Search results for: SAE 1020 steel recycling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2265

Search results for: SAE 1020 steel recycling

885 An Investigation on Ultrasonic Pulse Velocity of Hybrid Fiber Reinforced Concretes

Authors: Soner Guler, Demet Yavuz, Refik Burak Taymuş, Fuat Korkut

Abstract:

Because of the easy applying and not costing too much, ultrasonic pulse velocity (UPV) is one of the most used non-destructive techniques to determine concrete characteristics along with impact-echo, Schmidt rebound hammer (SRH) and pulse-echo. This article investigates the relationship between UPV and compressive strength of hybrid fiber reinforced concretes. Water/cement ratio (w/c) was kept at 0.4 for all concrete mixes. Compressive strength of concrete was targeted at 35 MPa. UPV testing and compressive strength tests were carried out at the curing age of 28 days. The UPV of concrete containing steel fibers has been found to be higher than plain concrete for all the testing groups. It is decided that there is not a certain relationship between fiber addition and strength.

Keywords: ultrasonic pulse velocity, hybrid fiber, compressive strength, fiber

Procedia PDF Downloads 343
884 Insulation, Sustainable Construction, and Architectural Design to Reduce Energy Consumption in Sustainable Buildings

Authors: Gholamreza Namavar, Ali Bayati

Abstract:

Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities show one of the large challenges in consumption sources management. Nowadays, everyone considered about the consumption of fossil fuels and also reduction of consumption civil energy in megacities that play a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming and damage ozone layer. In construction industry we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials and the adaption with environment is critical. Otherwise, the isolation should be use and mention in long term. Accordingly, in this article we investigates the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption.

Keywords: architectural design, insulation, sustainable construction, reducing energy consumption

Procedia PDF Downloads 239
883 Architectural Design, Low Energy, and Isolation Materials to Have Sustainable Buildings in Iran

Authors: Mohammadreza Azarnoush, Ali Bayati, Jamileh Azarnoush

Abstract:

Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities shows one of the large challenges in consumption sources management. Nowadays, everyone considers the consumption of fossil fuels and also reduction of consumption civil energy in megacities as playing a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming, and damage ozone layer. In the construction industry, we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials, and the adoption to the environment is critical. Otherwise, the isolation should be use and mention in the long term. Accordingly, in this article, we investigate the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption.

Keywords: building design, construction masonry, insulation, sustainable construction

Procedia PDF Downloads 398
882 Design and Fabrication of Electricity Generating Speed Breaker

Authors: Haider Aamir, Muhammad Ali Khalid

Abstract:

Electricity harvesting speed bump (EHSB) is speed breaker of conventional shape, but the difference is that it is not fixed, rather it moves up and down, and electricity can be generated from its vibrating motion. This speed bump consists of an upper cover which will move up and down, a shaft mechanism which will be used to drive the generator and a rack and pinion mechanism which will connect the cover and shaft. There is a spring mechanism to return the cover to its initial state when a vehicle has passed over the bump. Produced energy in the past was up to 80 Watts. For this purpose, a clutch mechanism is used so that both the up-down movements of the cover can be used to drive the generator. Mechanical Motion Rectifier (MMR) mechanism ensures the conversion of both the linear motions into rotational motion which is used to drive the generator.

Keywords: electricity harvesting, generator, rack and pinion, stainless steel shaft

Procedia PDF Downloads 260
881 Nanotechnology Innovations for the Sustainable Buildings of the Future

Authors: Ayşin Sev, Meltem Ezel

Abstract:

Sustainability, being the urgent issue of our time, is closely related with the innovations in technology. Nanotechnology (NT), although not a new science, can be regarded relatively a new science for buildings with brand new materials and applications. This paper tends to give a research review of current and near future applications of nanotechnology (NT) for achieving high-performance and healthy buildings for a sustainable future. In the introduction, the driving forces for the sustainability of construction industry are explained. Then, the term NT is defined, and significance of innovations in NT for a sustainable construction industry is revealed. After presenting the application areas of NT and nanomaterials for buildings with a number of cases, challenges in the adoption of this technology are put forward, and finally the impacts of nanoparticles and nanomaterials on human health and environment are discussed.

