Search results for: public health communication
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16301

Search results for: public health communication

3011 Comparison of Sensitivity and Specificity of Pap Smear and Polymerase Chain Reaction Methods for Detection of Human Papillomavirus: A Review of Literature

Authors: M. Malekian, M. E. Heydari, M. Irani Estyar

Abstract:

Human papillomavirus (HPV) is one of the most common sexually transmitted infection, which may lead to cervical cancer as the main cause of it. With early diagnosis and treatment in health care services, cervical cancer and its complications are considered to be preventable. This study was aimed to compare the efficiency, sensitivity, and specificity of Pap smear and polymerase chain reaction (PCR) in detecting HPV. A literature search was performed in Google Scholar, PubMed and SID databases using the keywords 'human papillomavirus', 'pap smear' and 'polymerase change reaction' to identify studies comparing Pap smear and PCR methods for the detection. No restrictions were considered.10 studies were included in this review. All samples that were positive by pop smear were also positive by PCR. However, there were positive samples detected by PCR which was negative by pop smear and in all studies, many positive samples were missed by pop smear technique. Although The Pap smear had high specificity, PCR based HPV detection was more sensitive method and had the highest sensitivity. In order to promote the quality of detection and high achievement of the maximum results, PCR diagnostic methods in addition to the Pap smear are needed and Pap smear method should be combined with PCR techniques according to the high error rate of Pap smear in detection.

Keywords: human papillomavirus, cervical cancer, pap smear, polymerase chain reaction

Procedia PDF Downloads 132
3010 The Impact of ChatGPT on the Healthcare Domain: Perspectives from Healthcare Majors

Authors: Su Yen Chen

Abstract:

ChatGPT has shown both strengths and limitations in clinical, educational, and research settings, raising important concerns about accuracy, transparency, and ethical use. Despite an improved understanding of user acceptance and satisfaction, there is still a gap in how general AI perceptions translate into practical applications within healthcare. This study focuses on examining the perceptions of ChatGPT's impact among 266 healthcare majors in Taiwan, exploring its implications for their career development, as well as its utility in clinical practice, medical education, and research. By employing a structured survey with precisely defined subscales, this research aims to probe the breadth of ChatGPT's applications within healthcare, assessing both the perceived benefits and the challenges it presents. Additionally, to further enhance the comprehensiveness of our methodology, we have incorporated qualitative data collection methods, which provide complementary insights to the quantitative findings. The findings from the survey reveal that perceptions and usage of ChatGPT among healthcare majors vary significantly, influenced by factors such as its perceived utility, risk, novelty, and trustworthiness. Graduate students and those who perceive ChatGPT as more beneficial and less risky are particularly inclined to use it more frequently. This increased usage is closely linked to significant impacts on personal career development. Furthermore, ChatGPT's perceived usefulness and novelty contribute to its broader impact within the healthcare domain, suggesting that both innovation and practical utility are key drivers of acceptance and perceived effectiveness in professional healthcare settings. Trust emerges as an important factor, especially in clinical settings where the stakes are high. The trust that healthcare professionals place in ChatGPT significantly affects its integration into clinical practice and influences outcomes in medical education and research. The reliability and practical value of ChatGPT are thus critical for its successful adoption in these areas. However, an interesting paradox arises with regard to the ease of use. While making ChatGPT more user-friendly is generally seen as beneficial, it also raises concerns among users who have lower levels of trust and perceive higher risks associated with its use. This complex interplay between ease of use and safety concerns necessitates a careful balance, highlighting the need for robust security measures and clear, transparent communication about how AI systems work and their limitations. The study suggests several strategic approaches to enhance the adoption and integration of AI in healthcare. These include targeted training programs for healthcare professionals to increase familiarity with AI technologies, reduce perceived risks, and build trust. Ensuring transparency and conducting rigorous testing are also vital to foster trust and reliability. Moreover, comprehensive policy frameworks are needed to guide the implementation of AI technologies, ensuring high standards of patient safety, privacy, and ethical use. These measures are crucial for fostering broader acceptance of AI in healthcare, as the study contributes to enriching the discourse on AI's role by detailing how various factors affect its adoption and impact.

Keywords: ChatGPT, healthcare, survey study, IT adoption, behaviour, applcation, concerns

Procedia PDF Downloads 32
3009 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery

Authors: Chun-Lang Chang, Chun-Kai Liu

Abstract:

In this study, the patients that have undergone total knee replacement surgery from the 2010 National Health Insurance database were adopted as the study participants. The important factors were screened and selected through literature collection and interviews with physicians. Through the Cross Entropy Method (CE), Genetic Algorithm Logistic Regression (GALR), and Particle Swarm Optimization (PSO), the weights of the factors were obtained. In addition, the weights of the respective algorithms, coupled with the Excel VBA were adopted to construct the Case Based Reasoning (CBR) system. The results through statistical tests show that the GALR and PSO produced no significant differences, and the accuracy of both models were above 97%. Moreover, the area under the curve of ROC for these two models also exceeded 0.87. This study shall serve as a reference for medical staff as an assistance for clinical assessment of infections in order to effectively enhance medical service quality and efficiency, avoid unnecessary medical waste, and substantially contribute to resource allocations in medical institutions.

