Search results for: A2780 and its resistant cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4044

Search results for: A2780 and its resistant cells

2754 High Temperature Oxidation of Cr-Steel Interconnects in Solid Oxide Fuel Cells

Authors: Saeed Ghali, Azza Ahmed, Taha Mattar

Abstract:

Solid Oxide Fuel Cell (SOFC) is a promising solution for the energy resources leakage. Ferritic stainless steel becomes a suitable candidate for the SOFCs interconnects due to the recent advancements. Different steel alloys were designed to satisfy the needed characteristics in SOFCs interconnect as conductivity, thermal expansion and corrosion resistance. Refractory elements were used as alloying elements to satisfy the needed properties. The oxidation behaviour of the developed alloys was studied where the samples were heated for long time period at the maximum operating temperature to simulate the real working conditions. The formed scale and oxidized surface were investigated by SEM. Microstructure examination was carried out for some selected steel grades. The effect of alloying elements on the behaviour of the proposed interconnects material and the performance during the working conditions of the cells are explored and discussed. Refractory metals alloying of chromium steel seems to satisfy the needed characteristics in metallic interconnects.

Keywords: SOFCs, Cr-steel, interconnects, oxidation

Procedia PDF Downloads 316
2753 Effect of Cigarette Smoke on Micro-Architecture of Respiratory Organs with and without Dietary Probiotics

Authors: Komal Khan, Hafsa Zaneb, Saima Masood, Muhammad Younus, Sanan Raza

Abstract:

Cigarette smoke induces many physiological and pathological changes in respiratory tract like goblet cell hyperplasia and regional distention of airspaces. It is also associated with elevation of inflammatory profiles in different airway compartments. As probiotics are generally known to promote mucosal tolerance, it was postulated that prophylactic use of probiotics can be helpful in reduction of respiratory damage induced by cigarette smoke exposure. Twenty-four adult mice were randomly divided into three groups (cigarette-smoke (CS) group, cigarette-smoke+ Lactobacillus (CS+ P) group, control (Cn) group), each having 8 mice. They were exposed to cigarette smoke for 28 days (6 cigarettes/ day for 6 days/week). Wright-Giemsa staining of bronchoalveolar lavage fluid (BALF) was performed in three mice per group. Tissue samples of trachea and lungs of 7 mice from each group were processed by paraffin embedding technique for haematoxylin & eosin (H & E) and alcian blue- periodic acid-Schiff (AB-PAS) staining. Then trachea (goblet cell number, ratio and loss of cilia) and lungs (airspace distention) were studied. The results showed that the number of goblet cells was increased in CS group as a result of defensive mechanism of the respiratory system against irritating substances. This study also revealed that the cells of CS group having acidic glycoprotein were found to be higher in quantity as compared to those containing neutral glycoprotein. However, CS + P group showed a decrease in goblet cell index due to enhanced immunity by prophylactically used probiotics. Moreover, H & E stained tracheas showed significant loss of cilia in CS group due to propelling of mucous but little loss in CS + P group because of having good protective tracheal epithelium. In lungs, protection of airspaces was also much more evident in CS+ P group as compared to CS group having distended airspaces, especially at 150um distance from terminal bronchiole. In addition, a comprehensive analysis of inflammatory cells population of BALF showed neutrophilia and eosinophilia was significantly reduced in CS+ P group. This study proved that probiotics are found to be useful for reduction of changes in micro-architecture of the respiratory system. Thus, dietary supplementation of probiotic as prophylactic measure can be useful in achieving immunomodulatory effects.

Keywords: cigarette smoke, probiotics, goblet cells, airspace enlargement, BALF

Procedia PDF Downloads 352
2752 Development of Fluorescence Resonance Energy Transfer-Based Nanosensor for Measurement of Sialic Acid in vivo

Authors: Ruphi Naz, Altaf Ahmad, Mohammad Anis

Abstract:

Sialic acid (5-Acetylneuraminic acid, Neu5Ac) is a common sugar found as a terminal residue on glycoconjugates in many animals. Humans brain and the central nervous system contain the highest concentration of sialic acid (as N-acetylneuraminic acid) where these acids play an important role in neural transmission and ganglioside structure in synaptogenesis. Due to its important biological function, sialic acid is attracting increasing attention. To understand metabolic networks, fluxes and regulation, it is essential to be able to determine the cellular and subcellular levels of metabolites. Genetically-encoded fluorescence resonance energy transfer (FRET) sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. Taking this, we developed a genetically encoded FRET (fluorescence resonance energy transfer) based nanosensor to analyse the sialic acid level in living cells. Sialic acid periplasmic binding protein (sia P) from Haemophilus influenzae was taken and ligated between the FRET pair, the cyan fluorescent protein (eCFP) and Venus. The chimeric sensor protein was expressed in E. coli BL21 (DE3) and purified by affinity chromatography. Conformational changes in the binding protein clearly confirmed the changes in FRET efficiency. So any change in the concentration of sialic acid is associated with the change in FRET ratio. This sensor is very specific to sialic acid and found stable with the different range of pH. This nanosensor successfully reported the intracellular level of sialic acid in bacterial cell. The data suggest that the nanosensors may be a versatile tool for studying the in vivo dynamics of sialic acid level non-invasively in living cells

Keywords: nanosensor, FRET, Haemophilus influenzae, metabolic networks

Procedia PDF Downloads 112
2751 CuIn₃Se₅ Colloidal Nanocrystals and Its Ink-Coated Films for Photovoltaics

Authors: M. Ghali, M. Elnimr, G. F. Ali, A. M. Eissa, H. Talaat

Abstract:

CuIn₃Se₅ material is indexed as ordered vacancy compounds having excellent matching properties with CuInGaSe (CIGS) solar absorber layer. For example, the valence band offset of CuIn₃Se₅ with CIGS is nearly 0.3 eV, and the lattice mismatch is less than 1%, besides the absence of discontinuity in their conduction bands. Thus, CuIn₃Se₅ can work as a passivation layer for repelling holes from CIGS/CdS interface and hence to reduce the interface carriers recombination and consequently enhancing the efficiency of CIGS/CdS solar cells. Theoretically, it was reported earlier that an improvement in the efficiency of p-CIGS-based solar cell with a thin ~100 nm of n-CuIn₃Se₅ layer is expected. Recently, a reported experiment demonstrated significant improvement in the efficiency of Molecular Beam Epitaxy (MBE) grown CIGS solar cells from 13.4 to 14.5% via inserting a thin layer of MBE-grown Cu(In,Ga)₃Se₅ layer at the CdS/CIGS interface. It should be mentioned that CuIn₃Se₅ material in either bulk or thin film form, are usually fabricated by high vacuum physical vapor deposition techniques (e.g., three-source co-evaporation, RF sputtering, flash evaporation, and molecular beam epitaxy). In addition, achieving photosensitive films of n-CuIn₃Se₅ material is important for new hybrid organic/inorganic structures, where inorganic photo-absorber layer, with n-type conductivity, can form n–p junction with organic p-type material (e.g., conductive polymers). A detailed study of the physical properties of CuIn₃Se₅ is still necessary for better understanding of device operation and further improvement of solar cells performance. Here, we report on the low-cost synthesis of CuIn₃Se₅ material in nano-scale size, with an average diameter ~10nm, using simple solution-based colloidal chemistry. In contrast to traditionally grown bulk tetragonal CuIn₃Se₅ crystals using high Vacuum-based technology, our colloidal CuIn₃Se₅ nanocrystals show cubic crystal structure with a shape of nanoparticles and band gap ~1.33 eV. Ink-coated thin films prepared from these nanocrystals colloids; display n-type character, 1.26 eV band gap and strong photo-responsive behavior with incident white light. This suggests the potential use of colloidal CuIn₃Se₅ as an active layer in all-solution-processed thin film solar cells.

