Search results for: disease prediction
4630 Knowledge State of Medical Students in Morocco Regarding Metabolic Dysfunction Associated with Non-alcoholic Fatty Liver Disease (MASLD)
Authors: Elidrissi Laila, El Rhaoussi Fatima-Zahra, Haddad Fouad, Tahiri Mohamed, Hliwa Wafaa, Bellabah Ahmed, Badre Wafaa
Abstract:
Introduction: Metabolic Dysfunction Associated with Non-Alcoholic Fatty Liver Disease (MASLD), formerly known as Non-Alcoholic Fatty Liver Disease (NAFLD), is the leading cause of chronic liver disease. The cardiometabolic risk factors associated with MASLD represent common health issues and significant public health challenges. Medical students, being active participants in the healthcare system and a young demographic, are particularly relevant for understanding this entity to prevent its occurrence on a personal and collective level. The objective of our study is to assess the level of knowledge among medical students regarding MASLD, its risk factors, and its long-term consequences. Materials and Methods: We conducted a descriptive cross-sectional study using an anonymous questionnaire distributed through social media over a period of 2 weeks. Medical students from various faculties in Morocco answered 22 questions about MASLD, its etiological factors, diagnosis, complications, and principles of treatment. All responses were analyzed using the Jamovi software. Results: A total of 124 students voluntarily provided complete responses. 59% of our participants were in their 3rd year, with a median age of 21 years. Among the respondents, 27% were overweight, obese, or diabetic. 83% correctly answered more than half of the questions, and 77% believed they knew about MASLD. However, 84% of students were unaware that MASLD is the leading cause of chronic liver disease, and 12% even considered it a rare condition. Regarding etiological factors, overweight and obesity were mentioned in 93% of responses, and type 2 diabetes in 84%. 62% of participants believed that type 1 diabetes could not be implicated in MASLD. For 83 students, MASLD was considered a diagnosis of exclusion, while 41 students believed that a biopsy was mandatory for diagnosis. 12% believed that MASLD did not lead to long-term complications, and 44% were unaware that MASLD could progress to hepatocellular carcinoma. Regarding treatment, 85% included weight loss, and 19% did not consider diabetes management as a therapeutic approach for MASLD. At the end of the questionnaire, 89% of the students expressed a desire to learn more about MASLD and were invited to access an informative sheet through a hyperlink. Conclusion: MASLD represents a significant public health concern due to the prevalence of its risk factors, notably the obesity pandemic, which is widespread among the young population. There is a need for awareness about the seriousness of this emerging and long-underestimated condition among young future physicians.Keywords: MASLD, medical students, obesity, diabetes
Procedia PDF Downloads 744629 DUSP16 Inhibition Rescues Neurogenic and Cognitive Deficits in Alzheimer's Disease Mice Models
Authors: Huimin Zhao, Xiaoquan Liu, Haochen Liu
Abstract:
The major challenge facing Alzheimer's Disease (AD) drug development is how to effectively improve cognitive function in clinical practice. Growing evidence indicates that stimulating hippocampal neurogenesis is a strategy for restoring cognition in animal models of AD. The mitogen-activated protein kinase (MAPK) pathway is a crucial factor in neurogenesis, which is negatively regulated by Dual-specificity phosphatase 16 (DUSP16). Transcriptome analysis of post-mortem brain tissue revealed up-regulation of DUSP16 expression in AD patients. Additionally, DUSP16 was involved in regulating the proliferation and neural differentiation of neural progenitor cells (NPCs). Nevertheless, whether the effect of DUSP16 on ameliorating cognitive disorders by influencing NPCs differentiation in AD mice remains unclear. Our study demonstrates an association between DUSP16 SNPs and clinical progression in individuals with mild cognitive impairment (MCI). Besides, we found that increased DUSP16 expression in both 3×Tg and SAMP8 models of AD led to NPC differentiation impairments. By silencing DUSP16, cognitive benefits, the induction of AHN and synaptic plasticity, were observed in AD mice. Furthermore, we found that DUSP16 is involved in the process of NPC differentiation by regulating c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, the increased DUSP16 may be regulated by the ETS transcription factor (ELK1), which binds to the promoter region of DUSP16. Loss of ELK1 resulted in decreased DUSP16 mRNA and protein levels. Our data uncover a potential regulatory role for DUSP16 in adult hippocampal neurogenesis and provide a possibility to find the target of AD intervention.Keywords: alzheimer's disease, cognitive function, DUSP16, hippocampal neurogenesis
Procedia PDF Downloads 724628 A Semantic and Concise Structure to Represent Human Actions
Authors: Tobias Strübing, Fatemeh Ziaeetabar
Abstract:
Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis
Procedia PDF Downloads 1264627 Stress Concentration and Strength Prediction of Carbon/Epoxy Composites
Authors: Emre Ozaslan, Bulent Acar, Mehmet Ali Guler
Abstract:
Unidirectional composites are very popular structural materials used in aerospace, marine, energy and automotive industries thanks to their superior material properties. However, the mechanical behavior of composite materials is more complicated than isotropic materials because of their anisotropic nature. Also, a stress concentration availability on the structure, like a hole, makes the problem further complicated. Therefore, enormous number of tests require to understand the mechanical behavior and strength of composites which contain stress concentration. Accurate finite element analysis and analytical models enable to understand mechanical behavior and predict the strength of composites without enormous number of tests which cost serious time and money. In this study, unidirectional Carbon/Epoxy composite specimens with central circular hole were investigated in terms of stress concentration factor and strength prediction. The composite specimens which had different specimen wide (W) to hole diameter (D) ratio were tested to investigate the effect of hole size on the stress concentration and strength. Also, specimens which had same specimen wide to hole diameter ratio, but varied sizes were tested to investigate the size effect. Finite element analysis was performed to determine stress concentration factor for all specimen configurations. For quasi-isotropic laminate, it was found that the stress concentration factor increased approximately %15 with decreasing of W/D ratio from 6 to 3. Point stress criteria (PSC), inherent flaw method and progressive failure analysis were compared in terms of predicting the strength of specimens. All methods could predict the strength of specimens with maximum %8 error. PSC was better than other methods for high values of W/D ratio, however, inherent flaw method was successful for low values of W/D. Also, it is seen that increasing by 4 times of the W/D ratio rises the failure strength of composite specimen as %62.4. For constant W/D ratio specimens, all the strength prediction methods were more successful for smaller size specimens than larger ones. Increasing the specimen width and hole diameter together by 2 times reduces the specimen failure strength as %13.2.Keywords: failure, strength, stress concentration, unidirectional composites
