Search results for: diagnostic image
2498 Using Machine Learning to Classify Different Body Parts and Determine Healthiness
Authors: Zachary Pan
Abstract:
Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.Keywords: body part, healthcare, machine learning, neural networks
Procedia PDF Downloads 1092497 Toward a Methodology of Visual Rhetoric with Constant Reference to Mikhail Bakhtin’s Concept of “Chronotope”: A Theoretical Proposal and Taiwan Case Study
Authors: Hsiao-Yung Wang
Abstract:
This paper aims to elaborate methodology of visual rhetoric with constant reference to Mikhail Bakhtin’s concept of “chronotope”. First, it attempts to outline Ronald Barthes, the most representative scholar of visual rhetoric and structuralism, perspective on visual rhetoric and its time-space category by referring to the concurrent word-image, the symbolic systematicity, the outer dialogicity. Second, an alternative approach is explored for grasping the dynamics and functions of visual rhetoric by articulating Mikhail Bakhtin’s concept of “chronotope.” Furthermore, that visual rhetorical consciousness could be identified as “the meaning parabola which projects from word to image,” “the symbolic system which proceeds from sequence to disorder,” “the ideological environment which struggles from the local to the global.” Last but not least, primary vision of the 2014 Taipei LGBT parade would be analyzed preliminarily to evaluate the effectiveness and persuasiveness embodied by specific visual rhetorical strategies. How Bakhtin’s concept of “chronotope” to explain the potential or possible ideological struggle deployed by visual rhetoric might be interpreted empirically and extensively.Keywords: barthes, chronotope, Mikhail Bakhtin, Taipei LGBT parade, visual rhetoric
Procedia PDF Downloads 4812496 Unsupervised Approaches for Traffic Sign Image Segmentation in Autonomous Driving
Authors: B. Vishnupriya, R. Josphineleela
Abstract:
Road sign recognition is a key element in advanced driver-assistance systems (ADAS) and self-driving technologies, as it is fundamental to maintaining safe and effective navigation. Conventional supervised learning approaches rely heavily on extensive labeled datasets for training, which can be resource-intensive and challenging to obtain. This study examines the effectiveness of three unsupervised image segmentation approaches—K- means clustering, GrabCut, and Gaussian Mixture Model (GMM)—in detecting road signs within complex settings. Using a publicly available Road Sign dataset from Kaggle, we assess the effectiveness of these methods based on clustering performance metrics. Our results indicate that GMM achieves the highest performance across these metrics, demonstrating superior segmentation accuracy under diverse lighting and weather conditions, followed by GrabCut and K-means clustering. This research highlights the potential of unsupervised techniques in reducing the dependency on labeled data, offering insights for future advancements in road sign detection systems for ADAS and autonomous vehicles.Keywords: K-means clustering, unsupervised, Gaussian Mixture Model, segmentation accuracy
Procedia PDF Downloads 92495 Water Detection in Aerial Images Using Fuzzy Sets
Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho
Abstract:
This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.Keywords: aerial images, fuzzy clustering, image processing, pattern recognition
Procedia PDF Downloads 4842494 Evaluation of Hydrocarbons in Tissues of Bivalve Mollusks from the Red Sea Coast
Authors: Asma Ahmed Aljohani, Mohammed Orif
Abstract:
The concentration of polycyclic aromatic hydrocarbons (PAH) in clam (A. glabrata) was examined in samples collected from Alseef Beach, 30 km south of Jeddah city. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the 14 PAHs. The concentration of total PAHs was found to range from 11.521 to 40.149 ng/gdw with a mean concentration of 21.857 ng/gdw, which is lower compared to similar studies. The lower molecular weight PAHs with three rings comprised 18.14% of the total PAH concentrations in the clams, while the high molecular weight PAHs with four rings, five rings, and six rings account for 81.86%. Diagnostic ratios for PAH source distinction suggested pyrogenic or anthropogenic sources.Keywords: bivalves, biomonitoring, hydrocarbons, PAHs
Procedia PDF Downloads 982493 Study of Bolt Inclination in a Composite Single Bolted Joint
Authors: Faci Youcef, Ahmed Mebtouche, Djillali Allou, Maalem Badredine
Abstract:
The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during the load. Digital image correlation techniques permit the obtaining of the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.Keywords: damage, inclination, analyzed, carbon
Procedia PDF Downloads 592492 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network
Authors: Asmau Mukhtar Ahmed, Olga Duran
