Search results for: solar incident
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1873

Search results for: solar incident

553 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks

Procedia PDF Downloads 282
552 Growth Mechanism, Structural and Compositional Properties of Cu₂ZnSnS₄ (CZTS) Thin Films Deposited by Sputtering Method from a Compound Target

Authors: Sanusi Abdullahi, Musa Momoh, Abubakar Umar Moreh, Aminu Muhammad Bayawa, Olubunmi Popoola

Abstract:

Kesterite-type Cu₂ZnSnS₄ (CZTS) thin films were deposited on corning glass from a single quaternary target. In this study, we investigated the growth mechanism and the influence of thin film thickness on the structural and compositional properties of CZTS films. All the four samples (as-deposited inclusive) show peaks corresponding to kesterite-type structure. The diffraction peaks of (112) are sharp and the small characteristics peaks of the kesterite structure such as (220)/ (204) and (312)/ (116) are also clearly observed in X-ray diffraction pattern. These results indicate that the quaternary CZTS would be a potential candidate for solar cell applications.

Keywords: RF sputtering, Cu2ZnSnS4 thin film, annealing, growth mechanism, annealing, growth mechanism, renewable energy

Procedia PDF Downloads 373
551 The Media and Reportage of Boko Haram Insurgency in Nigeria

Authors: Priscilla Marcus

Abstract:

The mass media was a force to reckon with in the struggle and attainment of Nigeria’s independence in 1960 and since then, the Nigerian media has carved a niche for itself in performing its traditional role of education, information, entertainment, shaping of opinions and swinging of views of the society on knotty national issues. Boko Haram insurgency in Nigeria which emerged from an unnoticed, negligible and quiet beginning, has turned out daring, monstrous and unstoppable. This paper examines The Media and Reportage of Boko Haram Insurgency in Nigeria and to suggest strategies the mass media could adopt in combating this form of terrorism. Data for the study were collected from a variety of sources including the print and electronic media. The major observation of this study is that the mass media have an enormous role to play if Boko Haram’s activities are to be combated. It argued that even though the media houses are just doing their job – reporting the incident(s) as they occur, thus keeping the citizens abreast of facts; the rate at which news keeps coming regarding the activities of the sect has portrayed the media as information dissemination and terror campaign spread. It also argued that the ceaseless reporting has not translated to a decrease in the activities of the sect or increase in the level of government actions to check the insurgency. However, the information being disseminated is enlightening the populace and also creating an atmosphere of panic and insecurity. It further argued that the media should move beyond mere recitation of events to providing the public with knowledge needed to make things better. This is because the sect has been accorded too much undeserved and unnecessary publicity while the government on the other hand has been portrayed, albeit indirectly as a weak organization incapable of handling the ‘more organized’ Boko Haram. The study, concluded that, to effectively address the problem of this form of terrorism in Nigeria, the media have to brace up to the task of uncovering activities of the sect in appreciation of their watch-dog role.

Keywords: Boko Haram, insurgency, mass media, Nigeria

Procedia PDF Downloads 326
550 Light Car Assisted by PV Panels

Authors: Soufiane Benoumhani, Nadia Saifi, Boubekeur Dokkar, Mohamed Cherif Benzid

Abstract:

This work presents the design and simulation of electric equipment for a hybrid solar vehicle. The new drive train of this vehicle is a parallel hybrid system which means a vehicle driven by a great percentage of an internal combustion engine with 49.35 kW as maximal power and electric motor only as assistance when is needed. This assistance is carried out on the rear axle by a single electric motor of 7.22 kW as nominal power. The motor is driven by 12 batteries connecting in series, which are charged by three PV panels (300 W) installed on the roof and hood of the vehicle. The individual components are modeled and simulated by using the Matlab Simulink environment. The whole system is examined under different load conditions. The reduction of CO₂ emission is obtained by reducing fuel consumption. With the use of this hybrid system, fuel consumption can be reduced from 6.74 kg/h to 5.56 kg/h when the electric motor works at 100 % of its power. The net benefit of the system reaches 1.18 kg/h as fuel reduction at high values of power and torque.

Keywords: light car, hybrid system, PV panel, electric motor

Procedia PDF Downloads 121
549 Influence of Hydrophobic Surface on Flow Past Square Cylinder

Authors: S. Ajith Kumar, Vaisakh S. Rajan

Abstract:

In external flows, vortex shedding behind the bluff bodies causes to experience unsteady loads on a large number of engineering structures, resulting in structural failure. Vortex shedding can even turn out to be disastrous like the Tacoma Bridge failure incident. We need to have control over vortex shedding to get rid of this untoward condition by reducing the unsteady forces acting on the bluff body. In circular cylinders, hydrophobic surface in an otherwise no-slip surface is found to be delaying separation and minimizes the effects of vortex shedding drastically. Flow over square cylinder stands different from this behavior as separation can takes place from either of the two corner separation points (front or rear). An attempt is made in this study to numerically elucidate the effect of hydrophobic surface in flow over a square cylinder. A 2D numerical simulation has been done to understand the effects of the slip surface on the flow past square cylinder. The details of the numerical algorithm will be presented at the time of the conference. A non-dimensional parameter, Knudsen number is defined to quantify the slip on the cylinder surface based on Maxwell’s equation. The slip surface condition of the wall affects the vorticity distribution around the cylinder and the flow separation. In the numerical analysis, we observed that the hydrophobic surface enhances the shedding frequency and damps down the amplitude of oscillations of the square cylinder. We also found that the slip has a negative effect on aerodynamic force coefficients such as the coefficient of lift (CL), coefficient of drag (CD) etc. and hence replacing the no slip surface by a hydrophobic surface can be treated as an effective drag reduction strategy and the introduction of hydrophobic surface could be utilized for reducing the vortex induced vibrations (VIV) and is found as an effective method in controlling VIV thereby controlling the structural failures.

Keywords: drag reduction, flow past square cylinder, flow control, hydrophobic surfaces, vortex shedding

Procedia PDF Downloads 375
548 Effects of Heat Source Position on Heat Transfer in an Inclined Square Enclosure Filled with Nanofluids

Authors: Khamis Al Kalbani

Abstract:

The effects of a uniform heat source position on the heat transfer flow inside an inclined square enclosure filled with different types of nanofluids having various shapes of the nanoparticles are investigated numerically following one component thermal equilibrium model. The effects of the Brownian diffusion of the nanoparticles, magnetic field intensity and orientation are taken into consideration in nanofluid modeling. The heat source is placed in the middle of a wall of the enclosure while the opposite wall of it is kept at different temperature. The other walls of the enclosure are kept insulated. The results indicate that the heat source position significantly controls the heat transfer rates of the nanofluids. The distributions of the average heat transfer rates varying the position of the heat source with respect to the geometry inclination angle are calculated for the first time. The outcomes of the present research may be helpful for designing solar thermal collectors, radiators, building insulators and advanced cooling of a nuclear system.

Keywords: heat source, inclined, square enclosure, nanofluids

Procedia PDF Downloads 306
547 Modeling of Enthalpy and Heat Capacity of Phase-Change Materials

Authors: Igor Medved, Anton Trnik, Libor Vozar

Abstract:

Phase-change materials (PCMs) are of great interest in the applications where a temperature level needs to be maintained and/or where there is demand for thermal energy storage. Examples are storage of solar energy, cold, and space heating/cooling of buildings. During a phase change, the enthalpy vs. temperature plot of PCMs shows a jump and there is a distinct peak in the heat capacity plot. We present a theoretical description from which these jumps and peaks can be obtained. We apply our theoretical results to fit experimental data with very good accuracy for selected materials and changes between two phases. The development is based on the observation that PCMs are polycrystalline; i.e., composed of many single-crystalline grains. The enthalpy and heat capacity are thus interpreted as averages of the contributions from the individual grains. We also show how to determine the baseline and excess part of the heat capacity and thus the latent heat corresponding to the phase change.

Keywords: averaging, enthalpy jump, heat capacity peak, phase change

Procedia PDF Downloads 459
546 Exploring Wheel-Motion Energy Sources for Energy Harvesting Based on Electromagnetic Effect: Experimental and Numerical Investigation

Authors: Mohammed Alaa Alwafaie, Bela Kovacs

Abstract:

With the rapid emergence and evolution of renewable energy sources like wind and solar power, there is an increasing demand for effective energy harvester architectures. This paper focuses on investigating the concept of energy harvesting using a wheel-motion energy source. The proposed method involves the placement of magnets and copper coils inside the hubcap rod of a wheel. When the wheel is set in motion, following Faraday's Law, the movement of the magnet within the coil induces an electric current. The paper includes an experiment to measure the output voltage of electromagnetics, as well as a numerical simulation to further explore the potential of this energy harvesting approach. By harnessing the rotational motion of wheels, this research aims to contribute to the development of innovative techniques for generating electrical power in a sustainable and efficient manner.

Keywords: harvesting energy, electromagnetic, hubcap rod wheel, magnet movement inside coil, faraday law

Procedia PDF Downloads 77
545 Hybrid Dynamic Approach to Optimize the Impact of Shading Design and Control on Electrical Energy Demand

Authors: T. Parhizkar, H. Jafarian, F. Aramoun, Y. Saboohi

Abstract:

Applying motorized shades have substantial effect on reducing energy consumption in building sector. Moreover, the combination of motorized shades with lighting systems and PV panels can lead to considerable reduction in the energy demand of buildings. In this paper, a model is developed to assess and find an optimum combination from shade designs, lighting control systems (dimming and on/off) and implementing PV panels in shades point of view. It is worth mentioning that annual saving for all designs is obtained during hourly simulation of lighting, solar heat flux and electricity generation with the use of PV panel. From 12 designs in general, three designs, two lighting control systems and PV panel option is implemented for a case study. The results illustrate that the optimum combination causes a saving potential of 792kW.hr per year.