Procedia PDF Downloads 1554626 Maresin Like 1 Treatment: Curbing the Pathogenesis of Behavioral Dysfunction and Neurodegeneration in Alzheimer's Disease Mouse Model
Authors: Yan Lu, Song Hong, Janakiraman Udaiyappan, Aarti Nagayach, Quoc-Viet A. Duong, Masao Morita, Shun Saito, Yuichi Kobayashi, Yuhai, Zhao, Hongying Peng, Nicholas B. Pham, Walter J Lukiw, Christopher A. Vuong, Nicolas G. Bazan
Abstract:
Aims: Neurodegeneration and behavior dysfunction occurs in patients with Alzheimer's Disease (AD), and as the disease progresses many patients develop cognitive impairment. 5XFAD mouse model of AD is widely used to study AD pathogenesis and treatment. This study aimed to investigate the effect of maresin like 1 (MaR-L1) treatment in AD pathology using 5XFAD mice. Methods: We tested 12-month-old male 5XFAD mice and wild type control mice treated with MaR-L1 in a battery of behavioral tasks. We performed open field test, beam walking test, clasping test, inverted grid test, acetone test, marble burring test, elevated plus maze test, cross maze test and novel object recognition test. We also studied neuronal loss, amyloid β burden, and inflammation in the brains of 5XFAD mice using immunohistology and Western blotting. Results: MaR-L1 treatment to the 5XFAD mice showed improved cognitive function of 5XFAD mice. MaR-L1 showed decreased anxiety behavior in open field test and marble burring test, increased muscular strength in the beam walking test, clasping test and inverted grid test. Cognitive function was improved in MaR-L1 treated 5XFAD mice in the novel object recognition test. MaR-L1 prevented neuronal loss and aberrant inflammation. Conclusion: Our finding suggests that behavioral abnormalities were normalized by the administration of MaR-L1 and the neuroprotective role of MaR-L1 in the AD. It also indicates that MaR-L1 treatment is able to prevent and or ameliorate neuronal loss and aberrant inflammation. Further experiments to validate the results are warranted using other AD models in the future.Keywords: Alzheimer's disease, motor and cognitive behavior, 5XFAD mice, Maresin Like 1, microglial cell, astrocyte, neurodegeneration, inflammation, resolution of inflammation
Procedia PDF Downloads 1784625 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity
Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish
Abstract:
Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow
Procedia PDF Downloads 1324624 Evaluation of Existence of Antithyroid Antibodies, Anti-Thyroid Peroxidase and Anti-Thyroglobulin in Patients with Hepatitis C Viral Infections
Authors: Junaid Mahmood Alam, Sana Anwar, Sarah Sughra Asghar
Abstract:
Chronic hepatitis or Hepatitis C viral (HCV) infection has been identified as one of the factors that could elicit autoimmune disease resulting in the development of auto-antibodies. Furthermore, HCV is implicated in contravening of forbearance to antigens, therefore, inciting auto-reactivity. In this regard, several near and past studies noted the prevalence of thyroid dysfunction and production of anti-thyroid antibodies (ATAb) such as anti-thyroid peroxidase (AntiTPO) and anti-thyroglobulin (AntiTG) in patients with HCV. Likewise, one of the etiologies of augmentation of thyroid disease is basically interferon therapy for HCV infections, for which a number of autoimmune diseases have been noted including Grave’s disease, Hishimoto thyroiditis. A prospectively case-control study was therefore carried out at department of clinical biochemistry lab services and chemical pathology in collaboration with department of clinical microbiology, at Liaquat National Hospital and Medical College, Karachi Pakistan for the period January 2015 to December 2017. Two control groups were inducted for comparison purpose, control group 1 = without HCV infection and with thyroid disorders (n = 20), control group 2 = with HCV infection and without thyroid disorders (n = 20), whereas HCV infected were n = 40 where more than half were noted to be positive for either of HCV IgG and Ag. In HCV group, patients with existing sub-clinical hypothyroidism and clinical hyperthyroidism were less than 5%. Analysis showed the presence of AntiTG in 12 HCV patients (30%), AntiTPO in 15 (37.5%) and both AntiTG and antiTPO in 10 patients (25%). Only 3 patients were found with the history of anti-thyroid auto-antibodies (7.5%) and one with parents and relatives with auto-immune disorders (2.5%). Patients that remained untreated were 12 (30%), under treatment 18 (45%) and with complete-course of treatment 10 (25%). As per review of the literature, meta-analysis of evident data and cross-sectional studies of selective cohorts (as studied in presented research), thyroid connection is designated as one of the most recurrent endocrine ailment associated with chronic HCV infection. Moreover, it also represents an extrahepatic disease in the continuum of HCV syndrome. In conclusion, HCV patients were more likely to encompass thyroid disorders especially related to development of either of ATAb or both antiTG and AntiTPO.Keywords: Hepatitis C viral (HCV) infection, anti-thyroid antibodies, anti-thyroid peroxidase antibodies, anti-thyroglobulin antibodies
Procedia PDF Downloads 1574623 The Effect of the Epstein-Barr Virus on the Development of Multiple Sclerosis
Authors: Sina Mahdavi
Abstract:
Background and Objective: Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the central nervous system (CNS) that affects the myelination process in the CNS. Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially Epstein-Barr virus (EBV) and MS, is one potential cause that is not well understood. In this study, we aim to summarize the available data on EBV infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis," "Epstein-Barr virus," and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched, and 14 articles were chosen, studied, and analyzed. Results: Demyelinated lesions isolated from MS patients contain EBNAs from EBV proteins. The EBNA1 domain contains a pentapeptide fragment identical to B-crystallin, a heat shock peptide, that is increased in peripheral B cells in response to B-crystallin infection, resulting in myelin-directed autoimmunity mediated by proinflammatory T cells. EBNA2, which is involved in the regulation of viral transcription, may enhance transcription from MS risk loci. A 7-fold increase in the risk of MS has been observed in EBV infection with HLA-DR15 synergy. Conclusion: EBV infection along with a variety of specific genetic risk alleles, cause inflammatory cascades in the CNS by infected B cells. There is a high expression of EBV during the course of MS, which indicates the relationship between EBV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of EBV may be effective in reducing inflammatory processes in demyelinated areas of MS patients.Keywords: multiple sclerosis, Epstein-Barr virus, central nervous system, EBNAs
Procedia PDF Downloads 944622 Effects of Handgrip Isometric Training in Blood Pressure of Patients with Peripheral Artery Disease
Authors: Raphael M. Ritti-Dias, Marilia A. Correia, Wagner J. R. Domingues, Aline C. Palmeira, Paulo Longano, Nelson Wolosker, Lauro C. Vianna, Gabriel G. Cucato
Abstract:
Patients with peripheral arterial disease (PAD) have a high prevalence of hypertension, which contributes to a high risk of acute cardiovascular events and cardiovascular mortality. Strategies to reduce cardiovascular risk of these patients are needed. Meta-analysis studies have shown that isometric handgrip training promotes reductions in clinical blood pressure in normotensive, pre-hypertensive and hypertensive individuals. However, the effect of this exercise training on other cardiovascular function indicators in PAD patients remains unknown. Thus, the aim of this study was to analyze the effects of isometric handgrip training on blood pressure in patients with PAD. In this clinical trial, 28 patients were randomly allocated into two groups: isometric handgrip training (HG) and control (CG). The HG conducted the unilateral handgrip training three days per week (four sets of two minutes, with 30% of maximum voluntary contraction with an interval of four minutes between sets). CG was encouraged to increase their physical activity levels. At baseline and after eight weeks blood pressure and heart rate were obtained. ANOVA two-way for repeated measures with the group (GH and GC) and time (pre- and post-intervention) as factors was performed. After 8 weeks of training there were no significant changes in systolic blood pressure (HG pre 141 ± 24.0 mmHg vs. HG post 142 ± 22.0 mmHg; CG pre 140 ± 22.1 mmHg vs. CG post 146 ± 16.2 mmHg; P=0.18), diastolic blood pressure (HG pre 74 ± 10.4 mmHg vs. HG post 74 ± 11.9 mmHg; CG pre 72 ± 6.9 mmHg vs. CG post 74 ± 8.0 mmHg; P=0.22) and heart rate (HG pre 61 ± 10.5 bpm vs. HG post 62 ± 8.0 bpm; CG pre 64 ± 11.8 bpm vs. CG post 65 ± 13.6 bpm; P=0.81). In conclusion, our preliminary data indicate that isometric handgrip training did not modify blood pressure and heart rate in patients with PAD.Keywords: blood pressure, exercise, isometric, peripheral artery disease
Procedia PDF Downloads 3324621 Modifying Cardiometabolic Disease Risk Factors in Urban Primary School Children: Three Different Exercise Interventions
Authors: Anneke Van Biljon
Abstract:
Background: Exercise is a primary form of preventing and improving cardiometabolic disease risk factors; however specific exercise variables and their associated health benefits in children are inconclusive. A preliminary study revealed that different exercise variables may improve particular cardiometabolic health benefits. Objectives: This study further investigated the specific cardiometabolic health benefits associated with three isocaloric exercise interventions set at different intensities. Methods: Hundred-and-twenty (n = 120) participants between the ages of 10 – 14 years old were assigned to four different study groups 1. High intensity interval training (HIIT) at > 80% MHR 2. Moderate intensity continuous training (MICT) at 65% – 70% MHR 3. Alternative intensities (ALT) of HIIT and MICT 4. Control group. Exercise interventions were designed to generate isocaloric workloads of ~154.77 kcal per session, three times per week for five weeks. The one-way ANOVA test established comparisons between group means. Post hoc tests were calculated to determine specific group differences. Results: Although, all exercise groups improved cardiometabolic health, the MICT group showed greater improvements in fasting glucose (-9.30%), whereas cardiorespiratory fitness increased most by 31.33% (p = 0.000) within the HIIT group. Finally, ALT group recorded overall superior and additional cardiometabolic health benefits compared with both MICT and HIIT groups. Conclusion: The findings of this study indicate that superior benefits may be elicited when combining and alternating MICT and HIIT. These results provide specific exercise recommendations for achieving optimal and substantial cardiometabolic health benefits in children which will contribute towards achieving the health-related Sustainable Development Goals for 2030.Keywords: cardiometabolic disease risk factors, exercise, pediatrics, interventions
Procedia PDF Downloads 2484620 Pathway and Differential Gene Expression Studies for Colorectal Cancer
Authors: Ankita Shukla, Tiratha Raj Singh
Abstract:
Colorectal cancer (CRC) imposes serious mortality burden worldwide and it has been increasing for past consecutive years. Continuous efforts have been made so far to diagnose the disease condition and to identify the root cause for it. In this study, we performed the pathway level as well as the differential gene expression studies for CRC. We analyzed the gene expression profile GSE24514 from Gene Expression Omnibus (GEO) along with the gene pathways involved in the CRC. This analysis helps us to understand the behavior of the genes that have shown differential expression through their targeted pathways. Pathway analysis for the targeted genes covers the wider area which therefore decreases the possibility to miss the significant ones. This will prove to be beneficial to expose the ones that have not been given attention so far. Through this analysis, we attempt to understand the various neighboring genes that have close relationship to the targeted one and thus proved to be significantly controlling the CRC. It is anticipated that the identified hub and neighboring genes will provide new directions to look at the pathway level differently and will be crucial for the regulatory processes of the disease.Keywords: mismatch repair, microsatellite instability, carcinogenesis, morbidity