Keywords: Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization, Total Knee Replacement Surgery

Procedia PDF Downloads 324
3008 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine

Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji

Abstract:

The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.

Keywords: medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis

Procedia PDF Downloads 323
3007 Biogeochemical Study of Polycuclic Aromatic Hydrocarbons and Its Physiological Response in Mudskippre (B. dussumieri) along the North western Coasts of the Persian Gulf

Authors: Ali Mashinchian Moradi, Mahmood Sinaei

Abstract:

Study on the biomarkers to assess health status of marine ecosystems has an important value in biomonitoring of marine environment. Accordingly, accumulation of polycyclic aromatic hydrocarbons in sediment, water and tissues (liver and gill) of mudskipper (Boleophthalmus dussmieri) and some physiological responses like lysosomal membrane change in haemocytes and the Glutathione-S Transferase (GST) activity in the liver were measured in mudskippers. Samples were collected from five sites along the noth western cost of the Persian Gulf. PAHs concentration was measured by HPLC method. The activity of GST enzyme was analysed by spectrophotometric method. Total PAH concentration in coastal seawater, sediments, liver and gill tissues ranged between 0.80-18.34 ug/L, 113.550-3384.34 ng/g dw, 3.99-46.64 ng/g dw and 3.11-17.This study showed that PAH concentrations in this region are not higher than available standards. The findings revile that lysosomal membrane destabilization and liver GST activities are highly sensitive to PAHs in mudskipper, B. dussumieri. Sediment PAH concentrations were strongly correlated with biomarkers, indicating PAHs were biologically available to fish. Thus, mudskipper perceived to be good sentinel organism for PAH pollution biomonitoring.

Keywords: PAHs, biomarker, mudskipper, Persian Gulf

Procedia PDF Downloads 348
3006 Design of Evaluation for Ehealth Intervention: A Participatory Study in Italy, Israel, Spain and Sweden

Authors: Monika Jurkeviciute, Amia Enam, Johanna Torres Bonilla, Henrik Eriksson

Abstract:

Introduction: Many evaluations of eHealth interventions conclude that the evidence for improved clinical outcomes is limited, especially when the intervention is short, such as one year. Often, evaluation design does not address the feasibility of achieving clinical outcomes. Evaluations are designed to reflect upon clinical goals of intervention without utilizing the opportunity to illuminate effects on organizations and cost. A comprehensive design of evaluation can better support decision-making regarding the effectiveness and potential transferability of eHealth. Hence, the purpose of this paper is to present a feasible and comprehensive design of evaluation for eHealth intervention, including the design process in different contexts. Methodology: The situation of limited feasibility of clinical outcomes was foreseen in the European Union funded project called “DECI” (“Digital Environment for Cognitive Inclusion”) that is run under the “Horizon 2020” program with an aim to define and test a digital environment platform within corresponding care models that help elderly people live independently. A complex intervention of eHealth implementation into elaborate care models in four different countries was planned for one year. To design the evaluation, a participative approach was undertaken using Pettigrew’s lens of change and transformations, including context, process, and content. Through a series of workshops, observations, interviews, and document analysis, as well as a review of scientific literature, a comprehensive design of evaluation was created. Findings: The findings indicate that in order to get evidence on clinical outcomes, eHealth interventions should last longer than one year. The content of the comprehensive evaluation design includes a collection of qualitative and quantitative methods for data gathering which illuminates non-medical aspects. Furthermore, it contains communication arrangements to discuss the results and continuously improve the evaluation design, as well as procedures for monitoring and improving the data collection during the intervention. The process of the comprehensive evaluation design consists of four stages: (1) analysis of a current state in different contexts, including measurement systems, expectations and profiles of stakeholders, organizational ambitions to change due to eHealth integration, and the organizational capacity to collect data for evaluation; (2) workshop with project partners to discuss the as-is situation in relation to the project goals; (3) development of general and customized sets of relevant performance measures, questionnaires and interview questions; (4) setting up procedures and monitoring systems for the interventions. Lastly, strategies are presented on how challenges can be handled during the design process of evaluation in four different countries. The evaluation design needs to consider contextual factors such as project limitations, and differences between pilot sites in terms of eHealth solutions, patient groups, care models, national and organizational cultures and settings. This implies a need for the flexible approach to evaluation design to enable judgment over the effectiveness and potential for adoption and transferability of eHealth. In summary, this paper provides learning opportunities for future evaluation designs of eHealth interventions in different national and organizational settings.