Keywords: motorized shades, daylight, cooling load, shade control, hourly simulation

Procedia PDF Downloads 171
544 Semi-Automatic Design and Fabrication of Water Waste Cleaning Machine

Authors: Chanida Tangjai Benchalak Muangmeesri, Dechrit Maneetham

Abstract:

Collection of marine garbage in the modern world, where technology is vital to existence. Consequently, technology can assist in reducing the duplicate labor in the subject of collecting trash in the water that must be done the same way repeatedly owing to the consequence of suffering an emerging disease or COVID-19. This is due to the rapid advancement of technology. As a result, solid trash and plastic garbage are increasing. Agricultural gardens, canals, ponds, and water basins are all sources of water. Building boat-like instruments for rubbish collection in the water will be done this time. It has two control options, boat control via remote control and boat control via an Internet of Things system. A solar panel with a power output of 40 watts powers the system being able to store so accurate and precise waste collection, allowing for thorough water cleaning. The primary goals are to keep the water's surface clean and assess its quality to support the aquatic ecology.

Keywords: automatic boat, water treatment, cleaning machine, iot

Procedia PDF Downloads 91
543 Photocatalytic Degradation of Organic Pollutants Using Strontium Titanate Synthesized by Electrospinning Method

Authors: Hui-Hsin Huang, Yi-Feng Lin, Che-Chia Hu

Abstract:

To date, photocatalytic wastewater treatment using solar energy has attracted considerable attention. In this study, strontium titanates with various morphologies, i.e., nanofibers and cubic-like particles, were prepared as photocatalysts using the electrospinning (ES), solid-state (SS), and sol-gel (SG) methods. X-ray diffraction (XRD) analysis showed that ES and SS can be assigned to pure phase SrTiO3, while SG was referred to Sr2TiO4. These samples displayed optical absorption edges at 385-395 nm, indicating they can be activated in UV light irradiation. Scanning electron microscope (SEM) analyses revealed that ES SrTiO3 has a uniform fibrous structure with length and diameter of several microns and 100-200 nm, respectively. After loading of nanoparticulate Ag as a co-catalyst onto the surface of strontium titanates, ES sample exhibited highest photocatalytic activity to degrade methylene orange dye solution in comparison to that of SS and SG ones. These results indicate that Ag-loaded ES SrTiO3, which has a desirable SrTiO3 phase and a facile electron transfer along the preferential direction in fibrous structure, can be a promising photocatalyst.

Keywords: photocatalytic degradation, strontium titanate, electrospinning, co-catalyst

Procedia PDF Downloads 267
542 Potential Applications and Future Prospects of Zinc Oxide Thin Films

Authors: Temesgen Geremew

Abstract:

ZnO is currently receiving a lot of attention in the semiconductor industry due to its unique characteristics. ZnO is widely used in solar cells, heat-reflecting glasses, optoelectronic bias, and detectors. In this composition, we provide an overview of the ZnO thin flicks' packages, methods of characterization, and implicit operations. They consist of Transmission spectroscopy, Raman spectroscopy, Field emigration surveying electron microscopy, and X-ray diffraction. This review content also demonstrates how ZnO thin flicks function in electrical components for piezoelectric bias, optoelectronics, detectors, and renewable energy sources. Zinc oxide (ZnO) thin films offer a captivating tapestry of possibilities due to their unique blend of electrical, optical, and mechanical properties. This review delves into the realm of their potential applications and future prospects, highlighting the pivotal contributions of research endeavors aimed at tailoring their functionalities.

Keywords: Zinc oxide, raman spectroscopy, thin films, piezoelectric devices

Procedia PDF Downloads 84
541 Education as a Tool for Counterterrorism to Promote Peace and Social Justice: The Role of Sheikh Zayed Islamic Centre Pakistan

Authors: Ishtiaq Ahmad Gondal, Mubasher Hussain

Abstract:

Although the world always has spent a lot to counter the terror, thousands of millions of dollars have been spent in this regard after 9/11 that result to thwart some dangerous plots of terrorists. It is also un-ignorable that the terrorists, keeping the counterterrorist actions in their mind, always planned new ways for their operations, yet there is one thing still common in most terrorists' attacks: to use the label of religion, regardless any specific religion, in any form. The terrorism, in past few years, has also hit state's security, its consistency and coherence for achieving their cultural, political and military objectives. So, if they are not treated harshly for making the people's minds and their society dirty they will continue spreading chaos, anarchy and destruction among the ignorant and innocent people. Australia is doing its best to eliminate terrorism by using different tools such as by educating people and reducing poverty. There is still need to improve the tool of education as it can be used as one of the most effective tools to counter the terrorism. It is, as this paper will highlight, the need of contemporary time for establishing some high level educational centers that can educate people and keep them safe from any kind of terror incident. This study also concluded that common man, to keep himself saved from such activities and incidents, can be educated through public awareness movements and campaigns on media and at social gatherings. There is, according to the study, a need to reorganize the curriculum taught in different educational institutions especially in Islamic Schools (Madāris) that are assumed by some western writers as place of extremists, for the better understanding of moral and social obligations, fundamental rights, religious beliefs as well as cultural and social values to promote social justice and equality. This paper is an attempt to show the role of the Sheikh Zayed Islamic Centre in this regard.

Keywords: social justice, counterterrorism, educational policy, religion, peace, terrorism

Procedia PDF Downloads 110
540 Sea Border Dispute between Greece and Turkey in the Mediterrenean: Implications for Turkey’s Maritime Security and Its Military Spending

Authors: Aslihan Caliskan

Abstract:

The term Mediterranean comes from the Latin “mediterraneus” (Medius, "middle" plus Terra, "land, earth"). For the ancient Romans, the Mediterranean was the center of the earth as they knew it. The desire to gain control of the Mediterranean has led to disputes between many nations throughout history, some of which continue to this day. The recent major natural gas discoveries in the Mediterranean have aggravated ongoing tensions in some neighboring countries. The sea border dispute between Turkey and Greece & Greek-Cypriot side is one of the most critical conflicts in the Mediterranean Sea region. This unresolved dispute has many implications for all countries involved, as well as for third parties that have direct or indirect interests in the region. The research question of this context is what are the implications of this controversial sea border problem on the maritime security of Turkey and its military spending. In this paper, the quantitative method is used. Records from the Turkish Defense Ministry, data from the Turkish naval forces have been obtained. In addition, literature research and the United Nations Convention on the Law of the Sea (UNCLOS) application cases were evaluated, and an incident analysis was carried out. This research shows that the sea border dispute issue has a significant impact on the Turkish military both in terms of the structures required to ensure maritime and border security, as well as rising military costs and its macroeconomic implications. The paper begins with a brief overview of relevant principles and methods applied for delimiting th esea borders. The paper continues with a brief description and a background of the sea border dispute between Turkey and Greece & Greek-Cypriot side in the light of the United Nations Convention on the Law of the Sea (UNCLOS). An analysis of the implications of the dispute on Turkey’s maritime security and its military spending is provided in the following chapters. The paper ends with concluding remarks of the author, including suggestions for the way forward.

Keywords: sea border security, mediterranean sea, greece-turkey dispute, limitation of sea, united nations convention on the law of the sea (UNCLOS)

Procedia PDF Downloads 186
539 The Manufacturing of Metallurgical Grade Silicon from Diatomaceous Silica by an Induction Furnace

Authors: Shahrazed Medeghri, Saad Hamzaoui, Mokhtar Zerdali

Abstract:

The metallurgical grade silicon (MG-Si) is obtained from the reduction of silica (SiO2) in an induction furnace or an electric arc furnace. Impurities inherent in reduction process also depend on the quality of the raw material used. Among the applications of the silicon, it is used as a substrate for the photovoltaic conversion of solar energy and this conversion is wider as the purity of the substrate is important. Research is being done where the purpose is looking for new methods of manufacturing and purification of silicon, as well as new materials that can be used as substrates for the photovoltaic conversion of light energy. In this research, the technique of production of silicon in an induction furnace, using a high vacuum for fusion. Diatomaceous Silica (SiO2) used is 99 mass% initial purities, the carbon used is 6N of purity and the particle size of 63μm as starting materials. The final achieved purity of the material was above 50% by mass. These results demonstrate that this method is a technically reliable, and allows obtaining a better return on the amount 50% of silicon.

Keywords: induction furnaces, amorphous silica, carbon microstructure, silicon

Procedia PDF Downloads 404
538 Energy System for Algerian Green Building in Tlemcen, North Africa

Authors: M. A. Boukli Hacene, N. E.Chabane Sari, A. Benzair

Abstract:

This article highlights a method for natural heating and cooling of systems in areas of moderate climate. Movement of air is generated inside a space by an underground piping system. In this paper, we discuss a feasibility study in Algeria of air-conditioning using a ground source heat pump (GSHP) with vertical mounting, coupled with a solar collector. This study consists of modeling ground temperature at different depths, for a clay soil in the city of Tlemcen. Our model is developed from the non-stationary heat equation for a homogeneous medium and takes into consideration the soil thermal diffusivity. It uses the daily ambient temperature during a typical year for the locality of Tlemcen. The study shows the feasibility of using a heating/cooling GSHP in the town of Tlemcen for the particular soil type; and indicates that the duration of air flow in the borehole has a major influence on the outgoing temperature drilling.