Abstract:
Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image
Procedia PDF Downloads 1162491 Architecture for Multi-Unmanned Aerial Vehicles Based Autonomous Precision Agriculture Systems
Authors: Ebasa Girma, Nathnael Minyelshowa, Lebsework Negash
Abstract:
The use of unmanned aerial vehicles (UAVs) in precision agriculture has seen a huge increase recently. As such, systems that aim to apply various algorithms on the field need a structured framework of abstractions. This paper defines the various tasks of the UAVs in precision agriculture and models them into an architectural framework. The presented architecture is built on the context that there will be minimal physical intervention to do the tasks defined with multiple coordinated and cooperative UAVs. Various tasks such as image processing, path planning, communication, data acquisition, and field mapping are employed in the architecture to provide an efficient system. Besides, different limitation for applying Multi-UAVs in precision agriculture has been considered in designing the architecture. The architecture provides an autonomous end-to-end solution, starting from mission planning, data acquisition, and image processing framework that is highly efficient and can enable farmers to comprehensively deploy UAVs onto their lands. Simulation and field tests show that the architecture offers a number of advantages that include fault-tolerance, robustness, developer, and user-friendliness.Keywords: deep learning, multi-UAVs, precision agriculture, UAVs architecture
Procedia PDF Downloads 1172490 Use of Telehealth for Facilitating the Diagnostic Assessment of Autism Spectrum Disorder: A Scoping Review
Authors: Manahil Alfuraydan, Jodie Croxall, Lisa Hurt, Mike Kerr, Sinead Brophy
Abstract:
Autism Spectrum Disorder (ASD) is a developmental condition characterised by impairment in terms of social communication, social interaction, and a repetitive or restricted pattern of interest, behaviour, and activity. There is a significant delay between seeking help and a confirmed diagnosis of ASD. This may result in delay in receiving early intervention services, which are critical for positive outcomes. The long wait times also cause stress for the individuals and their families. Telehealth potentially offers a way of improving the diagnostic pathway for ASD. This review of the literature aims to examine which telehealth approaches have been used in the diagnosis and assessment of autism in children and adults, whether they are feasible and acceptable, and how they compare with face-to-face diagnosis and assessment methods. A comprehensive search of following databases- MEDLINE, CINAHL Plus with Full text, Business Sources Complete, Web of Science, Scopus, PsycINFO and trail and systematic review databases including Cochrane Library, Health Technology Assessment, Database of Abstracts and Reviews of Effectiveness and NHS Economic Evaluation was conducted, combining the terms of autism and telehealth from 2000 to 2018. A total of 10 studies were identified for inclusion in the review. This review of the literature found there to be two methods of using telehealth: (a) video conferencing to enable teams in different areas to consult with the families and to assess the child/adult in real time and (b) a video upload to a web portal that enables the clinical assessment of behaviours in the family home. The findings were positive, finding there to be high agreement in terms of the diagnosis between remote methods and face to face methods and with high levels of satisfaction among the families and clinicians. This field is in the very early stages, and so only studies with small sample size were identified, but the findings suggest that there is potential for telehealth methods to improve assessment and diagnosis of autism used in conjunction with existing methods, especially for those with clear autism traits and adults with autism. Larger randomised controlled trials of this technology are warranted.Keywords: assessment, autism spectrum disorder, diagnosis, telehealth
Procedia PDF Downloads 1302489 Overcoming Mistrusted Masculinity: Analyzing Muslim Men and Their Aspirations for Fatherhood in Denmark
Authors: Anne Hovgaard Jorgensen
Abstract:
This study investigates how Muslim fathers in Denmark are struggling to overcome notions of mistrust from teachers and educators. Starting from school-home-cooperation (parent conferences, school-home communication, etc.), the study finds that many Muslim fathers do not feel acknowledged as a resource in the upbringing of their children. To explain these experiences further, the study suggest the notion of ‘mistrusted masculinity’ to grasp the controlling image these fathers meet in various schools and child-care-institutions in the Danish Welfare state. The paper is based on 9 months of fieldwork in a Danish school, a social housing area and in various ‘father groups’ in Denmark. Additional, 50 interviews were conducted with fathers, children, mothers, schoolteachers, and educators. By using Connell's concepts 'hegemonic' and 'marginalized' masculinity as steppingstones, the paper argues that these concepts might entail a too static and dualistic picture of gender. By applying the concepts of 'emergent masculinity' and 'emergent fatherhood' the paper brings along a long needed discussion of how Muslim men in Denmark are struggling to overcome and change the controlling images of them as patriarchal and/or ignorant fathers regarding the upbringing of their children. As such, the paper shows how Muslim fathers are taking action to change this controlling image, e.g. through various ‘father groups’. The paper is inspired by the phenomenological notions of ‘experience´ and in the light of this notion, the paper tells the fathers’ stories about their upbringing of their children and aspirations for fatherhood. These stories share light on how these fathers take care of their children in everyday life. The study also shows that the controlling image of these fathers have affected how some Muslim fathers are actually being fathers. The study shows that fear of family-interventions from teachers or social workers e.g. have left some Muslim fathers in a limbo, being afraid of scolding their children, and being confused of ‘what good parenting in Denmark is’. This seems to have led to a more lassie fair upbringing than these fathers actually wanted. This study is important since anthropologists generally have underexposed the notion of fatherhood, and how fathers engage in the upbringing of their children. Over more, the vast majority of qualitative studies of fatherhood have been on white middleclass fathers, living in nuclear families. In addition, this study is crucial at this very moment due to the major refugee crisis in Denmark and in the Western world in general. A crisis, which has resulted in a vast number of scare campaigns against Islam from different nationalistic political parties, which enforces the negative controlling image of Muslim fathers.Keywords: fatherhood, Muslim fathers, mistrust, education
Procedia PDF Downloads 1932488 Acoustic Analysis of Psycho-Communication Disorders within Moroccan Students
Authors: Brahim Sabir
Abstract:
Psycho-Communication disorders negatively affect the academic curriculum for students in higher education. Thus, understanding these disorders, their causes and effects will give education specialists a tool for the decision, which will lead to the resolution of problems related to the integration of students with Psycho-Communication disorders. It is in this context that a statistical study was conducted, targeting the population object of study, namely Moroccan students. Pathological voice samples were recorded and analyzed acoustically with PRAAT software, in order to build a model that will be the basis for the objective diagnostic.Keywords: psycho-communication disorders, acoustic analysis, PRAAT
Procedia PDF Downloads 3912487 Optimizing the Scanning Time with Radiation Prediction Using a Machine Learning Technique
Authors: Saeed Eskandari, Seyed Rasoul Mehdikhani
Abstract:
Radiation sources have been used in many industries, such as gamma sources in medical imaging. These waves have destructive effects on humans and the environment. It is very important to detect and find the source of these waves because these sources cannot be seen by the eye. A portable robot has been designed and built with the purpose of revealing radiation sources that are able to scan the place from 5 to 20 meters away and shows the location of the sources according to the intensity of the waves on a two-dimensional digital image. The operation of the robot is done by measuring the pixels separately. By increasing the image measurement resolution, we will have a more accurate scan of the environment, and more points will be detected. But this causes a lot of time to be spent on scanning. In this paper, to overcome this challenge, we designed a method that can optimize this time. In this method, a small number of important points of the environment are measured. Hence the remaining pixels are predicted and estimated by regression algorithms in machine learning. The research method is based on comparing the actual values of all pixels. These steps have been repeated with several other radiation sources. The obtained results of the study show that the values estimated by the regression method are very close to the real values.Keywords: regression, machine learning, scan radiation, robot
Procedia PDF Downloads 822486 Extraction of Urban Building Damage Using Spectral, Height and Corner Information
Authors: X. Wang
Abstract:
Timely and accurate information on urban building damage caused by earthquake is important basis for disaster assessment and emergency relief. Very high resolution (VHR) remotely sensed imagery containing abundant fine-scale information offers a large quantity of data for detecting and assessing urban building damage in the aftermath of earthquake disasters. However, the accuracy obtained using spectral features alone is comparatively low, since building damage, intact buildings and pavements are spectrally similar. Therefore, it is of great significance to detect urban building damage effectively using multi-source data. Considering that in general height or geometric structure of buildings change dramatically in the devastated areas, a novel multi-stage urban building damage detection method, using bi-temporal spectral, height and corner information, was proposed in this study. The pre-event height information was generated using stereo VHR images acquired from two different satellites, while the post-event height information was produced from airborne LiDAR data. The corner information was extracted from pre- and post-event panchromatic images. The proposed method can be summarized as follows. To reduce the classification errors caused by spectral similarity and errors in extracting height information, ground surface, shadows, and vegetation were first extracted using the post-event VHR image and height data and were masked out. Two different types of building damage were then extracted from the remaining areas: the height difference between pre- and post-event was used for detecting building damage showing significant height change; the difference in the density of corners between pre- and post-event was used for extracting building damage showing drastic change in geometric structure. The initial building damage result was generated by combining above two building damage results. Finally, a post-processing procedure was adopted to refine the obtained initial result. The proposed method was quantitatively evaluated and compared to two existing methods in Port au Prince, Haiti, which was heavily hit by an earthquake in January 2010, using pre-event GeoEye-1 image, pre-event WorldView-2 image, post-event QuickBird image and post-event LiDAR data. The results showed that the method proposed in this study significantly outperformed the two comparative methods in terms of urban building damage extraction accuracy. The proposed method provides a fast and reliable method to detect urban building collapse, which is also applicable to relevant applications.Keywords: building damage, corner, earthquake, height, very high resolution (VHR)
Procedia PDF Downloads 2152485 Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie
Abstract:
Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images.Keywords: image segmentation, stuck particles separation, Sobel operator, thresholding
Procedia PDF Downloads 1332484 Non-Invasive Imaging of Tissue Using Near Infrared Radiations
Authors: Ashwani Kumar Aggarwal
Abstract:
NIR Light is non-ionizing and can pass easily through living tissues such as breast without any harmful effects. Therefore, use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. This blurred reconstructed image has been enhanced using a digital filter which is optimal in mean square sense.Keywords: least-squares optimization, filtering, tomography, laser interaction, light scattering
Procedia PDF Downloads 3162483 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases
Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal
Abstract:
Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN
Procedia PDF Downloads 652482 Mythical Geography, Collective Imaginary and Spiritual Patrimony in the Romanian Carpathians: A Tourist Image Component
Authors: Cosmin-Gabriel Porumb-Ghiurco, Dumitrana Fiț-Iordache, Szőke Árpád
Abstract:
The literature incorporating geographical or tourist-geographical themes and explicit references to the Carpathian area is extremely abundant. Through this paper, we attempt to “undermine” the traditional, tourist-geographical approaches of the Carpathian Arch by targeting an aspect often regarded as marginal but which, if examined, even only empirically, takes the form of a vast problem with multidisciplinary vocation. Therefore, we propose a more extravagant yet pro-touristic approach to the Romanian Carpathian geo-space. Consequently, the explicit goal of this approach consists precisely in broadening the multidisciplinary, essentially geographic scope of the research, the vision and mental representation of the Carpathian area by advancing a lever that would symbolize a different kind of unification between geography and tourism on a more intimate, subtle, mythological and archetypal level. The spiritual and mercantile dimensions of the tourism field in general and of the local Carpathian tourism can meld harmoniously together in order to create a common territorial reality of referral and favorable perspectives for the consolidation of their symbiotic relationship.Keywords: tourist image, mythical geography, collective imaginary, spiritual patrimony, Carpathians
