Search results for: new developed silica material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16696

Search results for: new developed silica material

15466 Dynamic Analysis of Functionally Graded Nano Composite Pipe with PZT Layers Subjected to Moving Load

Authors: Morteza Raminnia

Abstract:

In this study, dynamic analysis of functionally graded nano-composite pipe reinforced by single-walled carbon nano-tubes (SWCNTs) with simply supported boundary condition subjected to moving mechanical loads is investigated. The material properties of functionally graded carbon nano tube-reinforced composites (FG-CNTRCs) are assumed to be graded in the thickness direction and are estimated through a micro-mechanical model. In this paper polymeric matrix considered as isotropic material and for the CNTRC, uniform distribution (UD) and three types of FG distribution patterns of SWCNT reinforcements are considered. The system equation of motion is derived by using Hamilton's principle under the assumptions of first order shear deformation theory (FSDT).The thin piezoelectric layers embedded on inner and outer surfaces of FG-CNTRC layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG-CNTRC laminated pipe. The modal analysis technique and Newmark's integration method are used to calculate the displacement and dynamic stress of the pipe subjected to moving loads. The effects of various material distribution and velocity of moving loads on dynamic behavior of the pipe is presented. This present approach is validated by comparing the numerical results with the published numerical results in literature. The results show that the above-mentioned effects play very important role on dynamic behavior of the pipe .This present work shows that some meaningful results that which are interest to scientific and engineering community in the field of FGM nano-structures.

Keywords: nano-composite, functionally garded material, moving load, active control, PZT layers

Procedia PDF Downloads 419
15465 Study of Receiving Opportunity of Water Soluble and Non-Ballast Micro Fertilizer on the Base of Manganese-Containing Materials

Authors: Marine Shavlakadze

Abstract:

From the raw material base existed in Georgia (manganese ores, manganese containing mud), particularly, within the point of view of production availability, especial interest is paid to micro- fertilizers containing manganese. As a result of conducted investigation, there was established receiving of such manganese containing materials on the basis of manganese raw-material base (ore, mud) existed in Georgia, which shall be able to maximally provide assimilation ability of manganese, as microelement, in the desired period of time. And also, determinant of effectiveness and competitiveness of received materials with new composition shall become high content (more than 30%) of microelements in them (in comparison with existed similar products), when the total sum of useful components presented in them (active i.e. assimilated) is more than 50-70%, i.e. received materials belong to the materials having low-ballast and functionally revealed possibilities.

Keywords: manganese, fertilizers, non-ballast, micro- fertilizers

Procedia PDF Downloads 264
15464 A New Seperation / Precocentration and Determination Procedure Based on Solidified Floating Organic Drop Microextraction (SFODME) of Lead by Using Graphite Furnace Atomic Absorption Spectrometry

Authors: Seyda Donmez, Oya Aydin Urucu, Ece Kok Yetimoglu

Abstract:

Solidified floating organic drop microextraction was used for a preconcentration method of trace amount of lead. The analyte was complexed with 1-(2-pyridylazo)-2-naphtol and 1-undecanol, acetonitrile was added as an extraction and dispersive solvent respectively. The influences of some analytical parameters pH, volumes of extraction and disperser solvent, concentration of chelating agent, and concentration of salt were optimized. Under the optimum conditions the detection limits of Pb (II) was determined. The procedure was validated for the analysis of NCS DC 73347a hair standard reference material with satisfactory result. The developed procedure was successfully applied to food and water samples for detection of Pb (II) ions.