Keywords: nanocrystals, CuInSe, thin film, optical properties

Procedia PDF Downloads 142
2750 [Keynote Speech]: Simulation Studies of Pulsed Voltage Effects on Cells

Authors: Jiahui Song

Abstract:

In order to predict or explain a complicated biological process, it is important first to construct mathematical models that can be used to yield analytical solutions. Through numerical simulation, mathematical model results can be used to test scenarios that might not be easily attained in a laboratory experiment, or to predict parameters or phenomena. High-intensity, nanosecond pulse electroporation has been a recent development in bioelectrics. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into pore formation energy equation to analyze and predict such electroporation effects. For greater accuracy, with inclusion of atomistic details, molecular dynamics (MD) simulations were also carried out during this study. Besides inducing pores in cells, external voltages could also be used in principle to modulate action potential generation in nerves. This could have an application in electrically controlled ‘pain management’. Also a simple model-based rate equation treatment of the various cellular bio-chemical processes has been used to predict the pulse number dependent cell survival trends.

Keywords: model, high-intensity, nanosecond, bioelectrics

Procedia PDF Downloads 211
2749 Microbial Fuel Cells in Waste Water Treatment and Electricity Generation

Authors: Rajalaxmi N., Padma Bhat, Pooja Garag, Pooja N. M., V. S. Hombalimath

Abstract:

Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load.

Keywords: microbial fuel cell, bioelectricity, wastewater, salt bridge, COD

Procedia PDF Downloads 507
2748 Identification and Characterization of Polysaccharide Biosynthesis Protein (CAPD) of Enterococcus faecium

Authors: Liaqat Ali, Hubert E. Blum, Türkân Sakinc

Abstract:

Enterococcus faecium is an emerging multidrug-resistant nosocomial pathogen increased dramatically worldwide and causing bacteremia, endocarditis, urinary tract and surgical site infections in immunocomprised patients. The capsular polysaccharides that contribute to pathogenesis through evasion of the host innate immune system are also involved in hindering leukocyte killing of enterococci. The gene cluster (enterococcal polysaccharide antigen) of E. faecalis encoding homologues of many genes involved in polysaccharide biosynthesis. We identified two putative loci with 22 kb and 19 kb which contained 11 genes encoding for glycosyltransferases (GTFs); this was confirmed by using genome comparison of already sequenced strains that has no homology to known capsule genes and the epa-locus. The polysaccharide-conjugate vaccines have rapidly emerged as a suitable strategy to combat different pathogenic bacteria, therefore, we investigated a polysaccharide biosynthesis CapD protein in E. faecium contains 336 amino acids and had putative function for N-linked glycosylation. The deletion/knock-out capD mutant was constructed and complemented by homologues recombination method and confirmed by using PCR and sequencing. For further characterization and functional analysis, in-vitro cell culture and in-vivo a mouse infection models were used. Our ΔcapD mutant shows a strong hydrophobicity and all strains exhibited biofilm production. Subsequently, the opsonic activity was tested in an opsonophagocytic assay which shows increased in mutant compared complemented and wild type strains but more than two fold decreased in colonization and adherence was seen on surface of uroepithelial cells. However, a significant higher bacterial colonialization was observed in capD mutant during animal bacteremia infection. Unlike other polysaccharides biosynthesis proteins, CapD does not seems to be a major virulence factor in enterococci but further experiments and attention is needed to clarify its function, exact mechanism and involvement in pathogenesis of enteroccocal nosocomial infections eventually to develop a vaccine/ or targeted therapy.

Keywords: E. faecium, pathogenesis, polysaccharides, biofilm formation

Procedia PDF Downloads 317
2747 Poly(Methyl Methacrylate) Degradation Products and Its in vitro Cytotoxicity Evaluation in NIH3T3 Cells

Authors: Lesly Y Carmona-Sarabia, Luisa Barraza-Vergara, Vilmalí López-Mejías, Wandaliz Torres-García, Maribella Domenech-Garcia, Madeline Torres-Lugo

Abstract:

Biosensors are used in many applications providing real-time monitoring to treat long-term conditions. Thus, understanding the physicochemical properties and biological side effects on the skin of polymers (e. g., poly(methyl methacrylate), PMMA) employed in the fabrication of wearable biosensors is crucial for the selection of manufacturing materials within this field. The PMMA (hydrophobic and thermoplastic polymer) is commonly employed as a coating material or substrate in the fabrication of wearable devices. The cytotoxicityof PMMA (including residual monomers or degradation products) on the skin, in terms of cells and tissue, is required to prevent possible adverse effects (cell death, skin reactions, sensitization) on human health. Within this work, accelerated aging of PMMA (Mw ~ 15000) through thermal and photochemical degradation was under-taken. The accelerated aging of PMMA was carried out by thermal (200°C, 1h) and photochemical degradation (UV-Vis, 8-15d) adapted employing ISO protocols (ISO-10993-12, ISO-4892-1:2016, ISO-877-1:2009, ISO-188: 2011). In addition, in vitro cytotoxicity evaluation of PMMA degradation products was performed using NIH3T3 fibroblast cells to assess the response of skin tissues (in terms of cell viability) exposed with polymers utilized to manufacture wearable biosensors, such as PMMA. The PMMA (Mw ~ 15000) before and after accelerated aging experiments was characterized by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), powder X-ray diffractogram (PXRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) to determine and verify the successful degradation of this polymer under the specific conditions previously mention. The degradation products were characterized through nuclear magnetic resonance (NMR) to identify possible byproducts generated after the accelerated aging. Results demonstrated a percentage (%) weight loss between 1.5-2.2% (TGA thermographs) for PMMA after accelerated aging. The EDS elemental analysis reveals a 1.32 wt.% loss of carbon for PMMA after thermal degradation. These results might be associated with the amount (%) of PMMA degrade after the accelerated aging experiments. Furthermore, from the thermal degradation products was detected the presence of the monomer and methyl formate (low concentrations) and a low molecular weight radical (·COOCH3) in higher concentrations by NMR. In the photodegradation products, methyl formate was detected in higher concentrations. These results agree with the proposed thermal or photochemical degradation mechanisms found in the literature.1,2 Finally, significant cytotoxicity on the NIH3T3 cells was obtained for the thermal and photochemical degradation products. A decrease in cell viability by > 90% (stock solutions) was observed. It is proposed that the presence of byproducts (e.g. methyl formate or radicals such as ·COOCH₃) from the PMMA degradation might be responsible for the cytotoxicity observed in the NIH3T3 fibroblast cells. Additionally, experiments using skin models will be employed to compare with the NIH3T3 fibroblast cells model.

