at water view composition, physical and chemical quality. A physical-chemical analysis of water from a survey of the Mining area of Tunisia was performed and showed an excess for the following items: fluorine, sodium, sulfate. So many chemicals may be present in water. However, only a small number of them immediately concern in terms of health in all circumstances. Fluorine (F) is one particular chemical that is considered both necessary for the human body, but an excess of the rate of this chemical causes serious diseases. Sodium fluoride and sodium silicofluoride are more soluble and may spread in animals and plants where their toxicity largest organizations. The more complex particles such as cryolite and fluorite, almost insoluble, are more stable and less toxic. Thereafter, we will study the problem of excess fluorine in the water. The latter intended for human consumption must always comply with the limits for microbiological quality parameters and physical-chemical parameters defined by European standards (1.5 mg/l) and Tunisian (2 mg/l).

Keywords: water, minier basin, fluorine, silicofluoride

Procedia PDF Downloads 582
514 Impact of Air Pollution and Climate on the Incidence of Emergency Interventions in Slavonski Brod

Authors: Renata Josipovic, Ante Cvitkovic

Abstract:

Particulate matter belongs to pollutants that can lead to respiratory problems or premature death due to exposure (long-term, short-term) to these substances, all depending on the severity of the effects. The importance of the study is to determine whether the existing climatic conditions in the period from January 1st to August 31st, 2018 increased the number of emergency interventions in Slavonski Brod with regard to pollutants hydrogen sulfide and particles less than 10 µm (PM10) and less than 2.5 µm (PM2.5). Analytical data of the concentration of pollutants are collected from the Croatian Meteorological and Hydrological Service, which monitors the operation of two meteorological stations in Slavonski Brod, as well as climatic conditions. Statistics data of emergency interventions were collected from the Emergency Medicine Department of Slavonski Brod. All data were compared (air pollution, emergency interventions) according to climatic conditions (air humidity and air temperature) and statistically processed. Statistical significance, although weak positive correlation PM2.5 (correlation coefficient 0.147; p = 0.036), determined PM10 (correlation coefficient 0.122; p = 0.048), hydrogen sulfide (correlation coefficient 0.141; p = 0.035) with max. temperature (correlation coefficient 0.202; p = 0.002) with number of interventions. The association between mean air humidity was significant but negative (correlation coefficient - 0.172; p = 0.007). The values of the influence of air pressure are not determined. As the problem of air pollution is very complex, coordinated action at many levels is needed to reduce air pollution in Slavonski Brod and consequences that can affect human health.

Keywords: emergency interventions, human health, hydrogen sulfide, particulate matter

Procedia PDF Downloads 165
513 Rheology and Structural Arrest of Dense Dairy Suspensions: A Soft Matter Approach

Authors: Marjan Javanmard

Abstract:

The rheological properties of dairy products critically depend on the underlying organisation of proteins at multiple length scales. When heated and acidified, milk proteins form particle gel that is viscoelastic, solvent rich, ‘soft’ material. In this work recent developments on the rheology of soft particles suspensions were used to interpret and potentially define the properties of dairy gel structures. It is discovered that at volume fractions below random close packing (RCP), the Maron-Pierce-Quemada (MPQ) model accurately predicts the viscosity of the dairy gel suspensions without fitting parameters; the MPQ model has been shown previously to provide reasonable predictions of the viscosity of hard sphere suspensions from the volume fraction, solvent viscosity and RCP. This surprising finding demonstrates that up to RCP, the dairy gel system behaves as a hard sphere suspension and that the structural aggregates behave as discrete particulates akin to what is observed for microgel suspensions. At effective phase volumes well above RCP, the system is a soft solid. In this region, it is discovered that the storage modulus of the sheared AMG scales with the storage modulus of the set gel. The storage modulus in this regime is reasonably well described as a function of effective phase volume by the Evans and Lips model. Findings of this work has potential to aid in rational design and control of dairy food structure-properties.