Keywords: nanomaterial, self-healing concrete, self cleaning sensor, nanosensor, steel, wood, aerogel, flexible solar panel

Procedia PDF Downloads 442
880 Measurement of Magnetic Properties of Grainoriented Electrical Steels at Low and High Fields Using a Novel Single

Authors: Nkwachukwu Chukwuchekwa, Joy Ulumma Chukwuchekwa

Abstract:

Magnetic characteristics of grain-oriented electrical steel (GOES) are usually measured at high flux densities suitable for its typical applications in power transformers. There are limited magnetic data at low flux densities which are relevant for the characterization of GOES for applications in metering instrument transformers and low frequency magnetic shielding in magnetic resonance imaging medical scanners. Magnetic properties such as coercivity, B-H loop, AC relative permeability and specific power loss of conventional grain oriented (CGO) and high permeability grain oriented (HGO) electrical steels were measured and compared at high and low flux densities at power magnetising frequency. 40 strips comprising 20 CGO and 20 HGO, 305 mm x 30 mm x 0.27 mm from a supplier were tested. The HGO and CGO strips had average grain sizes of 9 mm and 4 mm respectively. Each strip was singly magnetised under sinusoidal peak flux density from 8.0 mT to 1.5 T at a magnetising frequency of 50 Hz. The novel single sheet tester comprises a personal computer in which LabVIEW version 8.5 from National Instruments (NI) was installed, a NI 4461 data acquisition (DAQ) card, an impedance matching transformer, to match the 600  minimum load impedance of the DAQ card with the 5 to 20  low impedance of the magnetising circuit, and a 4.7 Ω shunt resistor. A double vertical yoke made of GOES which is 290 mm long and 32 mm wide is used. A 500-turn secondary winding, about 80 mm in length, was wound around a plastic former, 270 mm x 40 mm, housing the sample, while a 100-turn primary winding, covering the entire length of the plastic former was wound over the secondary winding. A standard Epstein strip to be tested is placed between the yokes. The magnetising voltage was generated by the LabVIEW program through a voltage output from the DAQ card. The voltage drop across the shunt resistor and the secondary voltage were acquired by the card for calculation of magnetic field strength and flux density respectively. A feedback control system implemented in LabVIEW was used to control the flux density and to make the induced secondary voltage waveforms sinusoidal to have repeatable and comparable measurements. The low noise NI4461 card with 24 bit resolution and a sampling rate of 204.8 KHz and 92 KHz bandwidth were chosen to take the measurements to minimize the influence of thermal noise. In order to reduce environmental noise, the yokes, sample and search coil carrier were placed in a noise shielding chamber. HGO was found to have better magnetic properties at both high and low magnetisation regimes. This is because of the higher grain size of HGO and higher grain-grain misorientation of CGO. HGO is better CGO in both low and high magnetic field applications.

Keywords: flux density, electrical steel, LabVIEW, magnetization

Procedia PDF Downloads 284
879 Fatigue Behavior of Dissimilar Welded Monel400 and SS316 by FSW

Authors: Aboozar Aghaei

Abstract:

In the present work, the dissimilar Monel400 and SS316 were joined by friction stir welding (FSW). The applied rotating speed was 400 rpm, whereas the traverse speed varied between 50 and 150 mm/min. At a constant rotating speed, the sound welds were obtained at the welding speeds of 50 and 100 mm/min. However, a groove-like defect was formed when the welding speed exceeded 100 mm/min. The mechanical properties of the joints were evaluated using tensile and fatigue tests. The fatigue strength of dissimilar FSWed specimen was higher than that of both Monel400 and SS316. To study the failure behavior of FSWed specimens, the fracture surfaces were analyzed using scanning electron microscope (SEM). The failure analysis indicates that different mechanisms may contribute to the fracture of welds. This was attributed to the dissimilar characteristics of dissimilar materials exhibiting different failure behaviors.

Keywords: mechanical properties, stainless steel, frictions, monel

Procedia PDF Downloads 61
878 Study Technical Possibilities of Agricultural Reuse of by-Products from Treatment Plant of Boumerdes, Algeria

Authors: Kadir Mokrane, Souag Doudja

Abstract:

In Algeria, one of the Mediterranean countries, water resources are limited and unevenly distributed in space and in time. Boumerdes, coastal town of Algeria, known for its farming and fishing activities. The region is also known for its semi-arid climate and a large water deficit. In order to preserve the quality of water bodies and to reduce withdrawals in the natural environment, it is necessary to seek alternative supplies. The reuse of treated wastewater seems to be a good alternative, especially for irrigation. In the framework of sustainable development, it is imperative to rationalize the use of water resources conventional and unconventional. That is why the re-use agricultural of by-products of the treatment is an alternative expected to preserve the environment and promotion of the agricultural sector. The present work aims, to search for the possibility of reuse of treated wastewater, and sludge resulting from treatment plant of the city of Boumerdes in agriculture, through the analysis of physical, chemical and bacteriological on the samples, and the continuous monitoring of the evolution of several elements during the period of study extended over 12 months, and then, the comparison of these test results to standards and guidelines established in the framework of irrigation and land application.