Keywords: analytical methods, graphite furnace atomic absorption spectrometry, heavy metals, solidified floating organic drop microextraction

Procedia PDF Downloads 275
15463 Design and Validation of Cutting Performance of Ceramic Matrix Composites Using FEM Simulations

Authors: Zohaib Ellahi, Guolong Zhao

Abstract:

Ceramic matrix composite (CMC) material possesses high strength, wear resistance and anisotropy thus machining of this material is very difficult and demands high cost. In this research, FEM simulations and physical experiments have been carried out to assess the machinability of carbon fiber reinforced silicon carbide (C/SiC) using polycrystalline diamond (PCD) tool in slot milling process. Finite element model has been generated in Abaqus/CAE software and milling operation performed by using user defined material subroutine. Effect of different milling parameters on cutting forces and stresses has been calculated through FEM simulations and compared with experimental results to validate the finite element model. Cutting forces in x and y-direction were calculated through both experiments and finite element model and found a good agreement between them. With increase in cutting speed resultant cutting forces are decreased. Resultant cutting forces are increased with increased feed per tooth and depth of cut. When machining performed along the fiber direction stresses generated near the tool edge were minimum and increases with fiber cutting angle.

Keywords: experimental & numerical investigation, C/SiC cutting performance analysis, milling of CMCs, CMC composite stress analysis

Procedia PDF Downloads 83
15462 Developing a Product Circularity Index with an Emphasis on Longevity, Repairability, and Material Efficiency

Authors: Lina Psarra, Manogj Sundaresan, Purjeet Sutar

Abstract:

In response to the global imperative for sustainable solutions, this article proposes the development of a comprehensive circularity index applicable to a wide range of products across various industries. The absence of a consensus on using a universal metric to assess circularity performance presents a significant challenge in prioritizing and effectively managing sustainable initiatives. This circularity index serves as a quantitative measure to evaluate the adherence of products, processes, and systems to the principles of a circular economy. Unlike traditional distinct metrics such as recycling rates or material efficiency, this index considers the entire lifecycle of a product in one single metric, also incorporating additional factors such as reusability, scarcity of materials, reparability, and recyclability. Through a systematic approach and by reviewing existing metrics and past methodologies, this work aims to address this gap by formulating a circularity index that can be applied to diverse product portfolio and assist in comparing the circularity of products on a scale of 0%-100%. Project objectives include developing a formula, designing and implementing a pilot tool based on the developed Product Circularity Index (PCI), evaluating the effectiveness of the formula and tool using real product data, and assessing the feasibility of integration into various sustainability initiatives. The research methodology involves an iterative process of comprehensive research, analysis, and refinement where key steps include defining circularity parameters, collecting relevant product data, applying the developed formula, and testing the tool in a pilot phase to gather insights and make necessary adjustments. Major findings of the study indicate that the PCI provides a robust framework for evaluating product circularity across various dimensions. The Excel-based pilot tool demonstrated high accuracy and reliability in measuring circularity, and the database proved instrumental in supporting comprehensive assessments. The PCI facilitated the identification of key areas for improvement, enabling more informed decision-making towards circularity and benchmarking across different products, essentially assisting towards better resource management. In conclusion, the development of the Product Circularity Index represents a significant advancement in global sustainability efforts. By providing a standardized metric, the PCI empowers companies and stakeholders to systematically assess product circularity, track progress, identify improvement areas, and make informed decisions about resource management. This project contributes to the broader discourse on sustainable development by offering a practical approach to enhance circularity within industrial systems, thus paving the way towards a more resilient and sustainable future.

Keywords: circular economy, circular metrics, circularity assessment, circularity tool, sustainable product design, product circularity index

Procedia PDF Downloads 27
15461 Towards Sustainable Construction: An Exploratory Study of the Factors Affecting the Investment on Construction and Demolition Waste in Saudi Arabia (KSA)

Authors: Mohammed Alnuwairan, Mahmoud Abdelrahman

Abstract:

Based on the sustainability concept, this paper explores the current situation of construction and demolition waste (C&D) in the Kingdom of Saudi Arabia (KSA) from the source of production to final destinations. The issues that hindered the investment of recycling C&D in the context will be studied in order to identify the challenges and opportunities to improve this sector and put forward a strategic framework to reduce, reuse, recycle and minimize the disposal of this type of waste. The research, which is exploratory in nature, identified four types of organizations that were appropriate case studies. These organizations were drawn from the municipalities, city council, recyclers and manufacturers. Secondary data collection, direct observation, and elite interviewing methods were used in the case studies to facilitate comparisons with existing literature to explore opportunities to improve sustainability practices in the buildings sector. Implementation of C&D waste management and recycling in KSA is in the early stages. Resistance of virgin building material manufacturers, free usage of landfill, culture, surpluses of natural raw material, availability of land and the cost of recycling this material compared with virgin material hinders the adoption of recycled buildings martial. Although the metal material is collected and recycled but it has the lowest percentage of C&D waste in Saudi. The findings indicate that government and industry need to collaborate more closely in order to successfully implement best practices. Economic and environmental benefits can be achieved, particularly through improvements to infrastructure and legislation. Feasible solution framework and recommendations for managing C&D waste under current situation are provided. The findings can be used to extend this framework and to enable it to be applicable in other context with emerging economies similar to that found in KSA. No study of this type has been previously carried out in KSA. The findings should prove useful in creating a future research agenda for C&D waste in KSA and, possibly, other emerging countries within a similar context.

Keywords: construction and demolition waste, recycling, reuse, sustainability

Procedia PDF Downloads 348
15460 Motivations for Using Social Networking Sites by College Students for Educational Purposes

Authors: Kholoud H. Al-Zedjali, Abir S. Al-Harrasi, Ali H. Al-Badi

Abstract:

Recently there has been a dramatic proliferation in the number of social networking sites (SNSs) users; however, little is published about what motivates college students to use SNSs in education. The main goal of this research is to explore the college students’ motives for using SNSs in education. A conceptual framework has therefore been developed to identify the main factors that influence/motivate students to use social networking sites for learning purposes. To achieve the research objectives a quantitative method was used to collect data. A questionnaire has been distributed amongst college students. The results reveal that social influence, perceived enjoyment, institute regulation, perceived usefulness, ranking up-lift, attractiveness, communication tools, free of charge, sharing material and course nature all play an important role in the motivation of college students to use SNSs for learning purposes.

Keywords: Social Networking Sites (SNSs), education, college students, motivations

Procedia PDF Downloads 262
15459 Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles

Authors: Keiji Komatsu, Hayato Maruyama, Ariyuki Kato, Atsushi Nakamura, Shigeo Ohshio, Hiroki Akasaka, Hidetoshi Saitoh

Abstract:

Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements.

Keywords: low temperature luminescence spectroscopy, material identification, strontium aluminates phosphor, emission properties

Procedia PDF Downloads 446
15458 Heating System for Water Pool by Solar Energy

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

A swimming pool heating system is presented, composed of two alternative collectors with serial PVC absorber tubes that work in regimen of forced stream that is gotten through a bomb. A 500 liters reservoir was used, simulating the swimming pool, being raised some data that show the viability of the considered system. The chosen outflow was corresponding to 100 l/h. In function of the low outflow it was necessary the use of a not popular bomb, choosing the use of a low outflow alternative pumping system, using an air conditioner engine with three different rotations for the desired end. The thermal data related to each collector and their developed system will be presented. The UV and thermal degradations of the PVC exposed to solar radiation will be also boarded, demonstrating the viability of using tubes of this material as absorber elements of radiation in water heating solar collectors.

Keywords: solar energy, solar swimming pool, water heating, PVC tubes, alternative system

Procedia PDF Downloads 462
15457 Evaluation of Lead II Adsorption in Porous Structures Manufactured from Chitosan, Hydroxiapatite and Moringa

Authors: Mishell Vaca, Gema Gonzales, Francisco Quiroz

Abstract:

Heavy metals present in wastewater constitute a danger for living beings in general. In Ecuador, one of the sources of contamination is artisanal mining whose liquid effluents, in many of the cases without prior treatment, are discharged to the surrounding rivers. Lead is a pollutant that accumulated in the body causes severe health effects. Nowadays, there are several treatment methods to reduce this pollutant. The aim of this study is to reduce the concentration of lead II through the use of a porous material formed by a matrix of chitosan, in which hydroxyapatite and moringa particles smaller than 53 um are suspended. These materials are not toxic to the environment, and each one adsorbs metals independently, so the synergic effect between them will be evaluated. The synthesized material has a cylindrical design that allows increasing the surface area, which is expected to have greater capacity of adsorption. It has been determined that the best conditions for its preparation are to dissolve the chitosan in 1% v/v acetic acid with a pH = 5, then the hydroxyapatite and moringa are added to the mixture with magnetic stirring. This suspension is frozen, lyophilized and finally dried. In order to evaluate the performance of the synthesized material, synthetic solutions of lead are prepared at different concentrations, and the percentage of removal is evaluated. It is expected to have an effluent whose lead content is less than 0.2 mg/L which is the limit maximum allowable according to established environmental standards.