Keywords: ehealth, elderly, evaluation, intervention, multi-cultural

Procedia PDF Downloads 325
3005 Ground Water Contamination by Tannery Effluents and Its Impact on Human Health in Peshawar, Pakistan

Authors: Fawad Ali, Muhammad Ateeq, Ikhtiar Khan

Abstract:

Ground water, a major source of drinking water supply in Peshawar has been severely contaminated by leather tanning industry. Effluents from the tanneries contain high concentration of chromium besides several other chemical species. Release of untreated effluents from the tanning industry has severely damaged surface and ground water, agriculture soil as well as vegetables and crops. Chromium is a well-known carcinogenic and mutagenic agent. Once in the human food chain, it causes multiple problems to the exposed population including various types of cancer, skin dermatitis, and DNA damage. In order to assess the extent of chromium and other heavy metals contamination, water samples were analyzed for heavy metals using Graphite Furnace Atomic Absorption Spectrometer (GFAAS, Analyst 700, Perkin Elmer). Total concentration of chromium was above the permissible limit (0.048 mg/l) in 85% of the groundwater (drinking water) samples. The concentration of cobalt, manganese, cadmium, nickel, lead, zinc and iron was also determined in the ground water, surface water, agriculture soil, and vegetables samples from the affected area.

Keywords: heavy metals, soil, groundwater, tannery effluents, food chain

Procedia PDF Downloads 347
3004 Rapid-Access Multispecialty Nurse-Led Tongue Tie Service: A Retrospective Evaluation of Cost-Effectiveness

Authors: Jia Yin Tan, Daniel Rambei, Kate Mann, Samuel price, Ahmed Aboelela

Abstract:

Introduction: Breastfeeding is a complex process, influenced by various factors. Tongue-tie may lead to breastfeeding difficulties due to an inability to suck effectively, causing sore nipples and poor infant weight gain. In the UK, most frenotomies on infants are performed by doctors, nurses, health visitors or midwives. Objectives: Evaluation of safety and efficacy of a multispecialty nurse-led rapid access tongue-tie service at Sheffield Children’s Hospital, run jointly by the ENT and paediatric surgery departments. Methodology: A retrospective observational study, including all patients attending the ENT and paediatric surgery nurse-led tongue tie clinics between 1/10/2021 and 30/09/2022. Results: During the study period there were 1135 referrals for frenotomy, with a mean of 15 days between referral to clinic episode. 86.8% of referred patients underwent frenotomy, with a complication rate of 0.1% and revision rate of 5.4%. Conclusions: Our findings suggest that our rapid access nurse-led outpatient tongue tie service is safe and efficacious, with low complication and revision rates. This suggests a potential for developing a community-based service, allowing safe and effective care closer to home.

Keywords: tongue tie, frenotomy, cost, nurse-led

Procedia PDF Downloads 113
3003 Simultaneous Removal of Arsenic and Toxic Metals from Contaminated Soil: a Pilot-Scale Demonstration

Authors: Juan Francisco Morales Arteaga, Simon Gluhar, Anela Kaurin, Domen Lestan

Abstract:

Contaminated soils are recognized as one of the most pressing global environmental problems. As is one of the most hazardous elements: chronic exposure to arsenic has devastating effects on health, cardiovascular diseases, cancer, and eventually death. Pb, Zn and Cd are very highly toxic metals that affect almost every organ in the body. With this in mind, new technologies for soil remediation processes are urgently needed. Calcareous artificially contaminated soil containing 231 mg kg-1 As and historically contaminated with Pb, Zn and Cd was washed with a 1:1.5 solid-liquid ratio of 90 mM EDTA, 100 mM oxalic acid, and 50 mM sodium dithionite to remove 59, 75, 29, and 53% of As, Pb, Zn, and Cd, respectively. To reduce emissions of residual EDTA and chelated metals from the remediated soil, zero valent iron (ZVI) was added (1% w/w) to the slurry of the washed soil immediately prior to rinsing. Experimental controls were conducted without the addition of ZVI after remediation. The use of ZVI reduced metal leachability and minimized toxic emissions 21 days after remediation. After this time, NH4NO3 extraction was performed to determine the mobility of toxic elements in the soil. In addition, Unified Human BioaccessibilityMethod (UBM) was performed to quantify the bioaccessibility levels of metals in stimulated human gastric and gastrointestinal phases.

Keywords: soil remediation, soil science, soil washing, toxic metals removal

Procedia PDF Downloads 176
3002 Distance Training Packages on Providing for Learner with Special Needs

Authors: Jareeluk Ratanaphan

Abstract:

The purposed of this research were; 1.To survey the teacher’s needs on knowledge about special education management for special needs learner 2.To development of distance training packages on providing for learner with special needs. 3. To study the effects of using the packages on trainee’s achievement. 4. To study the effects of using the packages on trainee’s opinion on the distance training packages. The design of the experiment was research and development. The research sample for survey were 86 teachers, and 22 teachers for study the effects of using the packages on achievement and opinion. The research instrument comprised: 1) training packages on special education management for special needs learner 2) achievement test 3) questionnaire. Mean, percentage, standard deviation, t-test and content analysis were used for data analysis. The findings of the research were as follows: 1. The teacher’s needs on knowledge about teaching for learner with learning disability, mental retardation, autism, physical and health impairment and research in special education. 2. The package composed of special education management for special needs student document and manual of distance training packages. The efficiency of packages was established at 79.50/81.35. 3. The results of using the packages were the posttest average scores of trainee’s achievement were higher than pretest. 4. The trainee’s opinion on the package was at the highest level.