Procedia PDF Downloads 3204619 Diagnostic Contribution of the MMSE-2:EV in the Detection and Monitoring of the Cognitive Impairment: Case Studies
Authors: Cornelia-Eugenia Munteanu
Abstract:
The goal of this paper is to present the diagnostic contribution that the screening instrument, Mini-Mental State Examination-2: Expanded Version (MMSE-2:EV), brings in detecting the cognitive impairment or in monitoring the progress of degenerative disorders. The diagnostic signification is underlined by the interpretation of the MMSE-2:EV scores, resulted from the test application to patients with mild and major neurocognitive disorders. The original MMSE is one of the most widely used screening tools for detecting the cognitive impairment, in clinical settings, but also in the field of neurocognitive research. Now, the practitioners and researchers are turning their attention to the MMSE-2. To enhance its clinical utility, the new instrument was enriched and reorganized in three versions (MMSE-2:BV, MMSE-2:SV and MMSE-2:EV), each with two forms: blue and red. The MMSE-2 was adapted and used successfully in Romania since 2013. The cases were selected from current practice, in order to cover vast and significant neurocognitive pathology: mild cognitive impairment, Alzheimer’s disease, vascular dementia, mixed dementia, Parkinson’s disease, conversion of the mild cognitive impairment into Alzheimer’s disease. The MMSE-2:EV version was used: it was applied one month after the initial assessment, three months after the first reevaluation and then every six months, alternating the blue and red forms. Correlated with age and educational level, the raw scores were converted in T scores and then, with the mean and the standard deviation, the z scores were calculated. The differences of raw scores between the evaluations were analyzed from the point of view of statistic signification, in order to establish the progression in time of the disease. The results indicated that the psycho-diagnostic approach for the evaluation of the cognitive impairment with MMSE-2:EV is safe and the application interval is optimal. The alternation of the forms prevents the learning phenomenon. The diagnostic accuracy and efficient therapeutic conduct derive from the usage of the national test norms. In clinical settings with a large flux of patients, the application of the MMSE-2:EV is a safe and fast psycho-diagnostic solution. The clinicians can draw objective decisions and for the patients: it doesn’t take too much time and energy, it doesn’t bother them and it doesn’t force them to travel frequently.Keywords: MMSE-2, dementia, cognitive impairment, neuropsychology
Procedia PDF Downloads 5154618 Plasmonic Nanoshells Based Metabolite Detection for in-vitro Metabolic Diagnostics and Therapeutic Evaluation
Authors: Deepanjali Gurav, Kun Qian
Abstract:
In-vitro metabolic diagnosis relies on designed materials-based analytical platforms for detection of selected metabolites in biological samples, which has a key role in disease detection and therapeutic evaluation in clinics. However, the basic challenge deals with developing a simple approach for metabolic analysis in bio-samples with high sample complexity and low molecular abundance. In this work, we report a designer plasmonic nanoshells based platform for direct detection of small metabolites in clinical samples for in-vitro metabolic diagnostics. We first synthesized a series of plasmonic core-shell particles with tunable nanoshell structures. The optimized plasmonic nanoshells as new matrices allowed fast, multiplex, sensitive, and selective LDI MS (Laser desorption/ionization mass spectrometry) detection of small metabolites in 0.5 μL of bio-fluids without enrichment or purification. Furthermore, coupling with isotopic quantification of selected metabolites, we demonstrated the use of these plasmonic nanoshells for disease detection and therapeutic evaluation in clinics. For disease detection, we identified patients with postoperative brain infection through glucose quantitation and daily monitoring by cerebrospinal fluid (CSF) analysis. For therapeutic evaluation, we investigated drug distribution in blood and CSF systems and validated the function and permeability of blood-brain/CSF-barriers, during therapeutic treatment of patients with cerebral edema for pharmacokinetic study. Our work sheds light on the design of materials for high-performance metabolic analysis and precision diagnostics in real cases.Keywords: plasmonic nanoparticles, metabolites, fingerprinting, mass spectrometry, in-vitro diagnostics
Procedia PDF Downloads 1384617 Recognising the Importance of Smoking Cessation Support in Substance Misuse Patients
Authors: Shaine Mehta, Neelam Parmar, Patrick White, Mark Ashworth
Abstract:
Patients with a history of substance have a high prevalence of comorbidities, including asthma and chronic obstructive pulmonary disease (COPD). Mortality rates are higher than that of the general population and the link to respiratory disease is reported. Randomised controlled trials (RCTs) support opioid substitution therapy as an effective means for harm reduction. However, whilst a high proportion of patients receiving opioid substitution therapy are smokers, to the author’s best knowledge there have been no studies of respiratory disease and smoking intensity in these patients. A cross sectional prevalence study was conducted using an anonymised patient-level database in primary care, Lambeth DataNet (LDN). We included patients aged 18 years and over who had records of ever having been prescribed methadone in primary care. Patients under 18 years old or prescribed buprenorphine (because of uncertainty about the prescribing indication) were excluded. Demographic, smoking, alcohol and asthma and COPD coding data were extracted. Differences between methadone and non-methadone users were explored with multivariable analysis. LDN contained data on 321, 395 patients ≥ 18 years; 676 (0.16%) had a record of methadone prescription. Patients prescribed methadone were more likely to be male (70.7% vs. 50.4%), older (48.9yrs vs. 41.5yrs) and less likely to be from an ethnic minority group (South Asian 2.1% vs. 7.8%; Black African 8.9% vs. 21.4%). Almost all those prescribed methadone were smokers or ex-smokers (97.3% vs. 40.9%); more were non-alcohol drinkers (41.3% vs. 24.3%). We found a high prevalence of COPD (12.4% vs 1.4%) and asthma (14.2% vs 4.4%). Smoking intensity data shows a high prevalence of ≥ 20 cigarettes per day (21.5% vs. 13.1%). Risk of COPD, adjusted for age, gender, ethnicity