Keywords: adsorption, chitosan, hydroxyapatite, lead, moringa, water treatment

Procedia PDF Downloads 159
15456 Pattern of Stress Distribution in Different Ligature-Wire-Brackets Systems: A FE and Experimental Analysis

Authors: Afef Dridi, Salah Mezlini

Abstract:

Since experimental devices cannot calculate stress and deformation of complex structures. The Finite Element Method FEM has been widely used in several fields of research. One of these fields is orthodontics. The advantage of using such a method is the use of an accurate and non invasive method that allows us to have a sufficient data about the physiological reactions can happening in soft tissues. Most of researches done in this field were interested in the study of stresses and deformations induced by orthodontic apparatus in soft tissues (alveolar tissues). Only few studies were interested in the distribution of stress and strain in the orthodontic brackets. These studies, although they tried to be as close as possible to real conditions, their models did not reproduce the clinical cases. For this reason, the model generated by our research is the closest one to reality. In this study, a numerical model was developed to explore the stress and strain distribution under the application of real conditions. A comparison between different material properties was also done.

Keywords: visco-hyperelasticity, FEM, orthodontic treatment, inverse method

Procedia PDF Downloads 258
15455 Facile Synthesis of Copper Based Nanowires Suitable for Lithium Ion Battery Application

Authors: Zeinab Sanaee, Hossein Jafaripour

Abstract:

Copper is an excellent conductive material that is widely used in the energy devices such as Lithium-ion batteries and supercapacitors as the current collector. On the other hand, copper oxide nanowires have been used in these applications as potential electrode material. In this paper, nanowires of Copper and Copper oxide have been synthesized through a simple and time and cost-effective approach. The thermally grown Copper oxide nanowires have been converted into Copper nanowires through annealing in the Hydrogen atmosphere in a DC-PECVD system. To have a proper Copper nanostructure formation, an Au nanolayer was coated on the surface of Copper oxide nanowires. The results show the successful achievement of Copper nanowires without deformation or cracking. These structures have a great potential for Lithium-ion batteries and supercapacitors.

Keywords: Copper, Copper oxide, nanowires, Hydrogen annealing, Lithium ion battery

Procedia PDF Downloads 85
15454 Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers

Authors: Emanuela Paranhos Lima, Vitaly Félix Rodríguez Esquerre

Abstract:

In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained.

Keywords: directional coupler, finite element method, metallic nanowire, plasmonic, surface plasmon polariton, superfocusing

Procedia PDF Downloads 271
15453 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide

Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva

Abstract:

Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.

Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning

Procedia PDF Downloads 158
15452 Study of Natural Radioactive and Radiation Hazard Index of Soil from Sembrong Catchment Area, Johor, Malaysia

Authors: M. I. A. Adziz, J. Sharib Sarip, M. T. Ishak, D. N. A. Tugi

Abstract:

Radiation exposure to humans and the environment is caused by natural radioactive material sources. Given that exposure to people and communities can occur through several pathways, it is necessary to pay attention to the increase in naturally radioactive material, particularly in the soil. Continuous research and monitoring on the distribution and determination of these natural radionuclides' activity as a guide and reference are beneficial, especially in an accidental exposure. Surface soil/sediment samples from several locations identified around the Sembrong catchment area were taken for the study. After 30 days of secular equilibrium with their daughters, the activity concentrations of the naturally occurring radioactive material (NORM) members, i.e. ²²⁶Ra, ²²⁸Ra, ²³⁸U, ²³²Th, and ⁴⁰K, were measured using high purity germanium (HPGe) gamma spectrometer. The results obtained showed that the radioactivity concentration of ²³⁸U ranged between 17.13 - 30.13 Bq/kg, ²³²Th ranged between 22.90 - 40.05 Bq/kg, ²²⁶Ra ranged between 19.19 - 32.10 Bq/kg, ²²⁸Ra ranged between 21.08 - 39.11 Bq/kg and ⁴⁰K ranged between 9.22 - 51.07 Bq/kg with average values of 20.98 Bq/kg, 27.39 Bq/kg, 23.55 Bq/kg, 26.93 Bq/kg and 23.55 Bq/kg respectively. The values obtained from this study were low or equivalent to previously reported in previous studies. It was also found that the mean/mean values obtained for the four parameters of the Radiation Hazard Index, namely radium equivalent activity (Raeq), external dose rate (D), annual effective dose and external hazard index (Hₑₓ), were 65.40 Bq/kg, 29.33 nGy/h, 19.18 ¹⁰⁻⁶Sv and 0.19 respectively. These obtained values are low compared to the world average values and the values of globally applied standards. Comparison with previous studies (dry season) also found that the values for all four parameters were low and equivalent. This indicates the level of radiation hazard in the area around the study is safe for the public.

Keywords: catchment area, gamma spectrometry, naturally occurring radioactive material (NORM), soil

Procedia PDF Downloads 100
15451 Numerical Investigation on Design Method of Timber Structures Exposed to Parametric Fire

Authors: Robert Pečenko, Karin Tomažič, Igor Planinc, Sabina Huč, Tomaž Hozjan

Abstract:

Timber is favourable structural material due to high strength to weight ratio, recycling possibilities, and green credentials. Despite being flammable material, it has relatively high fire resistance. Everyday engineering practice around the word is based on an outdated design of timber structures considering standard fire exposure, while modern principles of performance-based design enable use of advanced non-standard fire curves. In Europe, standard for fire design of timber structures EN 1995-1-2 (Eurocode 5) gives two methods, reduced material properties method and reduced cross-section method. In the latter, fire resistance of structural elements depends on the effective cross-section that is a residual cross-section of uncharred timber reduced additionally by so called zero strength layer. In case of standard fire exposure, Eurocode 5 gives a fixed value of zero strength layer, i.e. 7 mm, while for non-standard parametric fires no additional comments or recommendations for zero strength layer are given. Thus designers often implement adopted 7 mm rule also for parametric fire exposure. Since the latest scientific evidence suggests that proposed value of zero strength layer can be on unsafe side for standard fire exposure, its use in the case of a parametric fire is also highly questionable and more numerical and experimental research in this field is needed. Therefore, the purpose of the presented study is to use advanced calculation methods to investigate the thickness of zero strength layer and parametric charring rates used in effective cross-section method in case of parametric fire. Parametric studies are carried out on a simple solid timber beam that is exposed to a larger number of parametric fire curves Zero strength layer and charring rates are determined based on the numerical simulations which are performed by the recently developed advanced two step computational model. The first step comprises of hygro-thermal model which predicts the temperature, moisture and char depth development and takes into account different initial moisture states of timber. In the second step, the response of timber beam simultaneously exposed to mechanical and fire load is determined. The mechanical model is based on the Reissner’s kinematically exact beam model and accounts for the membrane, shear and flexural deformations of the beam. Further on, material non-linear and temperature dependent behaviour is considered. In the two step model, the char front temperature is, according to Eurocode 5, assumed to have a fixed temperature of around 300°C. Based on performed study and observations, improved levels of charring rates and new thickness of zero strength layer in case of parametric fires are determined. Thus, the reduced cross section method is substantially improved to offer practical recommendations for designing fire resistance of timber structures. Furthermore, correlations between zero strength layer thickness and key input parameters of the parametric fire curve (for instance, opening factor, fire load, etc.) are given, representing a guideline for a more detailed numerical and also experimental research in the future.