Keywords: distance training, training package, teacher, learner with special needs

Procedia PDF Downloads 342
3001 COVID in Pregnancy: Evaluating Maternal and Neonatal Complications

Authors: Alexa L. Walsh, Christine Hartl, Juliette Ferdschneider, Lezode Kipoliongo, Eleonora Feketeova

Abstract:

The investigation of COVID-19 and its effects has been at the forefront of clinical research since its emergence in the United States in 2020. Although the possibility of severe infection in immunocompromised individuals has been documented, within the general population of pregnant individuals, there remains to be vaccine hesitancy and uncertainty regarding how the virus may affect the individual and fetus. To combat this hesitancy, this study aims to evaluate the effects of COVID-19 infection on maternal and neonatal complication rates. This retrospective study was conducted by manual chart review of women who were diagnosed with COVID-19 during pregnancy (n = 78) and women who were not diagnosed with COVID-19 during pregnancy (n = 1,124) that gave birth at Garnet Health Medical Centers between 1/1/2019-1/1/2021. Both the COVID+ and COVID- groups exhibited similar median ages, BMI, and parity. The rates of complications were compared between the groups and statistical significance was determined using Chi-squared analysis. Results demonstrated a statistically higher rate of PROM, polyhydramnios, oligohydramnios, GDM, DVT/PE, preterm birth, and the overall incidence of any birth complication in the population that was infected with COVID-19 during their pregnancy. With this information, obstetrical providers can be better prepared for the management of COVID-19+ pregnancies and continue to educate their patients on the benefits of vaccination.

Keywords: complications, COVID-19, Gynecology, Obstetrics

Procedia PDF Downloads 81
3000 Human-Computer Interaction Pluriversal Framework for Ancestral Medicine App in Bogota: Asset-Based Design Case Study

Authors: Laura Niño Cáceres, Daisy Yoo, Caroline Hummels

Abstract:

COVID-19 accelerated digital healthcare technology usage in many countries, such as Colombia, whose digital healthcare vision and projects are proof of this. However, with a significant cultural indigenous and Afro-Colombian heritage, only some parts of the country are willing to follow the proposed digital Western approach to health. Our paper presents the national healthcare system’s digital narrative, which we contrast with the micro-narrative of an Afro-Colombian ethnomedicine unit in Bogota called Kilombo Yumma. This ethnomedical unit is building its mobile app to safeguard and represent its ancestral medicine practices in local and national healthcare information systems. Kilombo Yumma is keen on promoting their beliefs and practices, which have been passed on through oral traditions and currently exist in the hands of a few older women. We unraveled their ambition, core beliefs, and practices through asset-based design. These assets outlined pluriversal and decolonizing forms of digital healthcare to increase social justice and connect Western and ancestral medicine digital opportunities through HCI.

Keywords: asset-based design, mobile app, decolonizing HCI, Afro-Colombian ancestral medicine

Procedia PDF Downloads 81
2999 Climate Safe House: A Community Housing Project Tackling Catastrophic Sea Level Rise in Coastal Communities

Authors: Chris Fersterer, Col Fay, Tobias Danielmeier, Kat Achterberg, Scott Willis

Abstract:

New Zealand, an island nation, has an extensive coastline peppered with small communities of iconic buildings known as Bachs. Post WWII, these modest buildings were constructed by their owners as retreats and generally were small, low cost, often using recycled material and often they fell below current acceptable building standards. In the latter part of the 20th century, real estate prices in many of these communities remained low and these areas became permanent residences for people attracted to this affordable lifestyle choice. The Blueskin Resilient Communities Trust (BRCT) is an organisation that recognises the vulnerability of communities in low lying settlements as now being prone to increased flood threat brought about by climate change and sea level rise. Some of the inhabitants of Blueskin Bay, Otago, NZ have already found their properties to be un-insurable because of increased frequency of flood events and property values have slumped accordingly. Territorial authorities also acknowledge this increased risk and have created additional compliance measures for new buildings that are less than 2 m above tidal peaks. Community resilience becomes an additional concern where inhabitants are attracted to a lifestyle associated with a specific location and its people when this lifestyle is unable to be met in a suburban or city context. Traditional models of social housing fail to provide the sense of community connectedness and identity enjoyed by the current residents of Blueskin Bay. BRCT have partnered with the Otago Polytechnic Design School to design a new form of community housing that can react to this environmental change. It is a longitudinal project incorporating participatory approaches as a means of getting people ‘on board’, to understand complex systems and co-develop solutions. In the first period, they are seeking industry support and funding to develop a transportable and fully self-contained housing model that exploits current technologies. BRCT also hope that the building will become an educational tool to highlight climate change issues facing us today. This paper uses the Climate Safe House (CSH) as a case study for education in architectural sustainability through experiential learning offered as part of the Otago Polytechnics Bachelor of Design. Students engage with the project with research methodologies, including site surveys, resident interviews, data sourced from government agencies and physical modelling. The process involves collaboration across design disciplines including product and interior design but also includes connections with industry, both within the education institution and stakeholder industries introduced through BRCT. This project offers a rich learning environment where students become engaged through project based learning within a community of practice, including architecture, construction, energy and other related fields. The design outcomes are expressed in a series of public exhibitions and forums where community input is sought in a truly participatory process.