Keywords: treated water, sewage sludge, recycling, agriculture

Procedia PDF Downloads 238
877 Supplier Carbon Footprint Methodology Development for Automotive Original Equipment Manufacturers

Authors: Nur A. Özdemir, Sude Erkin, Hatice K. Güney, Cemre S. Atılgan, Enes Huylu, Hüseyin Y. Altıntaş, Aysemin Top, Özak Durmuş

Abstract:

Carbon emissions produced during a product’s life cycle, from extraction of raw materials up to waste disposal and market consumption activities are the major contributors to global warming. In the light of the science-based targets (SBT) leading the way to a zero-carbon economy for sustainable growth of the companies, carbon footprint reporting of the purchased goods has become critical for identifying hotspots and best practices for emission reduction opportunities. In line with Ford Otosan's corporate sustainability strategy, research was conducted to evaluate the carbon footprint of purchased products in accordance with Scope 3 of the Greenhouse Gas Protocol (GHG). The purpose of this paper is to develop a systematic and transparent methodology to calculate carbon footprint of the products produced by automotive OEMs (Original Equipment Manufacturers) within the context of automobile supply chain management. To begin with, primary material data were collected through IMDS (International Material Database System) corresponds to company’s three distinct types of vehicles including Light Commercial Vehicle (Courier), Medium Commercial Vehicle (Transit and Transit Custom), Heavy Commercial Vehicle (F-MAX). Obtained material data was classified as metals, plastics, liquids, electronics, and others to get insights about the overall material distribution of produced vehicles and matched to the SimaPro Ecoinvent 3 database which is one of the most extent versions for modelling material data related to the product life cycle. Product life cycle analysis was calculated within the framework of ISO 14040 – 14044 standards by addressing the requirements and procedures. A comprehensive literature review and cooperation with suppliers were undertaken to identify the production methods of parts used in vehicles and to find out the amount of scrap generated during part production. Cumulative weight and material information with related production process belonging the components were listed by multiplying with current sales figures. The results of the study show a key modelling on carbon footprint of products and processes based on a scientific approach to drive sustainable growth by setting straightforward, science-based emission reduction targets. Hence, this study targets to identify the hotspots and correspondingly provide broad ideas about our understanding of how to integrate carbon footprint estimates into our company's supply chain management by defining convenient actions in line with climate science. According to emission values arising from the production phase including raw material extraction and material processing for Ford OTOSAN vehicles subjected in this study, GHG emissions from the production of metals used for HCV, MCV and LCV account for more than half of the carbon footprint of the vehicle's production. Correspondingly, aluminum and steel have the largest share among all material types and achieving carbon neutrality in the steel and aluminum industry is of great significance to the world, which will also present an immense impact on the automobile industry. Strategic product sustainability plan which includes the use of secondary materials, conversion to green energy and low-energy process design is required to reduce emissions of steel, aluminum, and plastics due to the projected increase in total volume by 2030.

Keywords: automotive, carbon footprint, IMDS, scope 3, SimaPro, sustainability

Procedia PDF Downloads 95
876 Electro-Winning of Dilute Solution of Copper Metal from Sepon Mine, Lao PDR

Authors: S. Vasailor, C. Rattanakawin

Abstract:

Electro-winning of copper metal from dilute sulfate solution (13.7 g/L) was performed in a lab electrolytic cell with stainless-steel cathode and lead-alloy anode. The effects of various parameters including cell voltage, electro-winning temperature and time were studied in order to acquire an appropriate current efficiency of copper deposition. The highest efficiency is about 95% obtaining from electro-winning condition of 3V, 55°C and 3,600 s correspondingly. The cathode copper with 95.5% Cu analyzed using atomic absorption spectrometry can be obtained from this single-winning condition. In order to increase the copper grade, solvent extraction should be used to increase the sulfate concentration, say 50 g/L, prior to winning the cathode copper effectively.