Keywords: dairy suspensions, rheology-structure, Maron-Pierce-Quemada Model, Evans and Lips Model

Procedia PDF Downloads 219
512 Synthesis and Properties of Photocured Surface Modified Polyaniline Hybrid Composites

Authors: Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman

Abstract:

Organic–inorganic hybrids have become an effective source of advanced materials because they combine the advantages of both the organic moiety such as flexibility, low dielectric constant, and processability, and inorganic moiety as rigidity, strength, durability, and thermal stability. By incorporating cross-linkable side chains, the hybrid materials can be made photosensitive and UV curable, which offers many advantages including low processing temperature, low equipment cost and compatibility. In this study, uv-curable organic-inorganic hybrid material, which was contained surface modified polyaniline particles (PANI), was prepared. PANI surface photografted with hydroxy ethyl methacrylate (HEMA) to produce hydroxyl groups. Hydroxyl functionalized PANI/HEMA was acrylated using isocyanato ethyl methacrylate (IEM) in order to improve the dispersion and interfacial interaction in composites. UV-curable formulation was prepared by mixing the surface modified PANI, polyethylene glycol diacrylate (PEGDA), trimethylolpropane triacrylate (TMPTA), hydrolized 3- methacryloxypropyltrimethoxysilane (hyd. MEMO) and photoinitiator. Chemical structure of nano-hybrid material was characterized by FTIR. FTIR spectra showed that the photografting of PANI was prepared successfully. Thermal properties of the nano-hybrid material were determined by thermogravimetric analysis (TGA). The morphology of the nano-hybrid material was performed by scanning electron microscopy (SEM).

Keywords: polyaniline, photograft, sol-gel, uv-curable polymer

Procedia PDF Downloads 302
511 Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher

Abstract:

This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.

Keywords: physicochemical characterization of MFI, ceramic hollow fibre, CO2, ion-exchange

Procedia PDF Downloads 351
510 Lead Removal by Using the Synthesized Zeolites from Sugarcane Bagasse Ash

Authors: Sirirat Jangkorn, Pornsawai Praipipat

Abstract:

Sugarcane bagasse ash of sugar factories is solid wastes that the richest source of silica. The alkali fusion method, quartz particles in material can be dissolved and they can be used as the silicon source for synthesizing silica-based materials such as zeolites. Zeolites have many advantages such as catalyst to improve the chemical reactions and they can also remove heavy metals in the water including lead. Therefore, this study attempts to synthesize zeolites from the sugarcane bagasse ash, investigate their structure characterizations and chemical components to confirm the happening of zeolites, and examine their lead removal efficiency through the batch test studies. In this study, the sugarcane bagasse ash was chosen as the silicon source to synthesize zeolites, X-ray diffraction (XRD) and X-ray fluorescence spectrometry (XRF) were used to verify the zeolite pattern structures and element compositions, respectively. The batch test studies in dose (0.05, 0.1, 0.15 g.), contact time (1, 2, 3), and pH (3, 5, 7) were used to investigate the lead removal efficiency by the synthesized zeolite. XRD analysis result showed the crystalline phase of zeolite pattern, and XRF result showed the main element compositions of the synthesized zeolite that were SiO₂ (50%) and Al₂O₃ (30%). The batch test results showed the best optimum conditions of the synthesized zeolite for lead removal were 0.1 g, 2 hrs., and 5 of dose, contact time, and pH, respectively. As a result, this study can conclude that the zeolites can synthesize from the sugarcane bagasse ash and they can remove lead in the water.