Keywords: community resilience, problem based learning, project based learning, case study

Procedia PDF Downloads 291
2998 Radon and Thoron Determination in Natural Ancient Mine Using Nuclear Track Detectors: Radiation Dose Assessment

Authors: L. Oufni, M. Amrane, R. Rabi

Abstract:

Radon (and thoron) is a naturally occurring radioactive noble gas, having variable distribution in the geological environment. The exposure of human beings to ionizing radiation from natural sources is a continuing and inescapable feature of life on earth. Radon, thoron and their short-lived decay products in the atmosphere are the most important contributors to human exposure from natural sources. The aim of this study is to determine alpha-and beta-activities per unit volume of air due to radon (222Rn), thoron (220Rn) and their progenies in the air of ancient mine of Aouli in which there is no working activity is situated at approximately 25 km north of the city of Midelt (Morocco), by using LR-115 type II and CR-39 solid state nuclear track detectors (SSNTDs). Equilibrium factors between radon and its daughters and between thoron and its progeny were evaluated in the studied atmospheres. The committed equivalent doses due to the 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the visitors of the considered ancient mine. The visitors in these mines spent a good amount of time. It was essential to let the staff know about these values and take the needed steps to prevent any health complications.

Keywords: radon, thoron, concentration, exposure dose, SSNTD, mine

Procedia PDF Downloads 539
2997 Physico-Chemical Basis of Thermal Destruction of Benzo(a)Pyrene and Reducing Their Concentration in the Gas Phase

Authors: K. A. Kemelov, Z. K. Maymekov, D. A. Sambaeva, W. Frenzel

Abstract:

Benzo(a)pyrene is widespread carcinogenic and mutagenic environmental pollutant, which is formed in combustion processes of carbonaceous materials at high temperature and still health safety problem related benz(a)pyrene continues to remain actual. At the moment the mechanisms of formation of benzo(a)pyrene are not studied in detail, there is not concrete certain full scheme of synthesis of benzo(a)pyrene. Studies in this area are mainly dedicated to development of measuring tools and chemical reactions analyzes, or to obtain specific evidence of a large group of polycyclic aromatic hydrocarbons (PAHs). Consequently in this study we try to create physical and chemical model of oxidation and thermo destruction processes of benzo(a)pyrene, using critical thermodynamical parameters in order to estimate theoretical derivatives of benzo(a)pyrene and which conditions benzo(a)pyrene degraded into more harmful substances. According to this physical and chemical modeling of thermal destruction process of benzo(a)pyrene in wide ranges of change of temperature value were calculated. C20H12 - H2O-O2 system was taken for modeling of thermal destruction process of benzo(a)pyrene in order to establish distribution range of equilibrium structures and concentrations of molecules in a gas phase. Also technological ways of reduction of concentration of benzo(a)pyrene in a gas phase were supposed.

Keywords: benzo(a)pyrene, emission, PAH, thermodynamic parameters

Procedia PDF Downloads 299
2996 Biodegradation Study of Diethyl Phthalate Using Bacteria Isolated from Plastic Industry Wastewater Discharge Site

Authors: Sangram Shamrao Patil, Hara Mohan Jena

Abstract:

Phthalates are among the most common organic pollutant since they have become widespread in the environment and found in sediments, natural waters, soils, plants, landfill leachates, biota including human tissue and aquatic organisms. Diethyl phthalate (DEP) is a low molecular weight phthalate which has wide applications as plasticizer and become a major cause of environmental pollution. Environmental protection agency (EPA) listed DEP as priority pollutant because of its toxicity and they recommended human health ambient water quality criterion for diethyl phthalate (DEP) as 4 mg/l. Therefore, wastes containing phthalates require proper treatment before being discharged into the environment. Biodegradation is attractive and efficient treatment method as it is cost effective and produces non-toxic end products. In the present study, a DEP degrading aerobic bacterium was isolated from soil contaminated with plastic industry wastewater. Morphological and biochemical characteristics of isolate were performed. 16S rRNA sequencing and phylogenetic analysis of isolate was carried out and it was identified as Empedobacter brevis. Isolate has been found to tolerate up to 1650 mg/l of DEP. This study will be significant for exploring an application of microbes for remediation of phthalates and development of a suitable bioreactor.