Keywords: biosensors, polymer, skin irritation, degradation products, cell viability

Procedia PDF Downloads 126
2746 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: convolution neural network, deep learning, malaria, thin blood smears

Procedia PDF Downloads 114
2745 Differential Proteomics Expression in Purple Rice Supplemented Type 2 Diabetic Rats’ Skeletal Muscle

Authors: Ei Ei Hlaing, Narissara Lailerd, Sittiruk Roytrakul, Pichapat Piamrojanaphat

Abstract:

Type 2 diabetes is one of the most common metabolic diseases all over the world. The pathogenesis of type 2 diabetes is not the only dysfunction of pancreatic beta cells but also insulin resistance in muscle, liver and adipose tissue. High levels of circulating free fatty acids, an increased lipid content of muscle cells, impaired insulin-mediated glucose uptake and diminished mitochondrial functioning are pathophysiological hallmarks of diabetic skeletal muscles. Purple rice (Oryza sativa L. indica) has been shown to have antidiabetic effects. However, the underlying mechanism(s) of antidiabetic activity of purple rice is still unraveled. In this research, to explore in-depth cellular mechanism(s), proteomic profile of purple rice supplemented type 2 diabetic rats’ skeletal muscle were analyzed contract with non-supplemented rats. Diabetic rats were induced high-fat diet combined with streptozotocin injection. By using one- dimensional gel electrophoresis (1-DE) and LC-MS/MS quantitative proteomic method, we analyzed proteomic profiles in skeletal muscle of normal rats, normal rats with purple rice supplementation, type 2 diabetic rats, and type 2 diabetic rats with purple rice supplementation. Total 2676 polypeptide expressions were identified. Among them, 24 peptides were only expressed in type 2 diabetic rats, and 24 peptides were unique peptides in type 2 diabetic rats with purple rice supplementation. Acetyl CoA carboxylase 1 (ACACA) found as unique protein in type 2 diabetic rats which is the major enzyme in lipid synthesis and metabolism. Interestingly, DNA damage response protein, heterogeneous nuclear ribonucleoprotein K [Mus musculus] (Hnrnpk), was upregulated in type 2 diabetic rats’ skeletal muscle. Meanwhile, unique proteins of type 2 diabetic rats with purple rice supplementation (bone morphogenetic 7 protein preproprotein, BMP7; and forkhead box protein NX4, Foxn4) involved with muscle cells growth through the regulation of TGF-β/Smad signaling network. Moreover, BMP7 may effect on insulin signaling through the downstream signaling of protein kinase B (Akt) which acts in protein synthesis, glucose uptake, and glycogen synthesis. In conclusion, our study supports that type 2 diabetes impairs muscular lipid metabolism. In addition, purple rice might recover the muscle cells growth and insulin signaling.

Keywords: proteomics, purple rice bran, skeletal muscle, type 2 diabetic rats

Procedia PDF Downloads 237
2744 Presence, Distribution and Form of Calcium Oxalate Crystals in Relation to Age of Actinidia Deliciosa Leaves and Petioles

Authors: Muccifora S., Rinallo C., Bellani L.

Abstract:

Calcium (Ca²+) is an element essential to the plant being involved in plant growth and development. At high concentrations, it is toxic and can influence every stage, process and cellular activity of plant life. Given its toxicity, cells implement mechanisms to compartmentalize calcium in a vacuole, endoplasmic reticulum, mitochondria, plastids and cell wall. One of the most effective mechanisms to reduce the excess of calcium, thus avoiding cellular damage, is its complexation with oxalic acid to form calcium oxalate crystals that are no longer osmotically or physiologically active. However, the sequestered calcium can be mobilized when the plant needs it. Calcium crystals can be accumulated in the vacuole of specialized sink-cells called idioblasts, with different crystalline forms (druse, raphyde and styloid) of diverse physiological meanings. Actinidia deliciosa cv. Hayward presents raphydes and styloid localized in idioblasts in cells of photosynthetic and non-photosynthetic tissues. The purpose of this work was to understand if there is a relationship between the age of Actinidia leaves and the presence, distribution, dimension and shape of oxalate crystals by means of light, fluorescent, polarized and transmission electron microscopy. Three vines from female plants were chosen at the beginning of the season and used throughout the study. The leaves with petioles were collected at various stages of development from the bottom to the shoot of the plants monthly from April to July. The samples were taken in corresponding areas of the central and lateral parts of the leaves and of the basal portion of the petiole. The results showed that in the leaves, the number of raphyde idioblasts decreased with the progress of the growing season, while the styloid idioblasts increased progressively, becoming very numerous in the upper nodes of July. In June and in July samples, in the vacuoles of the highest nodes, a portion regular in shape strongly stained with rubeanic acid was present. Moreover, the chlortetracycline (CTC) staining for localization of free calcium marked the wall of the idioblasts and the wall of the cells near vascular bundles. In April petiole samples, moving towards the youngest nodes, the raphydes idioblast decreased in number and in the length of the single raphydes. Besides, crystals stained with rubeanic acid appeared in the vacuoles of some cells. In June samples, numerous raphyde idioblasts oriented parallel to vascular bundles were evident. Under the electron microscope, numerous idioblasts presented not homogeneous electrondense aggregates of material, in which a few crystals (styloids) in the form of regular holes were scattered. In July samples, an increase in the number of styloid idioblasts in the youngest nodes and little masses stained with CTC near styloids were observed. Peculiar cells stained with rubeanic acid were detected and hypothesized to be involved in the formation of the idioblasts. In conclusion, in Actinidia leaves and petioles, it seems to confirm the hypothesis that the formation of styloid idioblasts can be correlated to increasing calcium levels in growing tissues.

Keywords: calcium oxalate crystals, actinidia deliciosa, light and electron microscopy, idioblasts

Procedia PDF Downloads 69
2743 Evaluation of the Effect of Magnetic Field on Fibroblast Attachment in Contact with PHB/Iron Oxide Nanocomposite

Authors: Shokooh Moghadam, Mohammad Taghi Khorasani, Sajjad Seifi Mofarah, M. Daliri

Abstract:

Through the recent two decades, the use of magnetic-property materials with the aim of target cell’s separation and eventually cancer treatment has incredibly increased. Numerous factors can alter the efficacy of this method on curing. In this project, the effect of magnetic field on adhesion of PDL and L929 cells on nanocomposite of iron oxide/PHB with different density of iron oxides (1%, 2.5%, 5%) has been studied. The nanocamposite mentioned includes a polymeric film of poly hydroxyl butyrate and γ-Fe2O3 particles with the average size of 25 nanometer dispersed in it and during this process, poly vinyl alcohol with 98% hydrolyzed and 78000 molecular weight was used as an emulsion to achieve uniform distribution. In order to get the homogenous film, the solution of PHB and iron oxide nanoparticles were put in a dry freezer and in liquid nitrogen, which resulted in a uniform porous scaffold and for removing porosities a 100◦C press was used. After the synthesis of a desirable nanocomposite film, many different tests were performed, First, the particles size and their distribution in the film were evaluated by transmission electron microscopy (TEM) and even FTIR analysis and DMTA test were run in order to observe and accredit the chemical connections and mechanical properties of nanocomposites respectively. By comparing the graphs of case and control samples, it was established that adding nano particles caused an increase in crystallization temperature and the more density of γ-Fe2O3 lead to more Tg (glass temperature). Furthermore, its dispersion range and dumping property of samples were raised up. Moreover, the toxicity, morphologic changes and adhesion of fibroblast and cancer cells were evaluated by a variety of tests. All samples were grown in different density and in contact with cells for 24 and 48 hours within the magnetic fields of 2×10^-3 Tesla. After 48 hours, the samples were photographed with an optic and SEM and no sign of toxicity was traced. The number of cancer cells in the case of sample group was fairly more than the control group. However, there are many gaps and unclear aspects to use magnetic field and their effects in cancer and all diseases treatments yet to be discovered, not to neglect that there have been prominent step on this way in these recent years and we hope this project can be at least a minimum movement in this issue.