Keywords: green building, heat pump, insulation, climate change

Procedia PDF Downloads 219
537 Human Factors Integration of Chemical, Biological, Radiological and Nuclear Response: Systems and Technologies

Authors: Graham Hancox, Saydia Razak, Sue Hignett, Jo Barnes, Jyri Silmari, Florian Kading

Abstract:

In the event of a Chemical, Biological, Radiological and Nuclear (CBRN) incident rapidly gaining, situational awareness is of paramount importance and advanced technologies have an important role to play in improving detection, identification, monitoring (DIM) and patient tracking. Understanding how these advanced technologies can fit into current response systems is essential to ensure they are optimally designed, usable and meet end-users’ needs. For this reason, Human Factors (Ergonomics) methods have been used within an EU Horizon 2020 project (TOXI-Triage) to firstly describe (map) the hierarchical structure in a CBRN response with adapted Accident Map (AcciMap) methodology. Secondly, Hierarchical Task Analysis (HTA) has been used to describe and review the sequence of steps (sub-tasks) in a CBRN scenario response as a task system. HTA methodology was then used to map one advanced technology, ‘Tag and Trace’, which tags an element (people, sample and equipment) with a Near Field Communication (NFC) chip in the Hot Zone to allow tracing of (monitoring), for example casualty progress through the response. This HTA mapping of the Tag and Trace system showed how the provider envisaged the technology being used, allowing for review and fit with the current CBRN response systems. These methodologies have been found to be very effective in promoting and supporting a dialogue between end-users and technology providers. The Human Factors methods have given clear diagrammatic (visual) representations of how providers see their technology being used and how end users would actually use it in the field; allowing for a more user centered approach to the design process. For CBRN events usability is critical as sub-optimum design of technology could add to a responders’ workload in what is already a chaotic, ambiguous and safety critical environment.

Keywords: AcciMap, CBRN, ergonomics, hierarchical task analysis, human factors

Procedia PDF Downloads 222
536 Characterization Techniques for Studying Properties of Nanomaterials

Authors: Nandini Sharma

Abstract:

Monitoring the characteristics of a nanostructured material comprises measurements of structural, morphological, mechanical, optical and electronic properties of the synthesized nanopowder and different layers and coatings of nanomaterials coated on transparent conducting oxides (TCOs) substrates like fluorine doped tin oxide (FTO) or Indium doped tin oxide (ITO). This article focuses on structural and optical characterization with emphasis on measurements of the photocatalytic efficiency as a photocatalyst and their interpretation to extract relevant information about various TCOs and materials, their emitter regions, and surface passivation. It also covers a brief description of techniques based on photoluminescence that can portray high resolution pictorial graphs for application as solar energy devices. With the advancement in the scientific techniques, detailed information about the structural, morphological, and optical properties can be investigated, which is further useful for engineering and designing of an efficient device. The common principles involved in the prevalent characterization techniques aid to illustrate the range of options that can be broadened in near future for acurate device characterization and diagnosis.

Keywords: characterization, structural, optical, nanomaterial

Procedia PDF Downloads 146
535 Barrier Lowering in Contacts between Graphene and Semiconductor Materials

Authors: Zhipeng Dong, Jing Guo

Abstract:

Graphene-semiconductor contacts have been extensively studied recently, both as a stand-alone diode device for potential applications in photodetectors and solar cells, and as a building block to vertical transistors. Graphene is a two-dimensional nanomaterial with vanishing density-of-states at the Dirac point, which differs from conventional metal. In this work, image-charge-induced barrier lowering (BL) in graphene-semiconductor contacts is studied and compared to that in metal Schottky contacts. The results show that despite of being a semimetal with vanishing density-of-states at the Dirac point, the image-charge-induced BL is significant. The BL value can be over 50% of that of metal contacts even in an intrinsic graphene contacted to an organic semiconductor, and it increases as the graphene doping increases. The dependences of the BL on the electric field and semiconductor dielectric constant are examined, and an empirical expression for estimating the image-charge-induced BL in graphene-semiconductor contacts is provided.