Keywords: diethyl phthalate, plasticizer, pollutant, biodegradation

Procedia PDF Downloads 274
2995 Reclamation of Molding Sand: A Chemical Approach to Recycle Waste Foundry Sand

Authors: Mohd Moiz Khan, S. M. Mahajani, G. N. Jadhav

Abstract:

Waste foundry sand (total clay content 15%) contains toxic heavy metals and particulate matter which make dumping of waste sand an environmental and health hazard. Disposal of waste foundry sand (WFS) remains one of the substantial challenges faced by Indian foundries nowadays. To cope up with this issue, the chemical method was used to reclaim WFS. A stirrer tank reactor was used for chemical reclamation. Experiments were performed to reduce the total clay content from 15% to as low as 0.9% in chemical reclamation. This method, although found to be effective for WFS reclamation, it may face a challenge due to the possibly high operating cost. Reclaimed sand was found to be satisfactory in terms of sand qualities such as total clay (0.9%), active clay (0.3%), acid demand value (ADV) (2.6%), loss on igniting (LOI) (3 %), grain fineness number (GFN) (56), and compressive strength (60 kPa). The experimental data generated on chemical reactor under different conditions is further used to optimize the design and operating parameters (rotation speed, sand to acidic solution ratio, acid concentration, temperature and time) for the best performance. The use of reclaimed sand within the foundry would improve the economics and efficiency of the process and reduce environmental concerns.

Keywords: chemical reclamation, clay content, environmental concerns, recycle, waste foundry sand

Procedia PDF Downloads 149
2994 Nutritional and Antioxidant Properties of Prickly Pear (Opuntia ficus indica Mill.) Grown in Algeria

Authors: Asma Temagoult, Bariza Zitouni, Yassin Noui

Abstract:

Cactus fruit contains different nutritional and functional components, which are used because of their benefits to human health, such as flavonoids, phenolic compounds, carotenoids and vitamins C. It has hypoglycemic and hypolipidemic action, and antioxidant properties related to anticarcinogenic, antiulcerogenic and immunomodulatory effects. The antioxidant and nutritional properties have been characterized in cactus prickly pear (Opuntia ficus-indica Mill.), cultivar yellow, grown in Arris area; Eastern of Algeria. The antioxidant properties of this cactus cultivar were higher than the others cactus cultivar in the world. The amount of fruit phenolic compounds revealed contents between 20.65 and 45.70 mg / 100 g of FW for total polyphenols and 0.519 - 0.591 mg / 100 g of FW for the flavonoids. The antioxidant activity was evaluated by DPPH radical scavenging and FRAP (ferric reducing antioxidant power) methods. The average recorded to the potassium content is about 1070 mg / 100 g of the fresh weight; sodium is 60.7 mg / 100 g of the fresh weight and 80 mg / 100g for the calcium. According to the high value of this cactus, it was considered as a good nutrient and important pharmaceutical resource. It could be used as a natural additive or substituted food supplement in many foodstuffs production, to benefit from these benefits.

Keywords: antioxidant properties, DPPH, FRAP, nutritional properties, Opuntia ficus indica

Procedia PDF Downloads 318
2993 Vapochromism of 3,3’,5,5’-Tetramethylbenzidine-Tetrasilisicfluormica Intercalation Compounds with High Selectivity for Water and Acetonitrile

Authors: Reira Kinoshita, Shin'ichi Ishimaru

Abstract:

Vapochromism is a type of chromism in which the color of a substance changes when it is exposed to the vapor of volatile materials, and has been investigated for the application of chemical sensors for volatile organic compounds causing sick building syndrome and health hazards in workspaces. We synthesized intercalation compounds of 3,3',5,5'-tetramethylbenzidine (TMB), and tetrasilisicfluormica (TSFM) by the commonly used cation-exchange method with the cation ratio TMB²⁺/CEC of TSFM = 1.0, 2.0, 2.7 and 5.4 to investigate the vapochromism of these materials. The obtained samples were characterized by powder XRD, XRF, TG-DTA, N₂ adsorption, and SEM. Vapochromism was measured for each sample under a controlled atmosphere by a handy reflectance spectrometer directly from the outside of the glass sample tubes. The color was yellow for all specimens vacuum-dried at 50 °C, but it turned green under H₂O vapor exposure for the samples with TMB²⁺/CEC = 2.0, 2.7, and 5.4 and blue under acetonitrile vapor for all cation ratios. Especially the sample TMB²⁺/CEC = 2.0 showed clear chromism both for water and acetonitrile. On the other hand, no clear color change was observed for vapors of alcohols, acetone, and non-polar solvents. From these results, this material can be expected to apply for easy detection of humidity and acetonitrile vapor in the environment.