Keywords: nanocomposite, cell attachment, magnetic field, cytotoxicity

Procedia PDF Downloads 243
2742 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 416
2741 Mycophenolate Mofetil Increases Mucin Expression in Primary Cultures of Oral Mucosal Epithelial Cells for Application in Limbal Stem Cell Deficiency

Authors: Sandeep Kumar Agrawal, Aditi Bhattacharya, Janvie Manhas, Krushna Bhatt, Yatin Kholakiya, Nupur Khera, Ajoy Roychoudhury, Sudip Sen

Abstract:

Autologous cultured explants of human oral mucosal epithelial cells (OMEC) are a potential therapeutic modality for limbal stem cell deficiency (LSCD). Injury or inflammation of the ocular surface in the form of burns, chemicals, Stevens Johnson syndrome, ocular cicatricial pemphigoid etc. can lead to destruction and deficiency of limbal stem cells. LSCD manifests in the form of severe ocular surface diseases (OSD) characterized by persistent and recurrent epithelial defects, conjuntivalisation and neovascularisation of the corneal surface, scarring and ultimately opacity and blindness. Most of the cases of OSD are associated with severe dry eye pertaining to diminished mucin and aqueous secretion. Mycophenolate mofetil (MMF) has been shown to upregulate the mucin expression in conjunctival goblet cells in vitro. The aim of this study was to evaluate the effects of MMF on mucin expression in primary cultures of oral mucosal epithelial cells. With institutional ethics committee approval and written informed consent, thirty oral mucosal epithelial tissue samples were obtained from patients undergoing oral surgery for non-malignant conditions. OMEC were grown on human amniotic membrane (HAM, obtained from expecting mothers undergoing elective caesarean section) scaffold for 2 weeks in growth media containing DMEM & Ham’s F12 (1:1) with 10% FBS and growth factors. In vitro dosage of MMF was standardised by MTT assay. Analysis of stem cell markers was done using RT-PCR while mucin mRNA expression was quantified using RT-PCR and q-PCR before and after treating cultured OMEC with graded concentrations of MMF for 24 hours. Protein expression was validated using immunocytochemistry. Morphological studies revealed a confluent sheet of proliferating, stratified oral mucosal epithelial cells growing over the surface of HAM scaffold. The presence of progenitor stem cell markers (p63, p75, β1-Integrin and ABCG2) and cell surface associated mucins (MUC1, MUC15 and MUC16) were elucidated by RT-PCR. The mucin mRNA expression was found to be upregulated in MMF treated primary cultures of OMEC, compared to untreated controls as quantified by q-PCR with β-actin as internal reference gene. Increased MUC1 protein expression was validated by immunocytochemistry on representative samples. Our findings conclude that OMEC have the ability to form a multi-layered confluent sheet on the surface of HAM similar to a cornea, which is important for the reconstruction of the damaged ocular surface. Cultured OMEC has stem cell properties as demonstrated by stem cell markers. MMF can be a novel enhancer of mucin production in OMEC. It has the potential to improve dry eye in patients undergoing OMEC transplantation for bilateral OSD. Further clinical trials are required to establish the role of MMF in patients undergoing OMEC transplantation.

Keywords: limbal stem cell deficiency, mycophenolate mofetil, mucin, ocular surface disease

Procedia PDF Downloads 311
2740 Role of Long Noncoding RNA HULC on Colorectal Carcinoma Progression through Epigenetically Repressing NKD2 Expression

Authors: Shu-Jun Li, Cheng-Cao Sun, De-Jia Li

Abstract:

Recently, long noncoding RNAs (lncRNAs) have been emerged as crucial regulators of human diseases and prognostic markers in numerous of cancers, including colorectal carcinoma (CRC). Here, we identified an oncogenetic lncRNA HULC, which may promote colorectal tumorigenesis. HULC has been found to be up-regulated and acts as oncogene in gastric cancer and hepatocellular carcinoma, but its expression pattern, biological function and underlying mechanism in CRC is still undetermined. Here, we reported that HULC expression is also over-expressed in CRC, and its increased level is associated with poor prognosis and shorter survival. Knockdown of HULC impaired CRC cells proliferation, migration and invasion, facilitated cell apoptosis in vitro, and inhibited tumorigenicity of CRC cells in vivo. Mechanistically, RNA immunoprecipitation (RIP) and RNA pull-down experiment demonstrated that HULC could simultaneously interact with EZH2 to repress underlying targets NKD2 transcription. In addition, rescue experiments determined that HULC oncogenic function is partly dependent on repressing NKD2. Taken together, our findings expound how HULC over-expression endows an oncogenic function in CRC.

Keywords: long noncoding RNA, HULC, NKD2, colorectal carcinoma, proliferation, apoptosis

Procedia PDF Downloads 213
2739 Expression of Fibrogenesis Markers after Mesenchymal Stem Cells Therapy for Experimental Liver Cirrhosis

Authors: Tatsiana Ihnatovich, Darya Nizheharodava, Mikalai Halabarodzka, Tatsiana Savitskaya, Marina Zafranskaya

Abstract:

Liver fibrosis is a complex of histological changes resulting from chronic liver disease accompanied by an excessive production and deposition of extracellular matrix components in the hepatic parenchyma. Liver fibrosis is a serious medical and social problem. Hepatic stellate cells (HSCs) make a significant contribution to the extracellular matrix deposition due to liver injury. Mesenchymal stem cells (MSCs) have a pronounced anti-inflammatory, regenerative and immunomodulatory effect; they are able to differentiate into hepatocytes and induce apoptosis of activated HSCs that opens the prospect of their use for preventing the excessive fibro-formation and the development of liver cirrhosis. The aim of the study is to evaluate the effect of MSCs therapy on the expression of fibrogenesis markers genes in liver tissue and HSCs cultures of rats with experimental liver cirrhosis (ELC). Materials and methods: ELC was induced by the common bile duct ligation (CBDL) in female Wistar rats (n = 19) with an average body weight of 250 (220 ÷ 270) g. Animals from the control group (n = 10) were sham-operated. On the 56th day after the CBDL, the rats of the experimental (n = 12) and the control (n = 5) groups received intraportal MSCs in concentration of 1×106 cells/animal (previously obtained from rat’s bone marrow) or saline, respectively. The animals were taken out of the experiment on the 21st day. HSCs were isolated by sequential liver perfusion in situ with following disaggregation, enzymatic treatment and centrifugation of cell suspension on a two-stage density gradient. The expression of collagen type I (Col1a1) and type III (Col3a1), matrix metalloproteinase type 2 (MMP2) and type 9 (MMP9), tissue inhibitor of matrix metalloproteinases type 1 (TIMP1), transforming growth factor β type 1 (TGFβ1) and type 3 (TGFβ3) was determined by real-time polymerase chain reaction. Statistical analysis was performed using Statistica 10.0. Results: In ELC rats compared to sham-operated animals, a significant increase of all studied markers expression was observed. The administration of MSCs led to a significant decrease of all detectable markers in the experimental group compared to rats without cell therapy. In ELC rats, an increased MMP9/TIMP1 ratio after cell therapy was also detected. The infusion of MSCs in the sham-operated animals did not lead to any changes. In the HSCs from ELC animals, the expression of Col1a1 and Col3a1 exceeded the similar parameters of the control group (p <0.05) and statistically decreased after the MSCs administration. The correlation between Col3a1 (Rs = 0.51, p <0.05), TGFβ1 (Rs = 0.6, p <0.01), and TGFβ3 (Rs = 0.75, p <0.001) expression in HSCs cultures and liver tissue has been found. Conclusion: Intraportal administration of MSCs to rats with ELC leads to a decreased Col1a1 and Col3a1, MMP2 and MMP9, TIMP1, TGFβ1 and TGFβ3 expression. The correlation between the expression of Col3a1, TGFβ1 and TGFβ3 in liver tissue and in HSCs cultures indicates the involvement of activated HSCs in the fibrogenesis that allows considering HSCs to be the main cell therapy target in ELC.