Keywords: copper metal, current efficiency, dilute sulfate solution, electro-winning

Procedia PDF Downloads 125
875 Dynamics Analyses of Swing Structure Subject to Rotational Forces

Authors: Buntheng Chhorn, WooYoung Jung

Abstract:

Large-scale swing has been used in entertainment and performance, especially in circus, for a very long time. To increase the safety of this type of structure, a thorough analysis for displacement and bearing stress was performed for an extreme condition where a full cycle swing occurs. Different masses, ranging from 40 kg to 220 kg, and velocities were applied on the swing. Then, based on the solution of differential dynamics equation, swing velocity response to harmonic force was obtained. Moreover, the resistance capacity was estimated based on ACI steel structure design guide. Subsequently, numerical analysis was performed in ABAQUS to obtain the stress on each frame of the swing. Finally, the analysis shows that the expansion of swing structure frame section was required for mass bigger than 150kg.

Keywords: swing structure, displacement, bearing stress, dynamic loads response, finite element analysis

Procedia PDF Downloads 367
874 Reinforced Concrete Design Construction Issues and Earthquake Failure-Damage Responses

Authors: Hasan Husnu Korkmaz, Serra Zerrin Korkmaz

Abstract:

Earthquakes are the natural disasters that threat several countries. Turkey is situated on a very active earthquake zone. During the recent earthquakes, thousands of people died due to failure of reinforced concrete structures. Although Turkey has a very sufficient earthquake code, the design and construction mistakes were repeated for old structures. Lack of the control mechanism during the construction process may be the most important reason of failure. The quality of the concrete and poor detailing of steel or reinforcement is the most important headings. In this paper, the reasons of failure of reinforced concrete structures were summarized with relevant photos. The paper is beneficial for civil engineers as well as architect who are in the process of construction and design of structures in earthquake zones.

Keywords: earthquake, reinforced concrete structure, failure, material

Procedia PDF Downloads 351
873 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: audit, machine learning, assessment, metrics

Procedia PDF Downloads 253
872 Numerical Analysis of Water Hammer in a Viscoelastic Pipe System Considering Fluid Structure Interaction

Authors: N. Tavakoli Shirazi

Abstract:

This study investigates the effects of pipe-wall viscoelasticity on water hammer pressures. Tests have been conducted in a reservoir-pipe-valve system configured of a main viscoelastic pipeline and two short steel pipes placed upstream and downstream of the main pipe. Rapid closure of a manually operated valve at the downstream end generates water hammer. Experimental measurements at several positions along the pipeline have been collected from the papers. Computer simulations of the experiment have been performed and the results of runs with various options affecting the water hammer are provided and discussed. It is shown that the incorporation of viscoelastic pipe wall mechanical behavior in the hydraulic transient model contributes to a favorable fitting between numerical results and observed data.

Keywords: pipe system, PVC pipe, viscoelasticity, water hammer

Procedia PDF Downloads 448
871 Analysis of Cracked Beams with Spalling Having Different Arrangements of the Reinforcement Bars Using Finite Element Analysis (FEA)

Authors: Rishabh Shukla, Achin Agrawal, Anupam Saxena, S. Mandal

Abstract:

The existence of a crack, affects the mechanical behaviour and various properties of a structure to a great degree. This paper focuses on recognizing the parameters that gets changed due to the formation of cracks and have a great impact on the performance of the structure. Spalling is a major concern as it leaves the reinforcement bars more susceptible to environmental attacks. Beams of cross section 300 mm × 500 mm are designed and for a calculated area of steel, two different arrangements of reinforced bars are analysed. Results are prepared for different stages of cracking for each arrangement of rebars. The parameters for both arrangements are then compared. The Finite Element Analysis (FEA) is carried out and changes in the properties like flexural strength, Elasticity and modal frequency are reported. The conclusions have been drawn by comparing the results.