and deprivation, was raised in smokers: odds ratio 14.81 (95%CI 11.26, 19.47), and in the methadone group: OR 7.51 (95%CI: 5.78, 9.77). Furthermore, after adjustment for smoking intensity (number of cigarettes/day), the risk was raised in methadone group: OR 4.77 (95%CI: 3.13, 7.28). High burden of respiratory disease compounded by the high rates of smoking is a public health concern. This supports an integrated approach to health in patients treated for opiate dependence, with access to smoking cessation support. Further work may evaluate the current structure and commissioning of substance misuse services, including smoking cessation. Regression modelling highlights that methadone as a ‘risk factor’ was independently associated with COPD prevalence, even after adjustment for smoking intensity. This merits further exploration, as the association may be related to unexplored aspects of smoking (such as the number of years smoked) or may be related to other related exposures, such as smoking heroin or crack cocaine.Keywords: methadone, respiratory disease, smoking cessation, substance misuse
Procedia PDF Downloads 1454616 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks
Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox
Abstract:
miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network
Procedia PDF Downloads 5114615 A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating
Authors: Yongseok Kim, Jeong-Min Lee, Hyunwoo Song, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok
Abstract:
Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO.Keywords: thermal barrier coating, thermally grown oxide, thermal stress, isothermal oxidation, numerical analysis
Procedia PDF Downloads 3424614 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 924613 Investigating Early Markers of Alzheimer’s Disease Using a Combination of Cognitive Tests and MRI to Probe Changes in Hippocampal Anatomy and Functionality
Authors: Netasha Shaikh, Bryony Wood, Demitra Tsivos, Michael Knight, Risto Kauppinen, Elizabeth Coulthard
Abstract:
Background: Effective treatment of dementia will require early diagnosis, before significant brain damage has accumulated. Memory loss is an early symptom of Alzheimer’s disease (AD). The hippocampus, a brain area critical for memory, degenerates early in the course of AD. The hippocampus comprises several subfields. In contrast to healthy aging where CA3 and dentate gyrus are the hippocampal subfields with most prominent atrophy, in AD the CA1 and subiculum are thought to be affected early. Conventional clinical structural neuroimaging is not sufficiently sensitive to identify preferential atrophy in individual subfields. Here, we will explore the sensitivity of new magnetic resonance imaging (MRI) sequences designed to interrogate medial temporal regions as an early marker of Alzheimer’s. As it is likely a combination of tests may predict early Alzheimer’s disease (AD) better than any single test, we look at the potential efficacy of such imaging alone and in combination with standard and novel cognitive tasks of hippocampal dependent memory. Methods: 20 patients with mild cognitive impairment (MCI), 20 with mild-moderate AD and 20 age-matched healthy elderly controls (HC) are being recruited to undergo 3T MRI (with sequences designed to allow volumetric analysis of hippocampal subfields) and a battery of cognitive tasks (including Paired Associative Learning from CANTAB, Hopkins Verbal Learning Test and a novel hippocampal-dependent abstract word memory task). AD participants and healthy controls are being tested just once whereas patients with MCI will be tested twice a year apart. We will compare subfield size between groups and correlate subfield size with cognitive performance on our tasks. In the MCI group, we will explore the relationship between subfield volume, cognitive test performance and deterioration in clinical condition over a year. Results: Preliminary data (currently on 16 participants: 2 AD; 4 MCI; 9 HC) have revealed subfield size differences between subject groups. Patients with AD perform with less accuracy on tasks of hippocampal-dependent memory, and MCI patient performance and reaction times also differ from healthy controls. With further testing, we hope to delineate how subfield-specific atrophy corresponds with changes in cognitive function, and characterise how this progresses over the time course of the disease. Conclusion: Novel sequences on a MRI scanner such as those in route in clinical use can be used to delineate hippocampal subfields in patients with and without dementia. Preliminary data suggest that such subfield analysis, perhaps in combination with cognitive tasks, may be an early marker of AD.Keywords: Alzheimer's disease, dementia, memory, cognition, hippocampus
Procedia PDF Downloads 5734612 Impact of Clinical Pharmacist Intervention in Improving Drug Related Problems in Patients with Chronic Kidney Disease
Authors: Aneena Suresh, C. S. Sidharth
Abstract:
Drug related problems (DRPs) are common in chronic kidney disease (CKD) patients and end stage patients undergoing hemodialysis. To treat the co-morbid conditions of the patients, more complex therapeutic regimen is required, and it leads to development of DRPs. So, this calls for frequent monitoring of the patients. Due to the busy work schedules, physicians are unable to deliver optimal care to these patients. Addition of a clinical pharmacist in the team will improve the standard of care offered to CKD patients by minimizing DRPs. In India, the role of clinical pharmacists in the improving the health outcomes in CKD patients is poorly recognized. Therefore, this study is conducted to put an insight on the role of clinical pharmacist in improving Drug Related Problems in patients with chronic kidney disease, thereby helping them to achieve desired therapeutic outcomes in the patients. A prospective interventional study was conducted for a year in a 620 bedded tertiary care hospital in India. Data was collected using an unstructured questionnaire, medication charts, etc. DRPs were categorized using Hepler and Strand classification. Relationships between the age, weight, GFR, average no of medication taken, average no of comorbidities, and average length of hospital days with the DRPs were identified using Mann Whitney U test. The study population primarily constituted of patients above the age of 50 years with a mean age of 59.91±13.59. Our study showed that 25% of the population presented with DRPs. On an average, CKD patients are prescribed at least 8 medications for the treatment in our study. This explains the high incidence of drug interactions in patients suffering from CKD (45.65%). The least common DRPs in our study were found to be sub therapeutic dose (2%) and adverse drug reactions (2%). Out of this, 60 % of the DRPs were addressed successfully. In our study, there is an association between the DRPs with the average number of medications prescribed, the average number of comorbidities, and the length of the hospital days with p value of 0.022, 0.004, and 0.000, respectively. In the current study, 86% of the proposed interventions were accepted, and 41 % were implemented by the physician, and only 14% were rejected. Hence, it is evident that clinical pharmacist interventions will contribute significantly to diminish the DRPs in CKD patients, thereby decreasing the economic burden of healthcare costs and improving patient’s quality of life.Keywords: chronic kidney disease, clinical pharmacist, drug related problem, intervention