Keywords: cell therapy, experimental liver cirrhosis, hepatic stellate cells, mesenchymal stem cells

Procedia PDF Downloads 151
2738 Identification of the Target Genes to Increase the Immunotherapy Response in Bladder Cancer Patients using Computational and Experimental Approach

Authors: Sahar Nasr, Lin Li, Edwin Wang

Abstract:

Bladder cancer (BLCA) is known as the 13th cause of death among cancer patients worldwide, and ~575,000 new BLCA cases are diagnosed each year. Urothelial carcinoma (UC) is the most prevalent subtype among BLCA patients, which can be categorized into muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). Currently, various therapeutic options are available for UC patients, including (1) transurethral resection followed by intravesical instillation of chemotherapeutics or Bacillus Calmette-Guérin for NMIBC patients, (2) neoadjuvant platinum-based chemotherapy (NAC) plus radical cystectomy is the standard of care for localized MIBC patients, and (3) systematic chemotherapy for metastatic UC. However, conventional treatments may lead to several challenges for treating patients. As an illustration, some patients may suffer from recurrence of the disease after the first line of treatment. Recently, immune checkpoint therapy (ICT) has been introduced as an alternative treatment strategy for the first or second line of treatment in advanced or metastatic BLCA patients. Although ICT showed lucrative results for a fraction of BLCA patients, ~80% of patients were not responsive to it. Therefore, novel treatment methods are required to augment the ICI response rate within BLCA patients. It has been shown that the infiltration of T-cells into the tumor microenvironment (TME) is positively correlated with the response to ICT within cancerous patients. Therefore, the goal of this study is to enhance the infiltration of cytotoxic T-cells into TME through the identification of target genes within the tumor that are responsible for the non-T-cell inflamed TME and their inhibition. BLCA bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) and immune score for TCGA samples were used to determine the Pearson correlation score between the expression of different genes and immune score for each sample. The genes with strong negative correlations were selected (r < -0.2). Thereafter, the correlation between the expression of each gene and survival in BLCA patients was calculated using the TCGA data and Cox regression method. The genes that are common in both selected gene lists were chosen for further analysis. Afterward, BLCA bulk and single-cell RNA-sequencing data were ranked based on the expression of each selected gene and the top and bottom 25% samples were used for pathway enrichment analysis. If the pathways related to the T-cell infiltration (e.g., antigen presentation, interferon, or chemokine pathways) were enriched within the low-expression group, the gene was included for downstream analysis. Finally, the selected genes will be used to calculate the correlation between their expression and the infiltration rate of the activated CD+8 T-cells, natural killer cells and the activated dendric cells. A list of potential target genes has been identified and ranked based on the above-mentioned analysis and criteria. SUN-1 got the highest score within the gene list and other identified genes in the literature as benchmarks. In conclusion, inhibition of SUN1 may increase the tumor-infiltrating lymphocytes and the efficacy of ICI in BLCA patients. BLCA tumor cells with and without SUN-1 CRISPR/Cas9 knockout will be injected into the syngeneic mouse model to validate the predicted SUN-1 effect on increasing tumor-infiltrating lymphocytes.

Keywords: data analysis, gene expression analysis, gene identification, immunoinformatic, functional genomics, transcriptomics

Procedia PDF Downloads 140
2737 Assessment of Biofilm Production Capacity of Industrially Important Bacteria under Electroinductive Conditions

Authors: Omolola Ojetayo, Emmanuel Garuba, Obinna Ajunwa, Abiodun A. Onilude

Abstract:

Introduction: Biofilm is a functional community of microorganisms that are associated with a surface or an interface. These adherent cells become embedded within an extracellular matrix composed of polymeric substances, i.e., biofilms refer to biological deposits consisting of both microbes and their extracellular products on biotic and abiotic surfaces. Despite their detrimental effects in medicine, biofilms as natural cell immobilization have found several applications in biotechnology, such as in the treatment of wastewater, bioremediation and biodegradation, desulfurization of gas, and conversion of agro-derived materials into alcohols and organic acids. The means of enhancing immobilized cells have been chemical-inductive, and this affects the medium composition and final product. Physical factors including electrical, magnetic, and electromagnetic flux have shown potential for enhancing biofilms depending on the bacterial species, nature, and intensity of emitted signals, the duration of exposure, and substratum used. However, the concept of cell immobilisation by electrical and magnetic induction is still underexplored. Methods: To assess the effects of physical factors on biofilm formation, six American typed culture collection (Acetobacter aceti ATCC15973, Pseudomonas aeruginosa ATCC9027, Serratia marcescens ATCC14756, Gluconobacter oxydans ATCC19357, Rhodobacter sphaeroides ATCC17023, and Bacillus subtilis ATCC6633) were used. Standard culture techniques for bacterial cells were adopted. Natural autoimmobilisation potentials of test bacteria were carried out by simple biofilms ring formation on tubes, while crystal violet binding assay techniques were adopted in the characterisation of biofilm quantity. Electroinduction of bacterial cells by direct current (DC) application in cell broth, static magnetic field exposure, and electromagnetic flux were carried out, and autoimmobilisation of cells in a biofilm pattern was determined on various substrata tested, including wood, glass, steel, polyvinylchloride (PVC) and polyethylene terephthalate. Biot Savart law was used in quantifying magnetic field intensity, and statistical analyses of data obtained were carried out using the analyses of variance (ANOVA) as well as other statistical tools. Results: Biofilm formation by the selected test bacteria was enhanced by the physical factors applied. Electromagnetic induction had the greatest effect on biofilm formation, with magnetic induction producing the least effect across all substrata used. Microbial cell-cell communication could be a possible means via which physical signals affected the cells in a polarisable manner. Conclusion: The enhancement of biofilm formation by bacteria using physical factors has shown that their inherent capability as a cell immobilization method can be further optimised for industrial applications. A possible relationship between the presence of voltage-dependent channels, mechanosensitive channels, and bacterial biofilms could shed more light on this phenomenon.

Keywords: bacteria, biofilm, cell immobilization, electromagnetic induction, substrata

Procedia PDF Downloads 169
2736 Reducing Change-Related Costs in Assembly of Lithium-Ion Batteries for Electric Cars by Mechanical Decoupling

Authors: Achim Kampker, Heiner Hans Heimes, Mathias Ordung, Nemanja Sarovic

Abstract:

A key component of the drive train of electric vehicles is the lithium-ion battery system. Among various other components, such as the battery management system or the thermal management system, the battery system mostly consists of several cells which are integrated mechanically as well as electrically. Due to different vehicle concepts with regards to space, energy and power specifications, there is a variety of different battery systems. The corresponding assembly lines are specially designed for each battery concept. Minor changes to certain characteristics of the battery have a disproportionally high effect on the set-up effort in the form of high change-related costs. This paper will focus on battery systems which are made out of battery cells with a prismatic format. The product architecture and the assembly process will be analyzed in detail based on battery concepts of existing electric cars and key variety-causing drivers will be identified. On this basis, several measures will be presented and discussed on how to change the product architecture and the assembly process in order to reduce change-related costs.