Keywords: sugarcane bagasse ash, solid wastes, zeolite, lead

Procedia PDF Downloads 140
509 Structural and Magnetic Properties of CoFe2O4:Nd3+/Dy3+/Pr3+/Gd3+ Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method and Annealing Effect

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jaromir Havlica, Zuzana Kozakova, Jiri Masilko, Lukas Kalina, Miroslava Hajdúchová, Vojtěch Enev, Jaromir Wasserbauer

Abstract:

In this work, we investigated the structural and magnetic properties of CoFe2O4:Nd3+/Dy3+/Pr3+/Gd3+ nanoparticles synthesized by starch-assisted sol-gel combustion method. X-ray diffraction pattern confirmed the formation of cubic spinel structure of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) doped CoFe2O4 spinel ferrite nanoparticles. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles. The field emission scanning electron microscopy study revealed the effect of annealing temperature on size of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles and particles were in the range of 10-100 nm. The magnetic properties of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with annealing temperature/ particle size of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles was observed. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: starch, sol-gel combustion method, rare-earth ions, spinel ferrite nanoparticles, magnetic properties

Procedia PDF Downloads 358
508 The Motion of Ultrasonically Propelled Nanomotors Operating in Biomimetic Environments

Authors: Suzanne Ahmed

Abstract:

Nanomotors, also commonly referred to as nanorobotics or nanomachines, have garnered considerable research attention due to their numerous potential applications in biomedicine, including drug delivery and microsurgery. Nanomotors typically consist of inorganic or polymeric particles that are powered to undergo motion. These artificial, man-made nanoscale motors operate in the low Reynolds number regime and typically have no moving parts. Several methods have been developed to actuate the motion of nanomotors including magnetic fields, electrical fields, electromagnetic waves, and chemical fuel. Since their introduction in 2012, ultrasonically powered nanomotors have been explored in biocompatible fluids and even within living cells. Due to the common use of ultrasound within the biomedical community for both imaging and therapeutics, the introduction of ultrasonically propelled nanomotors holds significant potential for biomedical applications. In this work, metallic nanomotors are electrochemically plated within porous anodic alumina templates to have a diameter of 300 nm and a length that is 2-4 µm. Nanomotors are placed within an acoustic chamber capable of producing bulk acoustic waves in the ultrasonic range. The motion of nanomotors within biomimetic confines is explored. The control over nanomotor motion is exerted by virtue of the properties of the acoustic signal within these biomimetic confines to control speed, modes of motion and directionality of motion. To expand the range of control over nanorod motion within biomimetic confines, external forces from biocompatible magnetic fields, are exerted onto the acoustically propelled nanomotors.

Keywords: nanomotors, nanomachines, nanorobots, ultrasound

Procedia PDF Downloads 75
507 Preparation, Characterization, and in-Vitro Drug Release Study of Methotrexate-Loaded Hydroxyapatite-Sodium Alginate Nanocomposites

Authors: Friday G. Okibe, Edit B. Agbaji, Victor O. Ajibola, Christain C. Onoyima

Abstract:

Controlled drug delivery systems reduce dose-dependent toxicity associated with potent drugs, including anticancer drugs. In this research, hydroxyapatite (HA) and hydroxyapatite-sodium alginate nanocomposites (HASA) were successfully prepared and characterized using Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The FTIR result showed absorption peaks characteristics of pure hydroxyapatite (HA), and also confirmed the chemical interaction between hydroxyapatite and sodium alginate in the formation of the composite. Image analysis from SEM revealed nano-sized hydroxyapatite and hydroxyapatite-sodium alginate nanocomposites with irregular morphologies. Particle size increased with the formation of the nanocomposites relative to pure hydroxyapatite, with no significant change in particles morphologies. Drug loading and in-vitro drug release study were carried out using synthetic body fluid as the release medium, at pH 7.4 and 37 °C and under perfect sink conditions. The result shows that drug loading is highest for pure hydroxyapatite and decreased with increasing quantity of sodium alginate. However, the release study revealed that HASA-5%wt and HASA-20%wt presented better release profile than pure hydroxyapatite, while HASA-33%wt and HASA-50%wt have poor release profiles. This shows that Methotrexate-loaded hydroxyapatite-sodium alginate if prepared under optimal conditions is a potential carrier for effective delivery of Methotrexate.