Keywords: chemical sensor, intercalation compound, tetramethylbenzidine, tetrasilisicfluormica, vapochromism, volatile organic compounds

Procedia PDF Downloads 120
2992 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 92
2991 Exploring Participatory Research Approaches in Agricultural Settings: Analyzing Pathways to Enhance Innovation in Production

Authors: Michele Paleologo, Marta Acampora, Serena Barello, Guendalina Graffigna

Abstract:

Introduction: In the face of increasing demands for higher agricultural productivity with minimal environmental impact, participatory research approaches emerge as promising means to promote innovation. However, the complexities and ambiguities surrounding these approaches in both theory and practice present challenges. This Scoping Review seeks to bridge these gaps by mapping participatory approaches in agricultural contexts, analyzing their characteristics, and identifying indicators of success. Methods: Following PRISMA guidelines, we conducted a systematic Scoping Review, searching Scopus and Web of Science databases. Our review encompassed 34 projects from diverse geographical regions and farming contexts. Thematic analysis was employed to explore the types of innovation promoted and the categories of participants involved. Results: The identified innovation types encompass technological advancements, sustainable farming practices, and market integration, forming 5 main themes: climate change, cultivar, irrigation, pest and herbicide, and technical improvement. These themes represent critical areas where participatory research drives innovation to address pressing agricultural challenges. Participants were categorized as citizens, experts, NGOs, private companies, and public bodies. Understanding their roles is vital for designing effective participatory initiatives that embrace diverse stakeholders. The review also highlighted 27 theoretical frameworks underpinning participatory projects. Clearer guidelines and reporting standards are crucial for facilitating the comparison and synthesis of findings across studies, thereby enhancing the robustness of future participatory endeavors. Furthermore, we identified three main categories of barriers and facilitators: pragmatic/behavioral, emotional/relational, and cognitive. These insights underscore the significance of participant engagement and collaborative decision-making for project success beyond theoretical considerations. Regarding participation, projects were classified as contributory (5 cases), where stakeholders contributed insights; collaborative (10 cases), with active co-designing of solutions; and co-created (19 cases), featuring deep stakeholder involvement from ideation to implementation, resulting in joint ownership of outcomes. Such diverse participation modes highlight the adaptability of participatory approaches to varying agricultural contexts. Discussion: In conclusion, this Scoping Review demonstrates the potential of participatory research in driving transformative changes in farmers' practices, fostering sustainability and innovation in agriculture. Understanding the diverse landscape of participatory approaches, theoretical frameworks, and participant engagement strategies is essential for designing effective and context-specific interventions. Collaborative efforts among researchers, practitioners, and stakeholders are pivotal in harnessing the full potential of participatory approaches and driving positive change in agricultural settings worldwide. The identified themes of innovation and participation modes provide valuable insights for future research and targeted interventions in agricultural innovation.

Keywords: participatory research, co-creation, agricultural innovation, stakeholders' engagement

Procedia PDF Downloads 68
2990 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition

Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang

Abstract:

Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.

Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor

Procedia PDF Downloads 152
2989 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment

Authors: Iryna P. Dzieciuch, Michael D. Putman

Abstract:

Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.

Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin

Procedia PDF Downloads 163
2988 Stage-Gate Based Integrated Project Management Methodology for New Product Development

Authors: Mert Kıranç, Ekrem Duman, Murat Özbilen

Abstract:

In order to achieve new product development (NPD) activities on time and within budgetary constraints, the NPD managers need a well-designed methodology. This study intends to create an integrated project management methodology for the ones who focus on new product development projects. In the scope of the study, four different management systems are combined. These systems are called as 'Schedule-oriented Stage-Gate Method, Risk Management, Change Management and Earned Value Management'. New product development term is quite common in many different industries such as defense industry, construction, health care/dental, higher education, fast moving consumer goods, white goods, electronic devices, marketing and advertising and software development. All product manufacturers run against each other’s for introducing a new product to the market. In order to achieve to produce a more competitive product in the market, an optimum project management methodology is chosen, and this methodology is adapted to company culture. The right methodology helps the company to present perfect product to the customers at the right time. The benefits of proposed methodology are discussed as an application by a company. As a result, how the integrated methodology improves the efficiency and how it achieves the success of the project are unfolded.

Keywords: project, project management, management methodology, new product development, risk management, change management, earned value, stage-gate

Procedia PDF Downloads 317
2987 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks

Authors: Yong Zhao, Jian He, Cheng Zhang

Abstract:

Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.