Keywords: assembly, automotive industry, battery system, battery concept

Procedia PDF Downloads 283
2735 A Robust Stretchable Bio Micro-Electromechanical Systems Technology for High-Strain in vitro Cellular Studies

Authors: Tiffany Baetens, Sophie Halliez, Luc Buée, Emiliano Pallecchi, Vincent Thomy, Steve Arscott

Abstract:

We demonstrate here a viable stretchable bio-microelectromechanical systems (BioMEMS) technology for use with biological studies concerned with the effect of high mechanical strains on living cells. An example of this is traumatic brain injury (TBI) where neurons are damaged with physical force to the brain during, e.g., accidents and sports. Robust, miniaturized integrated systems are needed by biologists to be able to study the effect of TBI on neuron cells in vitro. The major challenges in this area are (i) to develop micro, and nanofabrication processes which are based on stretchable substrates and to (ii) create systems which are robust and performant at very high mechanical strain values—sometimes as high as 100%. At the time of writing, such processes and systems were rapidly evolving subject of research and development. The BioMEMS which we present here is composed of an elastomer substrate (low Young’s modulus ~1 MPa) onto which is patterned robust electrodes and insulators. The patterning of the thin films is achieved using standard photolithography techniques directly on the elastomer substrate—thus making the process generic and applicable to many materials’ in based systems. The chosen elastomer used is commercial ‘Sylgard 184’ polydimethylsiloxane (PDMS). It is spin-coated onto a silicon wafer. Multistep ultra-violet based photolithography involving commercial photoresists are then used to pattern robust thin film metallic electrodes (chromium/gold) and insulating layers (parylene) on the top of the PDMS substrate. The thin film metals are deposited using thermal evaporation and shaped using lift-off techniques The BioMEMS has been characterized mechanically using an in-house strain-applicator tool. The system is composed of 12 electrodes with one reference electrode transversally-orientated to the uniaxial longitudinal straining of the system. The electrical resistance of the electrodes is observed to remain very stable with applied strain—with a resistivity approaching that of evaporated gold—up to an interline strain of ~50%. The mechanical characterization revealed some interesting original properties of such stretchable BioMEMS. For example, a Poisson effect induced electrical ‘self-healing’ of cracking was identified. Biocompatibility of the commercial photoresist has been studied and is conclusive. We will present the results of the BioMEMS, which has also characterized living cells with a commercial Multi Electrode Array (MEA) characterization tool (Multi Channel Systems, USA). The BioMEMS enables the cells to be strained up to 50% and then characterized electrically and optically.

Keywords: BioMEMS, elastomer, electrical impedance measurements of living cells, high mechanical strain, microfabrication, stretchable systems, thin films, traumatic brain injury

Procedia PDF Downloads 132
2734 Cytotoxicity thiamethoxam Study on the Hepatopancreas and Its Reversibility under the Effect of Ginger in Helix aspersa

Authors: Samira Bensoltane, Smina Ait Hamlet, Samti Meriem, Semmasel Asma

Abstract:

Living organisms in the soil are subject to regular fluctuations of abiotic parameters, as well as a chemical contamination of the environment due to human activities. They are subject to multiple stressors they face. The aim of our work was to study the effects of insecticide: thiamethoxam (neonicotinoid), and the potential reversibility of the effects by an antioxidant: ginger on a bioindicator species in ecotoxicology, the land snail Helix aspersa. The effects were studied by a targeted cell approach of evaluating the effect of these molecules on tissue and cellular aspect of hepatopancreas through histological study. Treatment with thiamethoxam concentrations 10, 20, and 40 mg/l shows signs of inflammation even at low concentrations and from the 5th day of treatment. Histological examination of the hepatopancreas of snails treated with thiamethoxam showed significant changes from the lowest concentrations tested , note intertubular connective tissue enlargement, necrosis deferent types of cells (cells with calcium , digestive, excretory) , also damage acini, alteration of the apical membrane and lysis of the basement membrane in a dose- dependent manner. After 10 days of treatment and with 40 mg/l, the same changes were observed with a very advanced degeneration of the wall of the member that could be confused with the cell debris. For cons, the histological study of the hepatopancreas in Helix aspersa treated with ginger for a period of 15 days after stopping treatment with thiamethoxam has shown a partial regeneration of hepatopancreatic tissue snails treated with all concentrations of thiamethoxam and especially in the intertubular connective tissue of the wall and hepatopancreatic digestive tubules. Finally, we can conclude that monitoring the effect of the insecticide thiamethoxam showed significant alterations, however, treatment with ginger shows regeneration of damaged cells themselves much sharper at low concentration (10 mg/L).

Keywords: Helix aspersa, insecticides, thiamethoxam, ginger, hepatopancreas

Procedia PDF Downloads 201
2733 Anti-Neuroinflammatory and Anti-Apoptotic Efficacy of Equol, against Lipopolysaccharide Activated Microglia and Its Neurotoxicity

Authors: Lalita Subedi, Jae Kyoung Chae, Yong Un Park, Cho Kyo Hee, Lee Jae Hyuk, Kang Min Cheol, Sun Yeou Kim

Abstract:

Neuroinflammation may mediate the relationship between low levels of estrogens and neurodegenerative disease. Estrogens are neuroprotective and anti-inflammatory in neurodegenerative disease models. Due to the long term side effects of estrogens, researches have been focused on finding an effective phytoestrogens for biological activities. Daidzein present in soybeans and its active metabolite equol (7-hydroxy-3-(4'-hydroxyphenyl)-chroman) bears strong antioxidant and anticancer showed more potent anti-inflammatory and neuroprotective role in neuroinflammatory model confirmed its in vitro activity with molecular mechanism through NF-κB pathway. Three major CNS cells Microglia (BV-2), Astrocyte (C6), Neuron (N2a) were used to find the effect of equol in inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), MAPKs signaling proteins, apoptosis related proteins by western blot analysis. Nitric oxide (NO) and prostaglandin E2 (PGE2) was measured by the Gries method and ELISA, respectively. Cytokines like tumor necrosis factor-α (TNF-α) and IL-6 were also measured in the conditioned medium of LPS activated cells with or without equol. Equol inhibited the NO production, PGE-2 production and expression of COX-2 and iNOS in LPS-stimulated microglial cells at a dose dependent without any cellular toxicity. At the same time Equol also showed promising effect in modulation of MAPK’s and nuclear factor kappa B (NF-κB) expression with significant inhibition of the production of proinflammatory cytokine like interleukin -6 (IL-6), and tumor necrosis factor -α (TNF-α). Additionally, it inhibited the LPS activated microglia-induced neuronal cell death by downregulating the apoptotic phenomenon in neuronal cells. Furthermore, equol increases the production of neurotrophins like NGF and increase the neurite outgrowth as well. In conclusion the natural daidzein metabolite equol are more active than daidzein, which showed a promising effectiveness as an anti-neuroinflammatory and neuroprotective agent via downregulating the LPS stimulated microglial activation and neuronal apoptosis. This work was supported by Brain Korea 21 Plus project and High Value-added Food Technology Development Program 114006-4, Ministry of Agriculture, Food and Rural Affairs.