Keywords: drug-delivery, hydroxyapatite, methotrexate, nanocomposites, sodium alginate

Procedia PDF Downloads 278
506 Physicochemical Characterization of Coastal Aerosols over the Mediterranean Comparison with Weather Research and Forecasting-Chem Simulations

Authors: Stephane Laussac, Jacques Piazzola, Gilles Tedeschi

Abstract:

Estimation of the impact of atmospheric aerosols on the climate evolution is an important scientific challenge. One of a major source of particles is constituted by the oceans through the generation of sea-spray aerosols. In coastal areas, marine aerosols can affect air quality through their ability to interact chemically and physically with other aerosol species and gases. The integration of accurate sea-spray emission terms in modeling studies is then required. However, it was found that sea-spray concentrations are not represented with the necessary accuracy in some situations, more particularly at short fetch. In this study, the WRF-Chem model was implemented on a North-Western Mediterranean coastal region. WRF-Chem is the Weather Research and Forecasting (WRF) model online-coupled with chemistry for investigation of regional-scale air quality which simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. One of the objectives was to test the ability of the WRF-Chem model to represent the fine details of the coastal geography to provide accurate predictions of sea spray evolution for different fetches and the anthropogenic aerosols. To assess the performance of the model, a comparison between the model predictions using a local emission inventory and the physicochemical analysis of aerosol concentrations measured for different wind direction on the island of Porquerolles located 10 km south of the French Riviera is proposed.

Keywords: sea-spray aerosols, coastal areas, sea-spray concentrations, short fetch, WRF-Chem model

Procedia PDF Downloads 195
505 Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD

Authors: Vakamalla Teja Reddy, Narasimha Mangadoddy

Abstract:

Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted.

Keywords: air-core, electrical resistance tomography, hydrocyclone, multi-phase CFD

Procedia PDF Downloads 379
504 Energy Consumption Statistic of Gas-Solid Fluidized Beds through Computational Fluid Dynamics-Discrete Element Method Simulations

Authors: Lei Bi, Yunpeng Jiao, Chunjiang Liu, Jianhua Chen, Wei Ge

Abstract:

Two energy paths are proposed from thermodynamic viewpoints. Energy consumption means total power input to the specific system, and it can be decomposed into energy retention and energy dissipation. Energy retention is the variation of accumulated mechanical energy in the system, and energy dissipation is the energy converted to heat by irreversible processes. Based on the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) framework, different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall. Direct energy consumption statistics are carried out for both cold and hot flow in gas-solid fluidization systems. To clarify the statistic method, it is necessary to identify which system is studied: the particle-fluid system or the particle sub-system. For the cold flow, the total energy consumption of the particle sub-system can predict the onset of bubbling and turbulent fluidization, while the trends of local energy consumption can reflect the dynamic evolution of mesoscale structures. For the hot flow, different heat transfer mechanisms are analyzed, and the original solver is modified to reproduce the experimental results. The influence of the heat transfer mechanisms and heat source on energy consumption is also investigated. The proposed statistic method has proven to be energy-conservative and easy to conduct, and it is hopeful to be applied to other multiphase flow systems.

Keywords: energy consumption statistic, gas-solid fluidization, CFD-DEM, regime transition, heat transfer mechanism

Procedia PDF Downloads 68
503 Observation of the Flow Behavior for a Rising Droplet in a Mini-Slot

Authors: H. Soltani, J. Hadfield, M. Redmond, D. S. Nobes

Abstract:

The passage of oil droplets through a vertical mini-slot were investigated in this study. Oil-in-water emulsion can undergo coalescence of finer oil droplets forming droplets of a size that need to be considered individually. This occurs in a number of industrial processes and has important consequences at a scale where both body and surfaces forces are relevant. In the study, two droplet diameters of smaller than the slot width and a relatively larger diameter where the oil droplet can interact directly with the slot wall were generated. To monitor fluid motion, a particle shadow velocimetry (PSV) imaging technique was used to study fluid flow motion inside and around a single oil droplet rising in a net co-flow. The droplet was a transparent canola oil and the surrounding working fluid was glycerol, adjusted to allow a matching of refractive index between the two fluids. Particles seeded in both fluids were observed with the PSV system allowing the capture of the velocity field both within the droplet and in the surrounds. The effect of droplet size on the droplet internal circulation was observed. Part of the study was related the potential generation of flow structures, such as von Karman vortex shedding already observed in rising droplets in infinite reservoirs and their interaction with the mini-channel. Results show that two counter-rotating vortices exist inside the droplets as they pass through slot. The vorticity map analysis shows that the droplet of relatively larger size has a stronger internal circulation.