Keywords: feature extraction, heart rate variability, hypertension, residual networks

Procedia PDF Downloads 111
2986 Suicidal Ideation and Associated Factors among Students Aged 13-15 Years in Association of Southeast Asian Nations (ASEAN) Member States, 2007-2014

Authors: Karl Peltzer, Supa Pengpid

Abstract:

Introduction: The aim of this study was to assess suicidal ideation and associated factors in school-going adolescents in the Association of Southeast Asian Nations (ASEAN) Member States. Methods: The analysis included 30284 school children aged 13-15 years from seven ASEAN that participated in the cross-sectional Global School-based Student Health Survey (GSHS) between 2007 and 2013. Results: The overall prevalence of suicidal ideation across seven ASEAN countries (excluding Brunei) was 12.3%, significantly higher in girls (15.1%) than boys (9.3%). Among eight ASEAN countries with the highest prevalence of suicidal ideation was in the Philippines (17.0%) and Vietnam (16.9%) and the lowest in Myanmar (1.1%) and Indonesia (4.2%). In multivariate logistic regression analysis, female gender, older age (14 or 15 years), living in a low income or lower middle income country, having no friends, loneliness, bullying victimization, having been in a physical fight in the past 12 months, lack of parental or guardian support, tobacco use and having a history of ever got drunk were associated with suicidal ideatiion. Conclusion: Different rates of suicidal ideation were observed in ASEAN member states. Several risk factors for suicidal ideation were identified which can help guide preventive efforts.

Keywords: adolesents, ASEAN, correlates, suicidal behaviour

Procedia PDF Downloads 270
2985 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 388
2984 Acoustics Barrier Design to Reduce Railway Noise by Using Maekawa's Method

Authors: Malinda Sabrina, Khoerul Anwar

Abstract:

Railway noise generated by pass-by train has been described as a form of environmental pollutants especially for the residential area near the railway. Many studies have shown, that environmental noise particularly transportation noise has negative effects on people which resulting in annoyance and specific health problems such as cardiovascular disease, cognitive impairment and sleep disturbance. Therefore, various attempts are made to reduce the noise. One method of reducing such noise to acceptable noise levels is to build acoustically barrier walls. The objective of this study was to review the method of reducing railway noise and obtain the preliminary design of the acoustics barrier on the edge of railway tracks close to the residential area. The design of this barrier is using the Maekawa's method. Measurements have been performed in residential areas around the railroads in the Karawang - Indonesia with the absence of an acoustical barrier. From the observation, it was found that the railway was passed by five trains within thirty minutes. With the limited distance between the railway tracks and the location of the residential area as well as the street of residents, then it was obtained that a reduction in sound pressure level is 25 dBA. Maximum sound pressure level obtained is 86.9 dBA then by setting the barrier as high as 4 m at a distance, 2.5 m from the railway, the noise level received by residents in the settlement around the railway line becomes 61.9 dBA.

Keywords: acoustics barrier, Maekawa's method, noise attenuation, railway noise

Procedia PDF Downloads 205
2983 Trauma: Constructivist Theoretical Framework

Authors: Wendi Dunham, Kimberly Floyd

Abstract:

The constructivist approach to learning is a theoretical orientation that posits that individuals create their own understanding and knowledge of the world through their experiences and interactions. This approach emphasizes that learning is an active process and that individuals are not passive recipients when constructing their understanding of their world. When used concurrently with trauma-informed practices, a constructivist approach can inform the development of a framework for students and teachers that supports their social, emotional, and mental health in addition to enabling academic success. This framework can be applied to teachers and students. When applied to teachers, it can be used to achieve purposeful coping mechanisms through restorative justice and dispositional mindfulness. When applied to students, the framework can implement proactive, student-based practices such as Response to Intervention (RtI) and the 4 Rs to connect resiliency and intervention to academic learning. Using a constructivist, trauma-informed framework can provide students with a greater sense of control and agency over their trauma experiences and impart confidence in achieving school success.

Keywords: trauma, trauma informed practices in education, constructivist theory framework, school responses to trauma, trauma informed supports for teachers, trauma informed strategies for students, restorative justice, mindfulness, response to intervention, the 4 R's, resiliency

Procedia PDF Downloads 50
2982 Diversability and Diversity: Toward Including Disability/Body-Mind Diversity in Educational Diversity, Equity, and Inclusion

Authors: Jennifer Natalya Fink

Abstract:

Since the racial reckoning of 2020, almost every major educational institution has incorporated diversity, equity, and inclusion (DEI) principles into its administrative, hiring, and pedagogical practices. Yet these DEI principles rarely incorporate explicit language or critical thinking about disability. Despite the fact that according to the World Health Organization, one in five people worldwide is disabled, making disabled people the larger minority group in the world, disability remains the neglected stepchild of DEI. Drawing on disability studies and crip theory frameworks, the underlying causes of this exclusion of disability from DEI, such as stigma, shame, invisible disabilities, institutionalization/segregation/delineation from family, and competing models and definitions of disability are examined. This paper explores both the ideological and practical shifts necessary to include disability in university DEI initiatives. It offers positive examples as well as conceptual frameworks such as 'divers ability' for so doing. Using Georgetown University’s 2020-2022 DEI initiatives as a case study, this paper describes how curricular infusion, accessibility, identity, community, and diversity administration infused one university’s DEI initiatives with concrete disability-inclusive measures. It concludes with a consideration of how the very framework of DEI itself might be challenged and transformed if disability were to be included.

Keywords: diversity, equity, inclusion, disability, crip theory, accessibility

Procedia PDF Downloads 135