Keywords: apoptosis, equol, neuroinflammation, phytoestrogen

Procedia PDF Downloads 349
2732 Breast Cancer: The Potential of miRNA for Diagnosis and Treatment

Authors: Abbas Pourreza

Abstract:

MicroRNAs (miRNAs) are small single-stranded non-coding RNAs. They are almost 18-25 nucleotides long and very conservative through evolution. They are involved in adjusting the expression of numerous genes due to the existence of a complementary region, generally in the 3' untranslated regions (UTR) of target genes, against particular mRNAs in the cell. Also, miRNAs have been proven to be involved in cell development, differentiation, proliferation, and apoptosis. More than 2000 miRNAs have been recognized in human cells, and these miRNAs adjust approximately one-third of all genes in human cells. Dysregulation of miRNA originated from abnormal DNA methylation patterns of the locus, cause to down-regulated or overexpression of miRNAs, and it may affect tumor formation or development of it. Breast cancer (BC) is the most commonly identified cancer, the most prevalent cancer (23%), and the second-leading (14%) mortality in all types of cancer in females. BC can be classified based on the status (+/−) of the hormone receptors, including estrogen receptor (ER), progesterone receptor (PR), and the Receptor tyrosine-protein kinase erbB-2 (ERBB2 or HER2). Currently, there are four main molecular subtypes of BC: luminal A, approximately 50–60 % of BCs; luminal B, 10–20 %; HER2 positive, 15–20 %, and 10–20 % considered Basal (triple-negative breast cancer (TNBC)) subtype. Aberrant expression of miR-145, miR-21, miR-10b, miR-125a, and miR-206 was detected by Stem-loop real-time RT-PCR in BC cases. Breast tumor formation and development may result from down-regulation of a tumor suppressor miRNA such as miR-145, miR-125a, and miR-206 and/or overexpression of an oncogenic miRNA such as miR-21 and miR-10b. MiR-125a, miR-206, miR-145, miR-21, and miR-10b are hugely predicted to be new tumor markers for the diagnosis and prognosis of BC. MiR-21 and miR-125a could play a part in the treatment of HER-2-positive breast cancer cells, while miR-145 and miR-206 could speed up the evolution of cure techniques for TNBC. To conclude, miRNAs will be presented as hopeful molecules to be used in the primary diagnosis, prognosis, and treatment of BC and battle as opposed to its developed drug resistance.

Keywords: breast cancer, HER2 positive, miRNA, TNBC

Procedia PDF Downloads 76
2731 Progress in Replacing Antibiotics in Farm Animal Production

Authors: Debabrata Biswas

Abstract:

The current trend in the development of antibiotic resistance by multiple bacterial pathogens has resulted in a troubling loss of effective antibiotic options for human. The emergence of multi-drug-resistant pathogens has necessitated higher dosages and combinations of multiple antibiotics, further exacerbating the problem of antibiotic resistance. Zoonotic bacterial pathogens, such as Salmonella, Campylobacter, Shiga toxin-producing Escherichia coli (such as enterohaemorrhagic E. coli or EHEC), and Listeria are the most common and predominant foodborne enteric infectious agents. It was observed that these pathogens gained/developed their ability to survive in the presence of antibiotics either in farm animal gut or farm environment and researchers believe that therapeutic and sub-therapeutic antibiotic use in farm animal production might play an important role in it. The mechanism of action of antimicrobial components used in farm animal production in genomic interplay in the gut and farm environment, has not been fully characterized. Even the risk of promoting the exchange of mobile genetic elements between microbes specifically pathogens needs to be evaluated in depth, to ensure sustainable farm animal production, safety of our food and to mitigate/limit the enteric infection with multiple antibiotic resistant bacterial pathogens. Due to the consumer’s demand and considering the current emerging situation, many countries are in process to withdraw antibiotic use in farm animal production. Before withdrawing use of the sub-therapeutic antibiotic or restricting the use of therapeutic antibiotics in farm animal production, it is essential to find alternative natural antimicrobials for promoting the growth of farm animal and/or treating animal diseases. Further, it is also necessary to consider whether that compound(s) has the potential to trigger the acquisition or loss of genetic materials in zoonotic and any other bacterial pathogens. Development of alternative therapeutic and sub-therapeutic antimicrobials for farm animal production and food processing and preservation and their effective implementation for sustainable strategies for farm animal production as well as the possible risk for horizontal gene transfer in major enteric pathogens will be focus in the study.

Keywords: food safety, natural antimicrobial, sustainable farming, antibiotic resistance

Procedia PDF Downloads 249
2730 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 254
2729 Cytotoxic Activity against Hepatocarcinoma and Cholangiocarcinoma Cells of Four Cathartic Herbal Medicines

Authors: Pranporn Kuropakornpong, Srisopa Ruangnoo, Arunporn Itharat

Abstract:

Liver cancer has the highest prevalence rate in the North and Northeast of Thailand. Four Thai medicinal plants such as resin of Ferula asafoetida Regel, latex of Aloe barbadensis Miller leaves, roots of Baliospermum manotanum, and latex of Garcinia hanburyi Hook are used in Thai traditional medicine as cathartic drug and detoxification in liver cancer patients. Thus, this research aimed to evaluate the cytotoxic activity of these plants against hepatocarcinoma (HepG2) and cholangiocarcinoma (KKU-M156) cells by SRB assay. These plants were macerated in 95% ethanol. The results showed that roots of Baliospermum manotanum and latex of Garcinia hanburyi Hook showed the strongest cytotoxicity against HepG2 (IC50 = 3.03+0.91 and 0.62+0.01µg/ml, respectively) and KKU-M156 (IC50 = 0.978+0.663 and 0.006+0.005 µg/ml, respectively). Latex of Garcinia hanburyi Hook also showed high cytotoxicity against normal cell line (IC50=8.86+0.31 µg/ml), and even though its selective values are high, dose of this herb should be limited.

Keywords: cholangiocarcinoma, cytotoxic activity, Garcinia hanburyi Hook, hepatocarcinoma

Procedia PDF Downloads 434
2728 Study into the Interactions of Primary Limbal Epithelial Stem Cells and HTCEPI Using Tissue Engineered Cornea

Authors: Masoud Sakhinia, Sajjad Ahmad

Abstract:

Introduction: Though knowledge of the compositional makeup and structure of the limbal niche has progressed exponentially during the past decade, much is yet to be understood. Identifying the precise profile and role of the stromal makeup which spans the ocular surface may inform researchers of the most optimum conditions needed to effectively expand LESCs in vitro, whilst preserving their differentiation status and phenotype. Limbal fibroblasts, as opposed to corneal fibroblasts are thought to form an important component of the microenvironment where LESCs reside. Methods: The corneal stroma was tissue engineered in vitro using both limbal and corneal fibroblasts embedded within a tissue engineered 3D collagen matrix. The effect of these two different fibroblasts on LESCs and hTCEpi corneal epithelial cell line were then subsequently determined using phase contrast microscopy, histolological analysis and PCR for specific stem cell markers. The study aimed to develop an in vitro model which could be used to determine whether limbal, as opposed to corneal fibroblasts, maintained the stem cell phenotype of LESCs and hTCEpi cell line. Results: Tissue culture analysis was inconclusive and required further quantitative analysis for remarks on cell proliferation within the varying stroma. Histological analysis of the tissue-engineered cornea showed a comparable structure to that of the human cornea, though with limited epithelial stratification. PCR results for epithelial cell markers of cells cultured on limbal fibroblasts showed reduced expression of CK3, a negative marker for LESC’s, whilst also exhibiting a relatively low expression level of P63, a marker for undifferentiated LESCs. Conclusion: We have shown the potential for the construction of a tissue engineered human cornea using a 3D collagen matrix and described some preliminary results in the analysis of the effects of varying stroma consisting of limbal and corneal fibroblasts, respectively, on the proliferation of stem cell phenotype of primary LESCs and hTCEpi corneal epithelial cells. Although no definitive marker exists to conclusively illustrate the presence of LESCs, the combination of positive and negative stem cell markers in our study were inconclusive. Though it is less traslational to the human corneal model, the use of conditioned medium from that of limbal and corneal fibroblasts may provide a more simple avenue. Moreover, combinations of extracellular matrices could be used as a surrogate in these culture models.