Procedia PDF Downloads 1284611 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease
Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani
Abstract:
Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence
Procedia PDF Downloads 194610 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network
Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang
Abstract:
Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid
Procedia PDF Downloads 2834609 HRCT of the Chest and the Role of Artificial Intelligence in the Evaluation of Patients with COVID-19
Authors: Parisa Mansour
Abstract:
Introduction: Early diagnosis of coronavirus disease (COVID-19) is extremely important to isolate and treat patients in time, thus preventing the spread of the disease, improving prognosis and reducing mortality. High-resolution computed tomography (HRCT) chest imaging and artificial intelligence (AI)-based analysis of HRCT chest images can play a central role in the treatment of patients with COVID-19. Objective: To investigate different chest HRCT findings in different stages of COVID-19 pneumonia and to evaluate the potential role of artificial intelligence in the quantitative assessment of lung parenchymal involvement in COVID-19 pneumonia. Materials and Methods: This retrospective observational study was conducted between May 1, 2020 and August 13, 2020. The study included 2169 patients with COVID-19 who underwent chest HRCT. HRCT images showed the presence and distribution of lesions such as: ground glass opacity (GGO), compaction, and any special patterns such as septal thickening, inverted halo, mark, etc. HRCT findings of the breast at different stages of the disease (early: andlt) 5 days, intermediate: 6-10 days and late stage: >10 days). A CT severity score (CTSS) was calculated based on the extent of lung involvement on HRCT, which was then correlated with clinical disease severity. Use of artificial intelligence; Analysis of CT pneumonia and quot; An algorithm was used to quantify the extent of pulmonary involvement by calculating the percentage of pulmonary opacity (PO) and gross opacity (PHO). Depending on the type of variables, statistically significant tests such as chi-square, analysis of variance (ANOVA) and post hoc tests were applied when appropriate. Results: Radiological findings were observed in HRCT chest in 1438 patients. A typical pattern of COVID-19 pneumonia, i.e., bilateral peripheral GGO with or without consolidation, was observed in 846 patients. About 294 asymptomatic patients were radiologically positive. Chest HRCT in the early stages of the disease mostly showed GGO. The late stage was indicated by such features as retinal enlargement, thickening and the presence of fibrous bands. Approximately 91.3% of cases with a CTSS = 7 were asymptomatic or clinically mild, while 81.2% of cases with a score = 15 were clinically severe. Mean PO and PHO (30.1 ± 28.0 and 8.4 ± 10.4, respectively) were significantly higher in the clinically severe categories. Conclusion: Because COVID-19 pneumonia progresses rapidly, radiologists and physicians should become familiar with typical TC chest findings to treat patients early, ultimately improving prognosis and reducing mortality. Artificial intelligence can be a valuable tool in treating patients with COVID-19.Keywords: chest, HRCT, covid-19, artificial intelligence, chest HRCT
Procedia PDF Downloads 634608 Sickle Cell Disease: Review of Managements in Pregnancy and the Outcome in Ampang Hospital, Selangor
Authors: Z. Nurzaireena, K. Azalea, T. Azirawaty, S. Jameela, G. Muralitharan
Abstract:
The aim of this study is the review of the management practices of sickle cell disease patients during pregnancy, as well as the maternal and neonatal outcome at Ampang Hospital, Selangor. The study consisted of a review of pregnant patients with sickle cell disease under follow up at the Hematology Clinic, Ampang Hospital over the last seven years to assess their management and maternal-fetal outcome. The results of the review show that Ampang Hospital is considered the public hematology centre for sickle cell disease and had successfully managed three pregnancies throughout the last seven years. Patients’ presentations, managements and maternal-fetal outcome were compared and reviewed for academic improvements. All three patients were seen very early in their pregnancy and had been given a regime of folic acid, antibiotics and thrombo-prophylactic drugs. Close monitoring of maternal and fetal well being was done by the hematologists and obstetricians. Among the patients, there were multiple admissions during the pregnancy for either a painful sickle cell bone crisis, haemolysis following an infection and anemia requiring phenotype- matched blood and exchange transfusions. Broad spectrum antibiotics coverage during and infection, hydration, pain management and venous-thrombolism prophylaxis were mandatory. The pregnancies managed to reach near term in the third trimester but all required emergency caesarean section for obstetric indications. All pregnancies resulted in live births with good fetal outcome. During post partum all were nursed closely in the high dependency units for further complications and were discharged well. Post partum follow up and contraception counseling was comprehensively given for future pregnancies. Sickle cell disease is uncommonly seen in the East, especially in the South East Asian region, yet more cases are seen in the current decade due to improved medical expertise and advance medical laboratory technologies. Pregnancy itself is a risk factor for sickle cell patients as increased thrombosis event and risk of infections can lead to multiple crisis, haemolysis, anemia and vaso-occlusive complications including eclampsia, cerebrovasular accidents and acute bone pain. Patients mostly require multiple blood product transfusions thus phenotype-matched blood is required to reduce the risk of alloimmunozation. Emphasizing the risks and complications in preconception counseling and establishing an ultimate pregnancy plan would probably reduce the risk of morbidity and mortality to the mother and unborn child. Early management for risk of infection, thromboembolic events and adequate hydration is mandatory. A holistic approach involving multidisciplinary team care between the hematologist, obstetricians, anesthetist, neonatologist and close nursing care for both mother and baby would ensure the best outcome. In conclusion, sickle cell disease by itself is a high risk medical condition and pregnancy would further amplify the risk. Thus, close monitoring with combine multidisciplinary care, counseling and educating the patients are crucial in achieving the safe outcome.Keywords: anaemia, haemoglobinopathies, pregnancy, sickle cell disease