Keywords: cracks, elasticity, spalling, FEA

Procedia PDF Downloads 263
870 The Optimum Operating Conditions for the Synthesis of Zeolite from Waste Incineration Fly Ash by Alkali Fusion and Hydrothermal Methods

Authors: Yi-Jie Lin, Jyh-Cherng Chen

Abstract:

The fly ash of waste incineration processes is usually hazardous and the disposal or reuse of waste incineration fly ash is difficult. In this study, the waste incineration fly ash was converted to useful zeolites by the alkali fusion and hydrothermal synthesis method. The influence of different operating conditions (the ratio of Si/Al, the ratio of hydrolysis liquid to solid, and hydrothermal time) was investigated to seek the optimum operating conditions for the synthesis of zeolite from waste incineration fly ash. The results showed that concentrations of heavy metals in the leachate of Toxicity Characteristic Leaching Procedure (TCLP) were all lower than the regulatory limits except lead. The optimum operating conditions for the synthesis of zeolite from waste incineration fly ash by the alkali fusion and hydrothermal synthesis method were Si/Al=40, NaOH/ash=1.5, alkali fusion at 400 oC for 40 min, hydrolysis with Liquid to Solid ratio (L/S)= 200 at 105 oC for 24 h, and hydrothermal synthesis at 105 oC for 24 h. The specific surface area of fly ash could be significantly increased from 8.59 m2/g to 651.51 m2/g (synthesized zeolite). The influence of different operating conditions on the synthesis of zeolite from waste incineration fly ash followed the sequence of Si/Al ratio > hydrothermal time > hydrolysis L/S ratio. The synthesized zeolites can be reused as good adsorbents to control the air or wastewater pollutants. The purpose of fly ash detoxification, reduction and waste recycling/reuse is achieved successfully.

Keywords: alkali fusion, hydrothermal, fly ash, zeolite

Procedia PDF Downloads 225
869 Analysis of Reinforced Granular Pile in Soft Soil

Authors: G. Nitesh

Abstract:

Stone column or granular pile is a proven technique to mitigate settlement in soft soil. Granular pile increases both rate of consolidation and stiffness of the ground. In this paper, a method to analyze further reduction in settlement of granular column reinforced with lime pile is presented treating the system as a unit cell and considering one-dimensional compression approach. The core of the granular pile is stiffened with a steel rod or lime column. Influence of a wide range of parameters such as area ratio of granular pile-soft soil, area ratio of lime pile-granular pile, modular ratio of granular pile and modular ratio of lime pile with respect to granular pile on settlement reduction factor, etc. are obtained and presented.

Keywords: lime pile, granular pile, soft soil, settlement

Procedia PDF Downloads 392
868 Non-Homogeneous Layered Fiber Reinforced Concrete

Authors: Vitalijs Lusis, Andrejs Krasnikovs

Abstract:

Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100 mm×100 mm×400 mm with layers of non-homogeneously distributed fibers inside them were fabricated. Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.

Keywords: fiber reinforced concrete, 4-point bending, steel fiber, construction engineering

Procedia PDF Downloads 357
867 The Concentration of Formaldehyde in Rainwater and Typhoon Rainwater at Sakai City, Japan

Authors: Chinh Nguyen Nhu Bao, Hien To Thi, Norimichi Takenaka

Abstract:

Formaldehyde (HCHO) concentrations in rainwater including in tropical storms in Sakai City, Osaka, Japan have been measured continuously during rain event by developed chemiluminescence method. The level of formaldehyde was ranged from 15 µg/L to 500 µg/L. The high concentration of HCHO in rainwater is related to the wind direction from the south and west sides of Sakai City where manufactures related to chemicals, oil-refinery, and steel. The in-situ irradiated experiment on rainwater sample was conducted to prove the aqueous phase photo-production of HCHO and the degradation of HCHO. In the daytime, the aqueous phase photolysis is the source of HCHO in rainwater (4.52 ± 5.74 µg/L/h for UV light source in-situ condition, 2.84-8.96 µg/L/h under sunlight). However, in the night time, the degradation is the function of microorganism.

Keywords: chemiluminescence, formaldehyde, rainwater, typhoon

Procedia PDF Downloads 154
866 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment

Authors: J. Bolobajev, M. Trapido, A. Goi

Abstract:

The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.