Keywords: graphene, semiconductor materials, schottky barrier, image charge, contacts

Procedia PDF Downloads 303
534 The Association of Slope Failure and Lineament Density along the Ranau-Tambunan Road, Sabah, Malaysia

Authors: Norbert Simon, Rodeano Roslee, Abdul Ghani Rafek, Goh Thian Lai, Azimah Hussein, Lee Khai Ern

Abstract:

The 54 km stretch of Ranau-Tambunan (RTM) road in Sabah is subjected to slope failures almost every year. This study is focusing on identifying section of roads that are susceptible to failure based on temporal landslide density and lineament density analyses. In addition to the analyses, the rock slopes in several sections of the road were assessed using the geological strength index (GSI) technique. The analysis involved 148 landslides that were obtained in 1978, 1994, 2009 and 2011. The landslides were digitized as points and the point density was calculated based on every 1km2 of the road. The lineaments of the area was interpreted from Landsat 7 15m panchromatic band. The lineament density was later calculated based on every 1km2 of the area using similar technique with the slope failure density calculation. The landslide and lineament densities were classified into three different classes that indicate the level of susceptibility (low, moderate, high). Subsequently, the two density maps were overlap to produce the final susceptibility map. The combination of both high susceptibility classes from these maps signifies the high potential of slope failure in those locations in the future. The final susceptibility map indicates that there are 22 sections of the road that are highly susceptible. Seven rock slopes were assessed along the RTM road using the GSI technique. It was found from the assessment that rock slopes along this road are highly fractured, weathered and can be classified into fair to poor categories. The poor condition of the rock slope can be attributed to the high lineament density that presence in the study area. Six of the rock slopes are located in the high susceptibility zones. A detailed investigation on the 22 high susceptibility sections of the RTM road should be conducted due to their higher susceptibility to failure, in order to prevent untoward incident to road users in the future.

Keywords: GSI, landslide, landslide density, landslide susceptibility, lineament density

Procedia PDF Downloads 398
533 Potential Assessment and Techno-Economic Evaluation of Photovoltaic Energy Conversion System: A Case of Ethiopia Light Rail Transit System

Authors: Asegid Belay Kebede, Getachew Biru Worku

Abstract:

The Earth and its inhabitants have faced an existential threat as a result of severe manmade actions. Global warming and climate change have been the most apparent manifestations of this threat throughout the world, with increasingly intense heat waves, temperature rises, flooding, sea-level rise, ice sheet melting, and so on. One of the major contributors to this disaster is the ever-increasing production and consumption of energy, which is still primarily fossil-based and emits billions of tons of hazardous GHG. The transportation industry is recognized as the biggest actor in terms of emissions, accounting for 24% of direct CO2 emissions and being one of the few worldwide sectors where CO2 emissions are still growing. Rail transportation, which includes all from light rail transit to high-speed rail services, is regarded as one of the most efficient modes of transportation, accounting for 9% of total passenger travel and 7% of total freight transit. Nonetheless, there is still room for improvement in the transportation sector, which might be done by incorporating alternative and/or renewable energy sources. As a result of these rapidly changing global energy situations and rapidly dwindling fossil fuel supplies, we were driven to analyze the possibility of renewable energy sources for traction applications. Even a small achievement in energy conservation or harnessing might significantly influence the total railway system and have the potential to transform the railway sector like never before. As a result, the paper begins by assessing the potential for photovoltaic (PV) power generation on train rooftops and existing infrastructure such as railway depots, passenger stations, traction substation rooftops, and accessible land along rail lines. As a result, a method based on a Google Earth system (using Helioscopes software) is developed to assess the PV potential along rail lines and on train station roofs. As an example, the Addis Ababa light rail transit system (AA-LRTS) is utilized. The case study examines the electricity-generating potential and economic performance of photovoltaics installed on AALRTS. As a consequence, the overall capacity of solar systems on all stations, including train rooftops, reaches 72.6 MWh per day, with an annual power output of 10.6 GWh. Throughout a 25-year lifespan, the overall CO2 emission reduction and total profit from PV-AA-LRTS can reach 180,000 tons and 892 million Ethiopian birrs, respectively. The PV-AA-LRTS has a 200% return on investment. All PV stations have a payback time of less than 13 years, and the price of solar-generated power is less than $0.08/kWh, which can compete with the benchmark price of coal-fired electricity. Our findings indicate that PV-AA-LRTS has tremendous potential, with both energy and economic advantages.

Keywords: sustainable development, global warming, energy crisis, photovoltaic energy conversion, techno-economic analysis, transportation system, light rail transit

Procedia PDF Downloads 76
532 Learning through Reflective Practice of Nursing Students in the Delivery Room: A Qualitative Research

Authors: Peeranan Wisanskoonwong, Sumitta Sawangtook

Abstract:

Practicum in Midwifery II is the subject that affects most students to be stressed and anxious because they lack of experiences and self-confidence in delivery baby. This study is a qualitative research. That research objectives were (1) to study learning through reflective practice of nursing students (2) to explain the effects of learning through reflective practice of nursing students in the delivery room. The selected key informant method was criterion-based selection. Thirty-two of fourth-year nursing students in Kuakarun Faculty of nursing who practiced in Delivery room at Taksin Hospital in academic year 2014 were selected. Data collection was data triangulation which consisted of in-depth interview, group discussion and reading students’ reflective practice journal. The research instruments were students’ reflective practice journal, semi-structured questionnaires for in-depth interview, group discussion. Data analysis was thematic analysis. The research result found that: The learning method through reflective practice of nursing students in the delivery room were (1) reflective practice journal (2) dialogue (3) critical thinking and problem solving (4) incident analysis (5) self-criticism (6) observation and evaluation of practice. There were eight issues that students learned through their reflective practice were that (1) students' ethics and morality. (2) students' knowledge and comprehension (3) creative thinking of students (4) communications and collaboration (5) experiential learning of students (6) students’memories and impressions (7) students’experience in delivery baby (8) self-learning of students. Learning through reflective practice supported students’ awareness in improving knowledge and learning continuously and systematically. It helped to adjust the attitude to learning and leadership to be careful which help develop their skills, including critical thinking and understand themselves and understand others. Recommendation for applying research results: midwifery and nursing lecturers can apply these results to be a guide for development their clinical teaching in delivery rooms and other wards.

Keywords: learning, reflection, birth, qualitative research

Procedia PDF Downloads 280
531 Design, Control and Implementation of 300Wp Single Phase Photovoltaic Micro Inverter for Village Nano Grid Application

Authors: Ramesh P., Aby Joseph

Abstract:

Micro Inverters provide Module Embedded Solution for harvesting energy from small-scale solar photovoltaic (PV) panels. In addition to higher modularity & reliability (25 years of life), the MicroInverter has inherent advantages such as avoidance of long DC cables, eliminates module mismatch losses, minimizes partial shading effect, improves safety and flexibility in installations etc. Due to the above-stated benefits, the renewable energy technology with Solar Photovoltaic (PV) Micro Inverter becomes more widespread in Village Nano Grid application ensuring grid independence for rural communities and areas without access to electricity. While the primary objective of this paper is to discuss the problems related to rural electrification, this concept can also be extended to urban installation with grid connectivity. This work presents a comprehensive analysis of the power circuit design, control methodologies and prototyping of 300Wₚ Single Phase PV Micro Inverter. This paper investigates two different topologies for PV Micro Inverters, based on the first hand on Single Stage Flyback/ Forward PV Micro-Inverter configuration and the other hand on the Double stage configuration including DC-DC converter, H bridge DC-AC Inverter. This work covers Power Decoupling techniques to reduce the input filter capacitor size to buffer double line (100 Hz) ripple energy and eliminates the use of electrolytic capacitors. The propagation of the double line oscillation reflected back to PV module will affect the Maximum Power Point Tracking (MPPT) performance. Also, the grid current will be distorted. To mitigate this issue, an independent MPPT control algorithm is developed in this work to reject the propagation of this double line ripple oscillation to PV side to improve the MPPT performance and grid side to improve current quality. Here, the power hardware topology accepts wide input voltage variation and consists of suitably rated MOSFET switches, Galvanically Isolated gate drivers, high-frequency magnetics and Film capacitors with a long lifespan. The digital controller hardware platform inbuilt with the external peripheral interface is developed using floating point microcontroller TMS320F2806x from Texas Instruments. The firmware governing the operation of the PV Micro Inverter is written in C language and was developed using code composer studio Integrated Development Environment (IDE). In this work, the prototype hardware for the Single Phase Photovoltaic Micro Inverter with Double stage configuration was developed and the comparative analysis between the above mentioned configurations with experimental results will be presented.

Keywords: double line oscillation, micro inverter, MPPT, nano grid, power decoupling

Procedia PDF Downloads 134
530 Valorization of Residues from Forest Industry for the Generation of Energy

Authors: M. A. Amezcua-Allieri, E. Torres, J. A. Zermeño Eguía-Lis, M. Magdaleno, L. A. Melgarejo, E. Palmerín, A. Rosas, D. López, J. Aburto

Abstract:

The use of biomass to produce renewable energy is one of the forms that can be used to reduce the impact of energy production. Like any other energy resource, there are limitations for biomass use, and it must compete not only with fossil fuels but also with other renewable energy sources such as solar or wind energy. Combustion is currently the most efficient and widely used waste-to-energy process, in the areas where direct use of biomass is possible, without the need to make large transfers of raw material. Many industrial facilities can use agricultural or forestry waste, straw, chips, bagasse, etc. in their thermal systems without making major transformations or adjustments in the feeding to the ovens, making this waste an attractive and cost-effective option in terms of availability, access, and costs. In spite of the facilities and benefits, the environmental reasons (emission of gases and particulate material) are decisive for its use for energy purpose. This paper describes a valorization of residues from forest industry to generate energy, using a case study.

Keywords: bioenergy, forest waste, life-cycle assessment, waste-to-energy, electricity

Procedia PDF Downloads 305
529 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment

Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji

Abstract:

Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.

Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems

Procedia PDF Downloads 94
528 Design and Sensitivity Analysis of Photovoltaic/Thermal Solar Collector

Authors: H. M. Farghally, N. M. Ahmed, H. T. El-Madany, D. M. Atia, F. H. Fahmy

Abstract:

Energy is required in almost every aspect of human activities and development of any nation in this world. Increasing fossil fuel price, energy security and climate change have important bearings on sustainable development of any nation. The renewable energy technology is considered one of the drastic approaches taken over the world to reduce the energy problem. The preservation of vegetables by freezing is one of the most important methods of retaining quality in agricultural products over long-term storage periods. Freezing factories show high demand of energy for both heat and electricity; the hybrid Photovoltaic/Thermal (PV/T) systems could be used in order to meet this requirement. This paper presents PV/T system design for freezing factory. Also, the complete mathematical modeling and Matlab Simulink of PV/T collector is introduced. The sensitivity analysis for the manufacturing parameters of PV/T collector is carried out to study their effect on the thermal and electrical efficiency.

Keywords: renewable energy, hybrid PV/T system, sensitivity analysis, ecological sciences

Procedia PDF Downloads 292
527 Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia

Authors: Hussain Ali Bekhet, Nor Hamisham Harun

Abstract:

The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations.

Keywords: Malaysia, non-renewable energy, renewable energy, sustainable energy

Procedia PDF Downloads 403
526 Removal of Maxilon Red Dye by Adsorption and Photocatalysis: Optimum Conditions, Equilibrium, and Kinetic Studies

Authors: Aid Asma, Dahdouh Nadjib, Amokrane Samira, Ladjali Samir, Nibou Djamel

Abstract:

The present work has for main objective the elimination of the textile dye Maxilon Red (MR) by two processes, adsorption on activated clay followed by photocatalysis in presence of ZnO as a photocatalyst. The influence of the physical parameters like the initial pH, adsorbent dose of the activated clay, the MR concentration and temperature has been studied. The best adsorption yield occurs at neutral pH ~ 7 within 60 min with an uptake percentage of 97% for a concentration of 25 mg L⁻¹ and a dose of 0.5 g L⁻¹. The adsorption data were suitably fitted by the Langmuir model with a maximum capacity of 176 mg g⁻¹. The MR adsorption is well described by the pseudo second order kinetic. The second part of this work was dedicated to the photocatalytic degradation onto ZnO under solar irradiation of the residual MR concentration, remained after adsorption. The effect of ZnO dose and MR concentration has also been investigated. The parametric study showed that the elimination is very effective by this process, based essentially on the in situ generation of free radicals *OH which are non-selective and very reactive. The photodegradation process follows a first order kinetic model according to the Langmuir-Hinshelwood model.

Keywords: maxilon red, adsorption, photodegradation, ZnO, coupling

Procedia PDF Downloads 186
525 Crowdfunding for Saudi Arabia Green Projects

Authors: Saleh Komies, Mona Alharbi, Razan Alhayyani, Mozah Almulhim, Roseanne Khawaja, Ahmed Alradhi

Abstract:

One of the proposed solutions that faces some challenges is encouraging sustainable energy consumption across Saudi Arabia through crowdfunding platforms. To address these challenges, we need to determine the level of awareness of crowdfunding and green projects, as well as the preferences and willingness of Saudis to utilize crowdfunding as an alternative funding source for green projects in Saudi Arabia. In this study, we aim to determine the influence of environmental awareness and concern on the propensity to crowdfund green projects. The survey is being conducted as part of environmental initiatives to assess public perceptions and opinions on crowdfunding green projects in Saudi Arabia. A total of 450 responses to an online questionnaire distributed via convenience and snowball sampling were utilized for data analysis. The survey reveals that Saudis have a low understanding of crowdfunding concepts and a relatively high understanding of implementing green projects. The public is interested in crowdfunding green projects if there is a return on investment.

Keywords: crowdfunding, green projects, awareness, Saudi Arabia, energy, solar, wind

Procedia PDF Downloads 99
524 Experimental Performance of Vertical Diffusion Stills Utilizing Folded Sheets for Water Desalination

Authors: M. Mortada, A. Seleem, M. El-Morsi, M. Younan

Abstract:

The present study introduces the folding technology to be utilized for the first time in vertical diffusion stills. This work represents a model of the distillation process by utilizing chevron pattern of folded structure. An experimental setup has been constructed, to investigate the performance of the folded sheets in the vertical effect diffusion still for a specific range of operating conditions. An experimental comparison between the folded type and the flat type sheets has been carried out. The folded pattern showed a higher performance and there is an increase in the condensate to feed ratio that ranges from 20-30 % through the operating hot plate temperature that ranges through 60-90°C. In addition, a parametric analysis of the system using Design of Experiments statistical technique, has been developed using the experimental results to determine the effect of operating conditions on the system's performance and the best operating conditions of the system has been evaluated.

Keywords: chevron pattern, fold structure, solar distillation, vertical diffusion still

Procedia PDF Downloads 462