Procedia PDF Downloads 2584607 Cognitive Effects of Repetitive Transcranial Magnetic Stimulation in Patients with Parkinson's Disease
Authors: Ana Munguia, Gerardo Ortiz, Guadalupe Gonzalez, Fiacro Jimenez
Abstract:
Parkinson's disease (PD) is a neurodegenerative disorder that causes motor and cognitive symptoms. The first-choice treatment for these patients is pharmacological, but this generates several side effects. Because of that new treatments were introduced such as Repetitive Transcranial Magnetic Stimulation (rTMS) in order to improve the life quality of the patients. Several studies suggest significant changes in motor symptoms. However, there is a great diversity in the number of pulses, amplitude, frequency and stimulation targets, which results in inconsistent data. In addition, these studies do not have an analysis of the neuropsychological effects of the treatment. The main purpose of this study is to evaluate the impact of rTMS on the cognitive performance of 6 patients with H&Y III and IV (45-65 years, 3 men and 3 women). An initial neuropsychological and neurological evaluation was performed. Patients were randomized into two groups; in the first phase one received rTMS in the supplementary motor area, the other group in the dorsolateral prefrontal cortex contralateral to the most affected hemibody. In the second phase, each group received the stimulation in the area that he had not been stimulated previously. Reassessments were carried out at the beginning, at the end of each phase and a follow-up was carried out 6 months after the conclusion of the stimulation. In these preliminary results, it is reported that there's no statistically significant difference before and after receiving rTMS in the neuropsychological test scores of the patients, which suggests that the cognitive performance of patients is not detrimental. There are even tendencies towards an improvement in executive functioning after the treatment. What added to motor improvement, showed positive effects in the activities of the patients' daily life. In a later and more detailed analysis, will be evaluated the effects in each of the patients separately in relation to the functionality of the patients in their daily lives.Keywords: Parkinson's disease, rTMS, cognitive, treatment
Procedia PDF Downloads 1454606 The Budget Impact of the DISCERN™ Diagnostic Test for Alzheimer’s Disease in the United States
Authors: Frederick Huie, Lauren Fusfeld, William Burchenal, Scott Howell, Alyssa McVey, Thomas F. Goss
Abstract:
Alzheimer’s Disease (AD) is a degenerative brain disease characterized by memory loss and cognitive decline that presents a substantial economic burden for patients and health insurers in the US. This study evaluates the payer budget impact of the DISCERN™ test in the diagnosis and management of patients with symptoms of dementia evaluated for AD. DISCERN™ comprises three assays that assess critical factors related to AD that regulate memory, formation of synaptic connections among neurons, and levels of amyloid plaques and neurofibrillary tangles in the brain and can provide a quicker, more accurate diagnosis than tests in the current diagnostic pathway (CDP). An Excel-based model with a three-year horizon was developed to assess the budget impact of DISCERN™ compared with CDP in a Medicare Advantage plan with 1M beneficiaries. Model parameters were identified through a literature review and were verified through consultation with clinicians experienced in diagnosis and management of AD. The model assesses direct medical costs/savings for patients based on the following categories: •Diagnosis: costs of diagnosis using DISCERN™ and CDP. •False Negative (FN) diagnosis: incremental cost of care avoidable with a correct AD diagnosis and appropriately directed medication. •True Positive (TP) diagnosis: AD medication costs; cost from a later TP diagnosis with the CDP versus DISCERN™ in the year of diagnosis, and savings from the delay in AD progression due to appropriate AD medication in patients who are correctly diagnosed after a FN diagnosis.•False Positive (FP) diagnosis: cost of AD medication for patients who do not have AD. A one-way sensitivity analysis was conducted to assess the effect of varying key clinical and cost parameters ±10%. An additional scenario analysis was developed to evaluate the impact of individual inputs. In the base scenario, DISCERN™ is estimated to decrease costs by $4.75M over three years, equating to approximately $63.11 saved per test per year for a cohort followed over three years. While the diagnosis cost is higher with DISCERN™ than with CDP modalities, this cost is offset by the higher overall costs associated with CDP due to the longer time needed to receive a TP diagnosis and the larger number of patients who receive a FN diagnosis and progress more rapidly than if they had received appropriate AD medication. The sensitivity analysis shows that the three parameters with the greatest impact on savings are: reduced sensitivity of DISCERN™, improved sensitivity of the CDP, and a reduction in the percentage of disease progression that is avoided with appropriate AD medication. A scenario analysis in which DISCERN™ reduces the utilization for patients of computed tomography from 21% in the base case to 16%, magnetic resonance imaging from 37% to 27% and cerebrospinal fluid biomarker testing, positive emission tomography, electroencephalograms, and polysomnography testing from 4%, 5%, 10%, and 8%, respectively, in the base case to 0%, results in an overall three-year net savings of $14.5M. DISCERN™ improves the rate of accurate, definitive diagnosis of AD earlier in the disease and may generate savings for Medicare Advantage plans.Keywords: Alzheimer’s disease, budget, dementia, diagnosis.