Keywords: ferric sludge recycling, ferric iron reductant, water treatment, organic pollutant

Procedia PDF Downloads 280
865 Recent Development on Application of Microwave Energy on Process Metallurgy

Authors: Mamdouh Omran, Timo Fabritius

Abstract:

A growing interest in microwave heating has emerged recently. Many researchers have begun to pay attention to microwave energy as an alternative technique for processing various primary and secondary raw materials. Compared to conventional methods, microwave processing offers several advantages, such as selective heating, rapid heating, and volumetric heating. The present study gives a summary on our recent works related to the use of microwave energy for the recovery of valuable metals from primary and secondary raw materials. The research is mainly focusing on: Application of microwave for the recovery and recycling of metals from different metallurgical industries wastes (i.e. electric arc furnace (EAF) dust, blast furnace (BF), basic oxygen furnace (BOF) sludge). Application of microwave for upgrading and recovery of valuable metals from primary raw materials (i.e. iron ore). The results indicated that microwave heating is a promising and effective technique for processing primary and secondary steelmaking wastes. After microwave treatment of iron ore for 60 s and 900 W, about a 28.30% increase in grindability.Wet high intensity magnetic separation (WHIMS) indicated that the magnetic separation increased from 34% to 98% after microwave treatment for 90 s and 900 W. In the case of EAF dust, after microwave processing at 1100 W for 20 min, Zinc removal from 64 % to ~ 97 %, depending on mixture ratio and treatment time.

Keywords: dielectric properties, microwave heating, raw materials, secondary raw materials

Procedia PDF Downloads 76
864 Spatial Organization of Organelles in Living Cells: Insights from Mathematical Modelling

Authors: Congping Lin

Abstract:

Intracellular transport in fungi has a number of important roles in, e.g., filamentous fungal growth and cellular metabolism. Two basic mechanisms for intracellular transport are motor-driven trafficking along microtubules (MTs) and diffusion. Mathematical modelling has been actively developed to understand such intracellular transport and provide unique insight into cellular complexity. Based on live-cell imaging data in Ustilago hyphal cells, probabilistic models have been developed to study mechanism underlying spatial organization of molecular motors and organelles. In particular, anther mechanism - stochastic motility of dynein motors along MTs has been found to contribute to half of its accumulation at hyphal tip in order to support early endosome (EE) recycling. The EE trafficking not only facilitates the directed motion of peroxisomes but also enhances their diffusive motion. Considering the importance of spatial organization of early endosomes in supporting peroxisome movement, computational and experimental approaches have been combined to a whole-cell level. Results from this interdisciplinary study promise insights into requirements for other membrane trafficking systems (e.g., in neurons), but also may inform future 'synthetic biology' studies.

Keywords: intracellular transport, stochastic process, molecular motors, spatial organization

Procedia PDF Downloads 122
863 SEM-EBSD Observation for Microtubes by Using Dieless Drawing Process

Authors: Takashi Sakai, Itaru Kumisawa

Abstract:

Because die drawing requires insertion of a die, a plug, or a mandrel, higher precision and efficiency are demanded for drawing equipment for a tube having smaller diameter. Manufacturing of such tubes is also accompanied by problems such as cracking and fracture. We specifically examine dieless drawing, which is less affected by these drawing-related difficulties. This deformation process is governed by a similar principle to that of reduction in diameter when pulling a heated glass tube. We conducted dieless drawing of SUS304 stainless steel microtubes under various conditions with three factor parameters of heating temperature, area reduction, and drawing speed. We used SEM-EBSD to observe the processing condition effects on microstructural elements. As the result of this study, crystallographic orientation of microtube is clear by using SEM-EBSD analysis.

Keywords: microtube, dieless drawing, IPF (inverse pole figure), GOS (grain orientation spread), crystallographic analysis

Procedia PDF Downloads 234
862 Levels of Plastic Waste and Fish Landed By Beach Seine Fishers in Coastal Ghana

Authors: Francis Gbogbo, Angelica Ama Essandoh, Wendy Teresa Baffoe, Henry Groos, Charles Mario Boateng, Emmanuel Robert Blankson

Abstract:

Baseline data on plastic landing by fishers and monitoring of this is important in evaluating the success of plastic waste management efforts. This study investigated plastic and fish landed by beach seine fishers in Ghana, together with the rate of plastic deposition on an adjoining beach. Plastic constituted 31.6% of the total catch, and 41.7% of the fish landed by weight. There were significant differences between the average weight of fish (139.58±53.6kg) and plastic (65.73±14.6kg) landed per fishing session and the catch per unit effort of fish (183.4±76.7 kg/day) and plastic (88.4±35.2 kg/day). The mean weight of plastic landed per fishing session was higher than the mean weight of each of the 26 species of fisheries. The rate of plastic deposition on the beach was 8.1±2.5 plastic items per m2 per tidal cycle or 0.35±0.11kg plastic per m2 per tidal cycle, with food packs and tableware dominating the deposited plastic. The results suggested that ongoing water sachets and plastic bottle recycling in Ghana are yielding results and calls for targeted efforts in plastic food packs and tableware management.