Procedia PDF Downloads 932481 Comparative Study of Skeletonization and Radial Distance Methods for Automated Finger Enumeration
Authors: Mohammad Hossain Mohammadi, Saif Al Ameri, Sana Ziaei, Jinane Mounsef
Abstract:
Automated enumeration of the number of hand fingers is widely used in several motion gaming and distance control applications, and is discussed in several published papers as a starting block for hand recognition systems. The automated finger enumeration technique should not only be accurate, but also must have a fast response for a moving-picture input. The high performance of video in motion games or distance control will inhibit the program’s overall speed, for image processing software such as Matlab need to produce results at high computation speeds. Since an automated finger enumeration with minimum error and processing time is desired, a comparative study between two finger enumeration techniques is presented and analyzed in this paper. In the pre-processing stage, various image processing functions were applied on a real-time video input to obtain the final cleaned auto-cropped image of the hand to be used for the two techniques. The first technique uses the known morphological tool of skeletonization to count the number of skeleton’s endpoints for fingers. The second technique uses a radial distance method to enumerate the number of fingers in order to obtain a one dimensional hand representation. For both discussed methods, the different steps of the algorithms are explained. Then, a comparative study analyzes the accuracy and speed of both techniques. Through experimental testing in different background conditions, it was observed that the radial distance method was more accurate and responsive to a real-time video input compared to the skeletonization method. All test results were generated in Matlab and were based on displaying a human hand for three different orientations on top of a plain color background. Finally, the limitations surrounding the enumeration techniques are presented.Keywords: comparative study, hand recognition, fingertip detection, skeletonization, radial distance, Matlab
Procedia PDF Downloads 3832480 Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand
Authors: A. C. Galvis-Castro, R. D. Tovar, R. Salgado, M. Prezzi
Abstract:
It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles.Keywords: digital image correlation, piles, sand, shaft resistance
Procedia PDF Downloads 2732479 Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm
Authors: Thanh Noi Phan, Martin Kappas, Jan Degener
Abstract:
The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved.Keywords: classify algorithm, classification, land cover, random forest, sentinel 2, Vietnam
Procedia PDF Downloads 3902478 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study
Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar
Abstract:
Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices
Procedia PDF Downloads 5092477 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction
Authors: Mingxin Li, Liya Ni
Abstract:
Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning
Procedia PDF Downloads 1352476 An Audit of the Diagnosis of Asthma in Children in Primary Care and the Emergency Department
Authors: Abhishek Oswal
Abstract:
Background: Inconsistencies between the guidelines for childhood asthma can pose a diagnostic challenge to clinicians. NICE guidelines are the most commonly followed guidelines in primary care in the UK; they state that to be diagnosed with asthma, a child must be more than 5 years old and must have objective evidence of the disease. When diagnoses are coded in general practice (GP), these guidelines may be superseded by communications from secondary care. Hence it is imperative that diagnoses are correct, as per up to date guidelines and evidence, as this affects follow up and management both in primary and secondary care. Methods: A snapshot audit at a general practice surgery was undertaken of children (less than 16 years old) with a coded diagnosis of 'asthma', to review the age at diagnosis and whether any objective evidence of asthma was documented at diagnosis. 50 cases of asthma in children presenting to the emergency department (ED) were then audited to review the age at presentation, whether there was evidence of previous asthma diagnosis and whether the patient was discharged from ED. A repeat audit is planned in ED this winter. Results: In a GP surgery, there were 83 coded cases of asthma in children. 51 children (61%) were diagnosed under 5, with 9 children (11%) who had objective evidence of asthma documented at diagnosis. In ED, 50 cases were collected, of which 4 were excluded as they were referred to the other services, or for incorrect coding. Of the 46 remaining, 27 diagnoses confirmed to NICE guidelines (59%). 