Procedia PDF Downloads 1384605 Anticipating Asthma with Control Environmental Factors and Food
Authors: Destin Kurniawati
Abstract:
Asthma is one of the deadly diseases in the world. According to the World Health Organization in 2012, 300 million people suffer from asthma of different races and classes. An estimated 250,000 people die because of asthma annually.As well as more than 57% of children and 51% of adults with asthma. There two risk factors for asthma. That risk factors are the host and environmental. One of the environmental factors that can bring asthma is allergens. When an allergen enters the body, the allergen binds to IgE and cause cell granulat- issued several mediators such as histamine, leukotrienes, bradykinin or something like that. This will cause localized edema effect on bronchial walls of small, thick mucous secretions in the bronchioles, and bronchial smooth muscle spasm. Then there will be inflammation of the airways. Methodology this research is by literature. Therefore, to anticipate and cope with asthma is to control environmental factors that serve to minimize allergens and controlling one's intake in the form of antioxidant-rich foods. Foods rich in antioxidants serve to improve lung function and decrease symptoms of the disease of the respiratory tract.Keywords: asthma, deadly disease, allergen, environmental and food control
Procedia PDF Downloads 2614604 Pragmatics of Illness: A View from Jordanian Arabic
Authors: Marwan Jarrah, Nadia Nugrush, Sukainah Ali, Areej Allawzi
Abstract:
This research article investigates how illnesses (different types and severity) are expressed in Arabic discourse with a particular focus on input coming from Colloquial Jordanian Arabic (CJA). Drawing on a corpus of naturally occurring conversations, this article offers evidence that illnesses are predominantly expressed through two different sets of expressive strategies, namely direct expressive strategies (DES) and indirect expressive strategies (IES). The latter are exclusively used when cancer and mental health disorders are targeted. IES include the substitution of the name of the illness with some religious expressions (e.g., ʔallah ʔijdʒi:rna ‘May Allah keeps us safe’) or certain terms especially when cancer is meant (e.g., haðˤa:k ʔil-maraðˤ ‘that disease’). On the other hand, DES are used in conjunction with other illnesses (e.g., heart, kidneys, diabetes, etc.), regardless of their severity. DES include specific formulas that remarkably mention the name of the inflicted organ (e.g., [with-SOMEONE the ORGAN] as in ʕinduh ʔil-qalb ‘lit. with-him the heart’ meaning ‘He has a heart disease). We discuss the effects of religious beliefs and local norms and values in determining the use of these strategies.Keywords: Illnesses, pragmatics, expressive strategies, religion
Procedia PDF Downloads 824603 Deformation Severity Prediction in Sewer Pipelines
Authors: Khalid Kaddoura, Ahmed Assad, Tarek Zayed
Abstract:
Sewer pipelines are prone to deterioration over-time. In fact, their deterioration does not follow a fixed downward pattern. This is in fact due to the defects that propagate through their service life. Sewer pipeline defects are categorized into distinct groups. However, the main two groups are the structural and operational defects. By definition, the structural defects influence the structural integrity of the sewer pipelines such as deformation, cracks, fractures, holes, etc. However, the operational defects are the ones that affect the flow of the sewer medium in the pipelines such as: roots, debris, attached deposits, infiltration, etc. Yet, the process for each defect to emerge follows a cause and effect relationship. Deformation, which is the change of the sewer pipeline geometry, is one type of an influencing defect that could be found in many sewer pipelines due to many surrounding factors. This defect could lead to collapse if the percentage exceeds 15%. Therefore, it is essential to predict the deformation percentage before confronting such a situation. Accordingly, this study will predict the percentage of the deformation defect in sewer pipelines adopting the multiple regression analysis. Several factors will be considered in establishing the model, which are expected to influence the defamation defect severity. Besides, this study will construct a time-based curve to understand how the defect would evolve overtime. Thus, this study is expected to be an asset for decision-makers as it will provide informative conclusions about the deformation defect severity. As a result, inspections will be minimized and so the budgets.Keywords: deformation, prediction, regression analysis, sewer pipelines
Procedia PDF Downloads 1884602 Signs, Signals and Syndromes: Algorithmic Surveillance and Global Health Security in the 21st Century
Authors: Stephen L. Roberts
Abstract:
This article offers a critical analysis of the rise of syndromic surveillance systems for the advanced detection of pandemic threats within contemporary global health security frameworks. The article traces the iterative evolution and ascendancy of three such novel syndromic surveillance systems for the strengthening of health security initiatives over the past two decades: 1) The Program for Monitoring Emerging Diseases (ProMED-mail); 2) The Global Public Health Intelligence Network (GPHIN); and 3) HealthMap. This article demonstrates how each newly introduced syndromic surveillance system has become increasingly oriented towards the integration of digital algorithms into core surveillance capacities to continually harness and forecast upon infinitely generating sets of digital, open-source data, potentially indicative of forthcoming pandemic threats. This article argues that the increased centrality of the algorithm within these next-generation syndromic surveillance systems produces a new and distinct form of infectious disease surveillance for the governing of emergent pathogenic contingencies. Conceptually, the article also shows how the rise of this algorithmic mode of infectious disease surveillance produces divergences in the governmental rationalities of global health security, leading to the rise of an algorithmic governmentality within contemporary contexts of Big Data and these surveillance systems. Empirically, this article demonstrates how this new form of algorithmic infectious disease surveillance has been rapidly integrated into diplomatic, legal, and political frameworks to strengthen the practice of global health security – producing subtle, yet distinct shifts in the outbreak notification and reporting transparency of states, increasingly scrutinized by the algorithmic gaze of syndromic surveillance.Keywords: algorithms, global health, pandemic, surveillance
Procedia PDF Downloads 1854601 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model
Authors: Aminah Muchdar, Nuraeni, Eddy
Abstract:
The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE
Procedia PDF Downloads 180