Keywords: rising droplet, rectangular orifice, particle shadow velocimetry, match refractive index

Procedia PDF Downloads 171
502 Modeling of Age Hardening Process Using Adaptive Neuro-Fuzzy Inference System: Results from Aluminum Alloy A356/Cow Horn Particulate Composite

Authors: Chidozie C. Nwobi-Okoye, Basil Q. Ochieze, Stanley Okiy

Abstract:

This research reports on the modeling of age hardening process using adaptive neuro-fuzzy inference system (ANFIS). The age hardening output (Hardness) was predicted using ANFIS. The input parameters were ageing time, temperature and percentage composition of cow horn particles (CHp%). The results show the correlation coefficient (R) of the predicted hardness values versus the measured values was of 0.9985. Subsequently, values outside the experimental data points were predicted. When the temperature was kept constant, and other input parameters were varied, the average relative error of the predicted values was 0.0931%. When the temperature was varied, and other input parameters kept constant, the average relative error of the hardness values predictions was 80%. The results show that ANFIS with coarse experimental data points for learning is not very effective in predicting process outputs in the age hardening operation of A356 alloy/CHp particulate composite. The fine experimental data requirements by ANFIS make it more expensive in modeling and optimization of age hardening operations of A356 alloy/CHp particulate composite.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), age hardening, aluminum alloy, metal matrix composite

Procedia PDF Downloads 153
501 Photovoltaic Performance of AgInSe2-Conjugated Polymer Hybrid Systems

Authors: Dinesh Pathaka, Tomas Wagnera, J. M. Nunzib

Abstract:

We investigated blends of MdPVV.PCBM.AIS for photovoltaic application. AgInSe2 powder was synthesized by sealing and heating the stoichiometric constituents in evacuated quartz tube ampule. Fine grinded AIS powder was dispersed in MD-MOPVV and PCBM with and without surfactant. Different concentrations of these particles were suspended in the polymer solutions and spin casted onto ITO glass. Morphological studies have been performed by atomic force microscopy and optical microscopy. The blend layers were also investigated by various techniques like XRD, UV-VIS optical spectroscopy, AFM, PL, after a series of various optimizations with polymers/concentration/deposition/ suspension/surfactants etc. XRD investigation of blend layers shows clear evidence of AIS dispersion in polymers. Diode behavior and cell parameters also revealed it. Bulk heterojunction hybrid photovoltaic device Ag/MoO3/MdPVV.PCBM.AIS/ZnO/ITO was fabricated and tested with standard solar simulator and device characterization system. The best performance and photovoltaic parameters we obtained was an open-circuit voltage of about Voc 0.54 V and a photocurrent of Isc 117 micro A and an efficiency of 0.2 percent using a white light illumination intensity of 23 mW/cm2. Our results are encouraging for further research on the fourth generation inorganic organic hybrid bulk heterojunction photovoltaics for energy. More optimization with spinning rate/thickness/solvents/deposition rates for active layers etc. need to be explored for improved photovoltaic response of these bulk heterojunction devices.

Keywords: thin films, photovoltaic, hybrid systems, heterojunction

Procedia PDF Downloads 276
500 Development of Multilayer Capillary Copper Wick Structure using Microsecond CO₂ Pulsed Laser

Authors: Talha Khan, Surendhar Kumaran, Rajeev Nair

Abstract:

The development of economical, efficient, and reliable next-generation thermal and water management systems to provide efficient cooling and water management technologies is being pursued application in compact and lightweight spacecraft. The elimination of liquid-vapor phase change-based thermal and water management systems is being done due to issues with the reliability and robustness of this technology. To achieve the motive of implementing the principle of using an innovative evaporator and condenser design utilizing bimodal wicks manufactured using a microsecond pulsed CO₂ laser has been proposed in this study. Cylin drical, multilayered capillary copper wicks with a substrate diameter of 39 mm are additively manufactured using a pulsed laser. The copper particles used for layer-by-layer addition on the substrate measure in a diameter range of 225 to 450 micrometers. The primary objective is to develop a novel, high-quality, fast turnaround, laser-based additive manufacturing process that will eliminate the current technical challenges involved with the traditional manufacturing processes for nano/micro-sized powders, like particle agglomeration. Raster-scanned, pulsed-laser sintering process has been developed to manufacture 3D wicks with controlled porosity and permeability.

Keywords: liquid-vapor phase change, bimodal wicks, multilayered, capillary, raster-scanned, porosity, permeability

Procedia PDF Downloads 191
499 The Effect of Adding Microsilica on the Rheological Behavior and Injectability of the Paste in the Injection Molding of Silica-Based Ceramic Cores

Authors: Arghavan Kazemi, Hossein Radipour

Abstract:

Microsilica (silica foam) is a byproduct of ferrosilicon production and silicon metal. Microsilica particles have a spherical shape, an average diameter of 0.15 µm, and a specific surface area of 15-25 m². g-¹. The overall density of this material is 150-700 kg.m-³. Many researchers have investigated the effect of adding microsilica on the flow properties of cement mixtures. This paper investigated the effect of adding microsilica on the flow behavior and injectability of silica-based paste. For this purpose, different percentages of microsilica have been used to prepare the paste. The rheometric test was performed on all the samples with different percentages of microsilica additives using an MCR300 rotary viscometer at a temperature of 70°C. In addition, the ability to inject pastes containing different amounts of microsilica at pressures of 25, 40, 50, and (bar) 60 at constant temperature and flow in a mold with dimensions of 80 × 80 × 0.5 mm³ has been investigated. Then, the effect of microsilica addition on the strength, porosity percentage, and leachability of the sintered core was studied. The results show that the rheological behavior of the paste is pseudoplastic; also, the silane index decreases with the increase in the percentage of microsilica addition, and the viscosity increases. On the other hand, the addition of microsilica has led to the appearance of thixotropic in the paste. By increasing the amount of microsilica, the injectability has significantly improved at low pressures. The strength of the sintered core increases with the increase of microsilica and the amount of remaining porosity and leachability decreases.

Keywords: microsilica, rheological behavior, injectability, injection molding, silica-based ceramic cores, leachability

Procedia PDF Downloads 32
498 Rapid and Efficient Removal of Lead from Water Using Chitosan/Magnetite Nanoparticles

Authors: Othman M. Hakami, Abdul Jabbar Al-Rajab

Abstract:

Occurrence of heavy metals in water resources increased in the recent years albeit at low concentrations. Lead (PbII) is among the most important inorganic pollutants in ground and surface water. However, removal of this toxic metal efficiently from water is of public and scientific concern. In this study, we developed a rapid and efficient removal method of lead from water using chitosan/magnetite nanoparticles. A simple and effective process has been used to prepare chitosan/magnetite nanoparticles (NPs) (CS/Mag NPs) with effect on saturation magnetization value; the particles were strongly responsive to an external magnetic field making separation from solution possible in less than 2 minutes using a permanent magnet and the total Fe in solution was below the detection limit of ICP-OES (<0.19 mg L-1). The hydrodynamic particle size distribution increased from an average diameter of ~60 nm for Fe3O4 NPs to ~75 nm after chitosan coating. The feasibility of the prepared NPs for the adsorption and desorption of Pb(II) from water were evaluated using Chitosan/Magnetite NPs which showed a high removal efficiency for Pb(II) uptake, with 90% of Pb(II) removed during the first 5 minutes and equilibrium in less than 10 minutes. Maximum adsorption capacities for Pb(II) occurred at pH 6.0 and under room temperature were as high as 85.5 mg g-1, according to Langmuir isotherm model. Desorption of adsorbed Pb on CS/Mag NPs was evaluated using deionized water at different pH values ranged from 1 to 7 which was an effective eluent and did not result the destruction of NPs, then, they could subsequently be reused without any loss of their activity in further adsorption tests. Overall, our results showed the high efficiency of chitosan/magnetite nanoparticles (NPs) in lead removal from water in controlled conditions, and further studies should be realized in real field conditions.