33 children (72%) were discharged from ED. Discussion: The most likely reason for the apparent low rate of a correct diagnosis is the significant challenge of obtaining objective evidence of asthma in children. There were a number of patients who were diagnosed from secondary care services and then coded as 'asthma' in GP, without having objective documented evidence. The electronic patient record (EPR) system used in our emergency department (ED) did not allow coding of 'suspected diagnosis' or of 'viral induced wheeze'. This may have led to incorrect diagnoses coded in primary care, of children who had no confirmed diagnosis of asthma. We look forward to the re-audit, as the EPR system has been updated to allow suspected diagnoses. In contrast to the NICE guidelines used here, British Thoracic Society (BTS) guidelines allow for a trial of treatment and subsequent confirmation of diagnosis without objective evidence. It is possible that some of the cases which have been classified as incorrect in this audit may still meet other guidelines. Conclusion: The diagnosis of asthma in children is challenging. Incorrect diagnoses may be related to clinical pressures and the provision of services to allow compliance with NICE guidelines. Consensus statements between the various groups would also aid the decision-making process and diagnostic dilemmas that clinicians face, to allow more consistent care of the patient.Keywords: asthma, diagnosis, primary care, emergency department, guidelines, audit
Procedia PDF Downloads 1452475 Analyzing Impacts of Road Network on Vegetation Using Geographic Information System and Remote Sensing Techniques
Authors: Elizabeth Malebogo Mosepele
Abstract:
Road transport has become increasingly common in the world; people rely on road networks for transportation purpose on a daily basis. However, environmental impact of roads on surrounding landscapes extends their potential effects even further. This study investigates the impact of road network on natural vegetation. The study will provide baseline knowledge regarding roadside vegetation and would be helpful in future for conservation of biodiversity along the road verges and improvements of road verges. The general hypothesis of this study is that the amount and condition of road side vegetation could be explained by road network conditions. Remote sensing techniques were used to analyze vegetation conditions. Landsat 8 OLI image was used to assess vegetation cover condition. NDVI image was generated and used as a base from which land cover classes were extracted, comprising four categories viz. healthy vegetation, degraded vegetation, bare surface, and water. The classification of the image was achieved using the supervised classification technique. Road networks were digitized from Google Earth. For observed data, transect based quadrats of 50*50 m were conducted next to road segments for vegetation assessment. Vegetation condition was related to road network, with the multinomial logistic regression confirming a significant relationship between vegetation condition and road network. The null hypothesis formulated was that 'there is no variation in vegetation condition as we move away from the road.' Analysis of vegetation condition revealed degraded vegetation within close proximity of a road segment and healthy vegetation as the distance increase away from the road. The Chi Squared value was compared with critical value of 3.84, at the significance level of 0.05 to determine the significance of relationship. Given that the Chi squared value was 395, 5004, the null hypothesis was therefore rejected; there is significant variation in vegetation the distance increases away from the road. The conclusion is that the road network plays an important role in the condition of vegetation.Keywords: Chi squared, geographic information system, multinomial logistic regression, remote sensing, road side vegetation
Procedia PDF Downloads 4332474 Novel p22-Monoclonal Antibody Based Blocking ELISA for the Detection of African Swine Fever Virus Antibodies in Serum
Authors: Ghebremedhin Tsegay, Weldu Tesfagaber, Yuanmao Zhu, Xijun He, Wan Wang, Zhenjiang Zhang, Encheng Sun, Jinya Zhang, Yuntao Guan, Fang Li, Renqiang Liu, Zhigao Bu, Dongming Zhao*
Abstract:
African swine fever (ASF) is a highly infectious viral disease of pigs, resulting in significant economic loss worldwide. As there is no approved vaccines and treatments, the control of ASF entirely depends on early diagnosis and culling of infected pigs. Thus, highly specific and sensitive diagnostic assays are required for accurate and early diagnosis of ASF virus (ASFV). Currently, only a few recombinant proteins have been tested and validated for use as reagents in ASF diagnostic assays. The most promising ones for ASFV antibody detection were p72, p30, p54, and pp62. So far, three ELISA kits based on these recombinant proteins have been commercialized. Due to the complex nature of the virus and variety forms of the disease, robust serodiagnostic assays are still required. ASFV p22 protein, encoded by KP177R gene, is located in the inner membrane of viral particle and appeared transiently in the plasma membrane early after virus infection. The p22 protein interacts with numerous cellular proteins, involved in processes of phagocytosis and endocytosis through different cellular pathways. However, p22 does not seem to be involved in virus replication or swine pathogenicity. In this study, E.coli expressed recombinant p22 protein was used to generate a monoclonal antibody (mAb), and its potential use for the development of blocking ELISA (bELISA) was evaluated. A total of 806 pig serum samples were tested to evaluate the bELISA. Acording the ROC (Reciever operating chracteristic) analysis, 100% sensitivity and 98.10% of specificity was recorded when the PI cut-off value was set at 47%. The novel assay was able to detect the antibodies as early as 9 days post infection. Finaly, a highly sensitive, specific and rapid novel p22-mAb based bELISA assay was developed, and optimized for detection of antibodies against genotype I and II ASFVs. It is a promising candidate for an early and acurate detection of the antibodies and is highly expected to have a valuable role in the containment and prevention of ASF.Keywords: ASFV, blocking ELISA, diagnosis, monoclonal antibodies, sensitivity, specificity
Procedia PDF Downloads 782473 A Comparative Study: Comparison of Two Different Fluorescent Stains -Auramine and Rhodamine- with Ehrlich-Ziehl-Neelsen, Kinyoun Staining, and Culture in the Determination of Acid Resistant Bacilli
Authors: Recep Keşli, Hayriye Tokay, Cengiz Demir, İsmail Ceyhan
Abstract:
Objective: In many countries, tuberculosis (TB) is still one of the most important diseases. Tuberculosis is among top 10 causes of death worldwide. The early diagnosis of active tuberculosis still depends on the presence of acid resistant bacilli (ARB) in stained smears. In this study, we aimed to investigate the diagnostic performances of Erlich Ziehl Neelsen (EZN), Kinyoun and two different fluorescent stains. Methods: The specimens were obtained from the patients who applied to Chest Diseases Departments of Ankara Atatürk Chest Diseases and Thoracic Surgery Training and Research Hospital, and Afyon Kocatepe University, ANS Research and Practice Hospital. The study was carried out in the Medical Microbiology Laboratory, School of Medicine, Afyon Kocatepe University. All the non-sterile specimens were homogenized and decontaminated according to the EUCAST instructions. Samples were inoculated onto the Löwenstein-Jensen agars (bio-Merieux Marcy l'Etoile, France) and then incubated at 37˚C, for 40 days. Four smears were prepared from each specimen. Slides were stained with commercial EZN (BD, Sparks, USA), Kinyoun (SALUBRIS Istanbul, Turkey), Auramine (SALUBRIS Istanbul, Turkey) and Rhodamine (SALUBRIS Istanbul, Turkey) kit. While EZN and Kinyoun stainings were examined by light microscope, Auramine and Rhodamine slides were examined by fluorescence microscopy. Results: A total of 158 respiratory system samples (sputum, broncho alveolar lavage fluid…etc) were enrolled into the study. A hundred and two of the samples that processed were found as culture positive. The sensitivity, specificity, positive predictive, and negative predictive values were detected as 100%, 67.5%, 73.5%, and 100% for EZN, 100%, 70.9%, 77.4%, and 100% for Kinyoun, 100%,77.8%, 84.3%, 100% for Auramine, and 100%, 80% , 86.3%, and 100% for Rhodamine respectively. Conclusions: According to our study auramine and rhodamine staining methods showed the best diagnostic performance among the four investigated staining methods. In conclusion, the fluorochrome staining method may be accepted as the most reliable, rapid and useful method for diagnosis of the mycobacterial infections truly.Keywords: acid resistant bacilli (ARB), auramine, Ehrlich-Ziehl-Neelsen (EZN), Kinyoun, Rhodamine
Procedia PDF Downloads 2802472 Federated Learning in Healthcare
Authors: Ananya Gangavarapu
Abstract:
Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment
Procedia PDF Downloads 1442471 Application of Electrical Resistivity Tomography to Image the Subsurface Structure of a Sinkhole, a Case Study in Southwestern Missouri
Authors: Shishay T. Kidanu
Abstract:
The study area is located in Southwestern Missouri and is mainly underlain by Mississippian Age limestone which is highly susceptible to karst processes. The area is known for the presence of various karst features like caves, springs and more importantly Sinkholes. Sinkholes are one of the most common karst features and the primary hazard in karst areas. Investigating the subsurface structure and development mechanism of existing sinkholes enables to understand their long-term impact and chance of reactivation and also helps to provide effective mitigation measures. In this study ERT (Electrical Resistivity Tomography), MASW (Multichannel Analysis of Surface Waves) and borehole control data have been used to image the subsurface structure and investigate the development mechanism of a sinkhole in Southwestern Missouri. The study shows that the main process responsible for the development of the sinkhole is the downward piping of fine grained soils. Furthermore, the study reveals that the sinkhole developed along a north-south oriented vertical joint set characterized by a vertical zone of water seepage and associated fine grained soil piping into preexisting fractures.Keywords: ERT, Karst, MASW, sinkhole
Procedia PDF Downloads 2152470 Development of Electrochemical Biosensor Based on Dendrimer-Magnetic Nanoparticles for Detection of Alpha-Fetoprotein
Authors: Priyal Chikhaliwala, Sudeshna Chandra
Abstract:
Liver cancer is one of the most common malignant tumors with poor prognosis. This is because liver cancer does not exhibit any symptoms in early stage of disease. Increased serum level of AFP is clinically considered as a diagnostic marker for liver malignancy. The present diagnostic modalities include various types of immunoassays, radiological studies, and biopsy. However, these tests undergo slow response times, require significant sample volumes, achieve limited sensitivity and ultimately become expensive and burdensome to patients. Considering all these aspects, electrochemical biosensors based on dendrimer-magnetic nanoparticles (MNPs) was designed. Dendrimers are novel nano-sized, three-dimensional molecules with monodispersed structures. Poly-amidoamine (PAMAM) dendrimers with eight –NH₂ groups using ethylenediamine as a core molecule were synthesized using Michael addition reaction. Dendrimers provide added the advantage of not only stabilizing Fe₃O₄ NPs but also displays capability of performing multiple electron redox events and binding multiple biological ligands to its dendritic end-surface. Fe₃O₄ NPs due to its superparamagnetic behavior can be exploited for magneto-separation process. Fe₃O₄ NPs were stabilized with PAMAM dendrimer by in situ co-precipitation method. The surface coating was examined by FT-IR, XRD, VSM, and TGA analysis. Electrochemical behavior and kinetic studies were evaluated using CV which revealed that the dendrimer-Fe₃O₄ NPs can be looked upon as electrochemically active materials. Electrochemical immunosensor was designed by immobilizing anti-AFP onto dendrimer-MNPs by gluteraldehyde conjugation reaction. The bioconjugates were then incubated with AFP antigen. The immunosensor was characterized electrochemically indicating successful immuno-binding events. The binding events were also further studied using magnetic particle imaging (MPI) which is a novel imaging modality in which Fe₃O₄ NPs are used as tracer molecules with positive contrast. Multicolor MPI was able to clearly localize AFP antigen and antibody and its binding successfully. Results demonstrate immense potential in terms of biosensing and enabling MPI of AFP in clinical diagnosis.Keywords: alpha-fetoprotein, dendrimers, electrochemical biosensors, magnetic nanoparticles
Procedia PDF Downloads 1382469 Experimental Investigation of the Aeroacoustics Field for a Rectangular Jet Impinging on a Slotted Plate: Stereoscopic Particle Image Velocimetry Measurement before and after the Plate
Authors: Nour Eldin Afyouni, Hassan Assoum, Kamel Abed-Meraim, Anas Sakout
Abstract:
The acoustic of an impinging jet holds significant importance in the engineering field. In HVAC systems, the jet impingement, in some cases, generates noise that destroys acoustic comfort. This paper presents an experimental study of a rectangular air jet impinging on a slotted plate to investigate the correlation between sound emission and turbulence dynamics. The experiment was conducted with an impact ratio L/H = 4 and a Reynolds number Re = 4700. The survey shows that coherent structures within the impinging jet are responsible for self-sustaining tone production. To achieve this, a specific experimental setup consisting of two simultaneous Stereoscopic Particle Image Velocimetry (S-PIV) measurements was developed to track vortical structures both before and after the plate, in addition to acoustic measurements. The results reveal a significant correlation between acoustic waves and the passage of coherent structures. Variations in the arrangement of vortical structures between the upstream and downstream sides of the plate were observed. This analysis of flow dynamics can enhance our understanding of slot noise.Keywords: impinging jet, coherent structures, SPIV, aeroacoustics
Procedia PDF Downloads 83