Keywords: cornea, Limbal Stem Cells, tissue engineering, PCR

Procedia PDF Downloads 262
2727 Delivery of Doxorubicin to Glioblastoma Multiforme Using Solid Lipid Nanoparticles with Surface Aprotinin and Melanotransferrin Antibody for Enhanced Chemotherapy

Authors: Yung-Chih Kuo, I-Hsuan Lee

Abstract:

Solid lipid nanoparticles (SLNs) conjugated with aprotinin (Apr) and melanotransferrin antibody (Anti-MTf) were used to carry doxorubicin (Dox) across the blood–brain barrier (BBB) for glioblastoma multiforme (GBM) chemotherapy. Dox-entrapped SLNs with grafted Apr and Anti-MTf (Apr-Anti-MTf-Dox-SLNs) were applied to a cultured monolayer comprising human brain-microvascular endothelial cells (HBMECs) with regulation of human astrocyte (HAs) and to a proliferated colony of U87MG cells. Based on the average particle diameter, zeta potential, entrapping efficiency of Dox, and grafting efficiency of Apr and Anti-MTf, we found that 40% (w/w) 1,2-dipalmitoyl-sn-glycero-3-phosphocholine in lipids were appropriate for fabricating Apr-Anti-MTf-Dox-SLNs. In addition, Apr-Anti-MTf-Dox-SLNs could prevent Dox from fast dissolution and did not induce a serious cytotoxicity to HBMECs and HAs when compared with free Dox. Moreover, the treatments with Apr-Anti-MTf-Dox-SLNs enhanced the ability of Dox to infuse the BBB and to inhibit the growth of GBM. The current Apr-Anti-MTf-Dox-SLNs can be a promising pharmacotherapeutic preparation to penetrate the BBB for malignant brain tumor treatment.

Keywords: solid lipid nanoparticle, glioblastoma multiforme, blood–brain barrier, doxorubicin

Procedia PDF Downloads 350
2726 Modeling Competition Between Subpopulations with Variable DNA Content in Resource-Limited Microenvironments

Authors: Parag Katira, Frederika Rentzeperis, Zuzanna Nowicka, Giada Fiandaca, Thomas Veith, Jack Farinhas, Noemi Andor

Abstract:

Resource limitations shape the outcome of competitions between genetically heterogeneous pre-malignant cells. One example of such heterogeneity is in the ploidy (DNA content) of pre-malignant cells. A whole-genome duplication (WGD) transforms a diploid cell into a tetraploid one and has been detected in 28-56% of human cancers. If a tetraploid subclone expands, it consistently does so early in tumor evolution, when cell density is still low, and competition for nutrients is comparatively weak – an observation confirmed for several tumor types. WGD+ cells need more resources to synthesize increasing amounts of DNA, RNA, and proteins. To quantify resource limitations and how they relate to ploidy, we performed a PAN cancer analysis of WGD, PET/CT, and MRI scans. Segmentation of >20 different organs from >900 PET/CT scans were performed with MOOSE. We observed a strong correlation between organ-wide population-average estimates of Oxygen and the average ploidy of cancers growing in the respective organ (Pearson R = 0.66; P= 0.001). In-vitro experiments using near-diploid and near-tetraploid lineages derived from a breast cancer cell line supported the hypothesis that DNA content influences Glucose- and Oxygen-dependent proliferation-, death- and migration rates. To model how subpopulations with variable DNA content compete in the resource-limited environment of the human brain, we developed a stochastic state-space model of the brain (S3MB). The model discretizes the brain into voxels, whereby the state of each voxel is defined by 8+ variables that are updated over time: stiffness, Oxygen, phosphate, glucose, vasculature, dead cells, migrating cells and proliferating cells of various DNA content, and treat conditions such as radiotherapy and chemotherapy. Well-established Fokker-Planck partial differential equations govern the distribution of resources and cells across voxels. We applied S3MB on sequencing and imaging data obtained from a primary GBM patient. We performed whole genome sequencing (WGS) of four surgical specimens collected during the 1ˢᵗ and 2ⁿᵈ surgeries of the GBM and used HATCHET to quantify its clonal composition and how it changes between the two surgeries. HATCHET identified two aneuploid subpopulations of ploidy 1.98 and 2.29, respectively. The low-ploidy clone was dominant at the time of the first surgery and became even more dominant upon recurrence. MRI images were available before and after each surgery and registered to MNI space. The S3MB domain was initiated from 4mm³ voxels of the MNI space. T1 post and T2 flair scan acquired after the 1ˢᵗ surgery informed tumor cell densities per voxel. Magnetic Resonance Elastography scans and PET/CT scans informed stiffness and Glucose access per voxel. We performed a parameter search to recapitulate the GBM’s tumor cell density and ploidy composition before the 2ⁿᵈ surgery. Results suggest that the high-ploidy subpopulation had a higher Glucose-dependent proliferation rate (0.70 vs. 0.49), but a lower Glucose-dependent death rate (0.47 vs. 1.42). These differences resulted in spatial differences in the distribution of the two subpopulations. Our results contribute to a better understanding of how genomics and microenvironments interact to shape cell fate decisions and could help pave the way to therapeutic strategies that mimic prognostically favorable environments.

Keywords: tumor evolution, intra-tumor heterogeneity, whole-genome doubling, mathematical modeling

Procedia PDF Downloads 55
2725 Dietary Gluten and the Balance of Gut Microbiota in the Dextran Sulphate Sodium Induced Colitis Model

Authors: Austin Belfiori, Kevin Rinek, Zach Barcroft, Jennifer Berglind

Abstract:

Diet influences the composition of the gut microbiota and host's health. Disruption of the balance among the microbiota, epithelial cells, and resident immune cells in the intestine is involved in the pathogenesis of inflammatory bowel disease (IBD). To study the role of gut microbiota in intestinal inflammation, the microbiome of control mice (C57BL6) given a gluten-containing standard diet versus C57BL6 mice given the gluten-free (GF) feed (n=10 in each group) was examined. All mice received the 3% DSS for 5 days. Throughout the study, feces were collected and processed for DNA extraction and MiSeq Illumina sequencing of V4 region of bacterial 16S rRNA gene. Alpha and beta diversities and compositional differences at phylum and genus levels were determined in intestinal microbiota. The mice receiving the GF diet showed a significantly increased abundance of Firmicutes and a decrease of Bacteroides and Lactobacillus at phylum level. Therefore, the gluten free diet led to reductions in beneficial gut bacteria populations. These findings indicate a role of wheat gluten in dysbiosis of the intestinal microbiota.

Keywords: gluten, colitis, microbiota, DSS, dextran sulphate sodium

Procedia PDF Downloads 187