Keywords: chitosan, magnetite, water, treatment

Procedia PDF Downloads 404
497 Carbon Coated Silicon Nanoparticles Embedded MWCNT/Graphene Matrix Anode Material for Li-Ion Batteries

Authors: Ubeyd Toçoğlu, Miraç Alaf, Hatem Akbulut

Abstract:

We present a work which was conducted in order to improve the cycle life of silicon based lithium ion battery anodes by utilizing novel composite structure. In this study, carbon coated nano sized (50-100 nm) silicon particles were embedded into Graphene/MWCNT silicon matrix to produce free standing silicon based electrodes. Also, conventional Si powder anodes were produced from Si powder slurry on copper current collectors in order to make comparison of composite and conventional anode structures. Free –standing composite anodes (binder-free) were produced via vacuum filtration from a well dispersion of Graphene, MWCNT and carbon coated silicon powders. Carbon coating process of silicon powders was carried out via microwave reaction system. The certain amount of silicon powder and glucose was mixed under ultrasonication and then coating was conducted at 200 °C for two hours in Teflon lined autoclave reaction chamber. Graphene which was used in this study was synthesized from well-known Hummers method and hydrazine reduction of graphene oxide. X-Ray diffraction analysis and RAMAN spectroscopy techniques were used for phase characterization of anodes. Scanning electron microscopy analyses were conducted for morphological characterization. The electrochemical performance tests were carried out by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy.

Keywords: graphene, Li-Ion, MWCNT, silicon

Procedia PDF Downloads 256
496 Radical Degradation of Acetaminophen with Peroxymonosulfate-Based Oxidation Processes

Authors: Chaoqun Tan, Naiyun Gao, Xiaoyan Xin

Abstract:

Perxymonosulfate (PMS)-based oxidation processes, as an alternative of hydrogen peroxide-based oxidation processes, are more and more popular because of reactive radical species (SO4-•, OH•) produced in systems. Magnetic nano-scaled particles Fe3O4 and ferrous anion (Fe2+) were studied for the activation of PMS for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for APAP and the reactions well followed a pseudo-first-order kinetics pattern (R2>0.95). While the degradation of APAP in PMS-Fe2+ system proceeds through two stages: a fast stage and a much slower stage. Within 5 min, approximately 7% and 18% of 10 ppm APAP was accomplished by 0.2 mM PMS in Fe3O4 (0.8g/L) and Fe2+ (0.1mM) activation process. However, as reaction proceed to 120 min, approximately 75% and 35% of APAP was removed in Fe3O4 activation process and Fe2+ activation process, respectively. Within 120 min, the mineralization of APAP was about 7.5% and 5.0% (initial APAP of 10 ppm and [PMS]0 of 0.2 mM) in Fe3O4-PMS and Fe2+-PMS system, while the mineralization could be greatly increased to about 31% and 40% as [PMS]0 increased to 2.0 mM in in Fe3O4-PMS and Fe2+-PMS system, respectively. At last, the production of reactive radical species were validated directly from Electron Paramagnetic Resonance (ESR) tests with 0.1 M 5,5-Dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 and Fe2+ activation of PMS are proposed on the results of radial identification tests. The results demonstrated that Fe3O4 MNPs activated PMS and Fe2+ anion activated PMS systems are promising technologies for water pollution caused by contaminants such as pharmaceutical. Fe3O4-PMS system is more suitable for slowly remediation, while Fe2+-PMS system is more suitable for fast remediation.

Keywords: acetaminophen, peroxymonosulfate, radicals, Electron Paramagnetic Resonance (ESR)

Procedia PDF Downloads 350