Keywords: fishig, landing, plastic waste, intertidal area, fishing effort

Procedia PDF Downloads 74
861 Numerical Simulation of the Heat Transfer Process in a Double Pipe Heat Exchanger

Authors: J. I. Corcoles, J. D. Moya-Rico, A. Molina, J. F. Belmonte, J. A. Almendros-Ibanez

Abstract:

One of the most common heat exchangers technology in engineering processes is the use of double-pipe heat exchangers (DPHx), mainly in the food industry. To improve the heat transfer performance, several passive geometrical devices can be used, such as the wall corrugation of tubes, which increases the wet perimeter maintaining a constant cross-section area, increasing consequently the convective surface area. It contributes to enhance heat transfer in forced convection, promoting secondary recirculating flows. One of the most extended tools to analyse heat exchangers' efficiency is the use of computational fluid dynamic techniques (CFD), a complementary activity to the experimental studies as well as a previous step for the design of heat exchangers. In this study, a double pipe heat exchanger behaviour with two different inner tubes, smooth and spirally corrugated tube, have been analysed. Hence, experimental analysis and steady 3-D numerical simulations using the commercial code ANSYS Workbench v. 17.0 are carried out to analyse the influence of geometrical parameters for spirally corrugated tubes at turbulent flow. To validate the numerical results, an experimental setup has been used. To heat up or cool down the cold fluid as it passes through the heat exchanger, the installation includes heating and cooling loops served by an electric boiler with a heating capacity of 72 kW and a chiller, with a cooling capacity of 48 kW. Two tests have been carried out for the smooth tube and for the corrugated one. In all the tests, the hot fluid has a constant flowrate of 50 l/min and inlet temperature of 59.5°C. For the cold fluid, the flowrate range from 25 l/min (Test 1) and 30 l/min (Test 2) with an inlet temperature of 22.1°C. The heat exchanger is made of stainless steel, with an external diameter of 35 mm and wall thickness of 1.5 mm. Both inner tubes have an external diameter of 24 mm and 1 mm thickness of stainless steel with a length of 2.8 m. The corrugated tube has a corrugation height (H) of 1.1 mm and helical pitch (P) of 25 mm. It is characterized using three non-dimensional parameters, the ratio of the corrugation shape and the diameter (H/D), the helical pitch (P/D) and the severity index (SI = H²/P x D). The results showed good agreement between the numerical and the experimental results. Hence, the lowest differences were shown for the fluid temperatures. In all the analysed tests and for both analysed tubes, the temperature obtained numerically was slightly higher than the experimental results, with values ranged between 0.1% and 0.7%. Regarding the pressure drop, the maximum differences between the values obtained numerically, and the experimental values were close to 16%. Based on the experimental and the numerical results, for the corrugated tube, it can be highlighted that the temperature difference between the inlet and the outlet of the cold fluid is 42%, higher than the smooth tube.

Keywords: corrugated tube, heat exchanger, heat transfer, numerical simulation

Procedia PDF Downloads 132
860 Ultimate Shear Resistance of Plate Girders Part 2- Höglund Theory

Authors: Ahmed S. Elamary

Abstract:

Ultimate shear resistance (USR) of slender plate girders can be predicted theoretically using Cardiff theory or Hӧglund theory. This paper will be concerned with predicting the USR using Hӧglund theory and EC3. Two main factors can affect the USR, the panel width “b” and the web depth “d”, consequently, the panel aspect ratio (b/d) has to be identified by limits. In most of the previous study, there is no limit for panel aspect ratio indicated. In this paper theoretical analysis has been conducted to study the effect of (b/d) on the USR. The analysis based on ninety-six test results of steel plate girders subjected to shear executed and collected by others. New formula proposed to predict the percentage of the distance between the plastic hinges form in the flanges “c” to panel width “b”. Conservative limits of (c/b) have been suggested to get a consistent value of USR.

Keywords: ultimate shear resistance, plate girder, Hӧglund’s theory, EC3

Procedia PDF Downloads 397
859 Japan’s Challenges in Managing Resources and Implementing Strategies toward Sustainability

Authors: Dana Aljadaa, Hasim Altan

Abstract:

Japan’s strategy is based on improving the current resources and productivity by identifying the environmental challenges to progress further in many areas. For example, it will help in understanding the competitive challenges in the industry, emerging innovation, and other progresses. The present study seeks to examine the characteristics of sustainable practices using materials that will last longer and following environmental policies. There has been a major emphasis since 1990s and onwards about recycling and preserving the environment. Furthermore, the present paper analyses and argues how national interest in policy increases resource productivity. It is a universal law, but these actions may be different based on the unique situation of the country. In addition, the present study explains some of the strategies developed by the Environmental Agency of Japan in the last few years. There are a few resources reviewed involving ‘Strategy for an Environmental Nation in the 21st Century’ from 2001, ‘Clean Asia Initiative’ from 2008, and ‘New Growth Strategy’ from 2010. The present paper also highlights the emphasis on increasing efficiency, as it is an important part of sustainability. We finally conclude by providing reasoning on the impact and positivity of reducing production and consumption on the environment, resulting in a productive and progressive Japan for the near and long term future.

Keywords: eco-system, resource productivity, sound material-cycle, sustainable development

Procedia PDF Downloads 194
858 A Comprehensive Safety Analysis for a Pressurized Water Reactor Fueled with Mixed-Oxide Fuel as an Accident Tolerant Fuel

Authors: Mohamed Y. M. Mohsen

Abstract:

The viability of utilising mixed-oxide fuel (MOX) ((U₀.₉, rgPu₀.₁) O₂) as an accident-tolerant fuel (ATF) has been thoroughly investigated. MOX fuel provides the best example of a nuclear waste recycling process. The MCNPX 2.7 code was used to determine the main neutronic features, especially the radial power distribution, to identify the hot channel on which the thermal-hydraulic (TH) study was performed. Based on the computational fluid dynamics technique, the simulation of the rod-centered thermal-hydraulic subchannel model was implemented using COMSOL Multiphysics. TH analysis was utilised to determine the axially and radially distributed temperatures of the fuel and cladding materials, as well as the departure from the nucleate boiling ratio (DNBR) along the coolant channel. COMSOL Multiphysics can simulate reality by coupling multiphysics, such as coupling between heat transfer and solid mechanics. The main solid structure parameters, such as the von Mises stress, volumetric strain, and displacement, were simulated using this coupling. When the neutronic, TH, and solid structure performances of UO₂ and ((U₀.₉, rgPu₀.₁) O₂) were compared, the results showed considerable improvement and an increase in safety margins with the use of ((U₀.₉, rgPu₀.₁) O₂).

Keywords: mixed-oxide, MCNPX, neutronic analysis, COMSOL-multiphysics, thermal-hydraulic, solid structure

Procedia PDF Downloads 92
857 Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis

Authors: Boo-Sung Koh, Seung-Eock Kim

Abstract:

In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.

Keywords: direct design, nonlinear inelastic analysis, residual stress, initial geometric imperfection

Procedia PDF Downloads 521
856 Comparison of Homogeneous and Micro-Mechanical Modelling Approach for Paper Honeycomb Materials

Authors: Yiğit Gürler, Berkay Türkcan İmrağ, Taylan Güçkıran, İbrahim Şimşek, Alper Taşdemirci

Abstract:

Paper honeycombs, which is a sandwich structure, consists of two liner faces and one paper honeycomb core. These materials are widely used in the packaging industry due to their low cost, low weight, good energy absorption capabilities and easy recycling properties. However, to provide maximum protection to the products in cases such as the drop of the packaged products, the mechanical behavior of these materials should be well known at the packaging design stage. In this study, the necessary input parameters for the modeling study were obtained by performing compression tests in the through-thickness and in-plane directions of paper-based honeycomb sandwich structures. With the obtained parameters, homogeneous and micro-mechanical numerical models were developed in the Ls-Dyna environment. The material card used for the homogeneous model is MAT_MODIFIED_HONEYCOMB, and the material card used for the micromechanical model is MAT_PIECEWISE_LINEAR_PLASTICITY. As a result, the effectiveness of homogeneous and micromechanical modeling approaches for paper-based honeycomb sandwich structure was investigated using force-displacement curves. Densification points and peak points on these curves will be compared.

Keywords: environmental packaging, mechanical characterization, Ls-Dyna, sandwich structure

Procedia PDF Downloads 184