Keywords: advanced numerical modelling, parametric fire exposure, timber structures, zero strength layer

Procedia PDF Downloads 164
15450 Implementation of a Web-Based Wireless ECG Measuring and Recording System

Authors: Onder Yakut, Serdar Solak, Emine Dogru Bolat

Abstract:

Measuring the Electrocardiogram (ECG) signal is an essential process for the diagnosis of the heart diseases. The ECG signal has the information of the degree of how much the heart performs its functions. In medical diagnosis and treatment systems, Decision Support Systems processing the ECG signal are being developed for the use of clinicians while medical examination. In this study, a modular wireless ECG (WECG) measuring and recording system using a single board computer and e-Health sensor platform is developed. In this designed modular system, after the ECG signal is taken from the body surface by the electrodes first, it is filtered and converted to digital form. Then, it is recorded to the health database using Wi-Fi communication technology. The real time access of the ECG data is provided through the internet utilizing the developed web interface.

Keywords: ECG, e-health sensor shield, Raspberry Pi, wiFi technology

Procedia PDF Downloads 398
15449 Case-Wise Investigation of Body-Wave Propagation in a Cross-Anisotropic Soil Exhibiting Inhomogeneity along Depth

Authors: Sumit Kumar Vishawakarma, Tapas Ranjan Panihari

Abstract:

The article investigates the propagation behavior of SV-wave, SH-wave, and P-wave in a continuously inhomogeneous cross-anisotropic material, where the material properties such as Young's moduli, shear modulus, and density vary as an arbitrary continuous function of depth. In the considered model, Hook's law, strain-displacement relations along with equilibrium equations have been used to derive the governing equation. The mathematical formulation of this physical problem gives rise to an eigenvalue problem with displacement components as fundamental variables. This leads to achieving the closed-form expressions for quasi-wave velocities of SV-wave, SH-wave, and P-wave in the considered framework. These characteristics of wave propagation along with the above-stated variation have been scrutinized based on their numerical results. This parametric study reveals that wave velocity remarkably fluctuates as the magnitude of inhomogeneity parameters increases and decreases. The prominent effect has been shown depicting the dependence of wave velocity on the degree of material anisotropy. The influence of phase angle and depth of the medium has been remarkably established. The present study may facilitate the theoretical foundation and practical application in the field of earthquake source mechanisms.

Keywords: cross-anisotropic, inhomogeneity, P-wave, SH-wave, SV-wave, shear modulus, Young’s modulus

Procedia PDF Downloads 115
15448 Digital Fashion: An Integrated Approach to Additive Manufacturing in Wearable Fashion

Authors: Lingju Wu, Hao Hua

Abstract:

This paper presents a digital fashion production methodology and workflow based on fused deposition modeling additive manufacturing technology, as demonstrated through a 3D printed fashion show held at Southeast University in Nanjing, China. Unlike traditional fashion, 3D printed fashion allows for the creation of complex geometric shapes and unique structural designs, facilitating diverse reconfiguration and sustainable production of textile fabrics. The proposed methodology includes two components: morphogenesis and the 3D printing process. The morphogenesis part comprises digital design methods such as mesh deformation, structural reorganization, particle flow stretching, sheet partitioning, and spreading methods. The 3D printing process section includes three types of methods: sculptural objects, multi-material composite fabric, and self-forming composite fabrics. This paper focuses on multi-material composite fabrics and self-forming composite fabrics, both of which involve weaving fabrics with 3D-printed material sandwiches. Multi-material composite fabrics create specially tailored fabric from the original properties of the printing path and multiple materials, while self-forming fabrics apply pre-stress to the flat fabric and then print the sandwich, allowing the fabric's own elasticity to interact with the printed components and shape into a 3D state. The digital design method and workflow enable the integration of abstract sensual aesthetics and rational thinking, showcasing a digital aesthetic that challenges conventional handicraft workshops. Overall, this paper provides a comprehensive framework for the production of 3D-printed fashion, from concept to final product.

Keywords: digital fashion, composite fabric, self-forming structure, additive manufacturing, generating design

Procedia PDF Downloads 121
15447 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions

Authors: Erva Akin

Abstract:

– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.

Keywords: artificial intelligence, copyright, data governance, machine learning

Procedia PDF Downloads 83
15446 Patient Understanding of Health Information: Implications for Organizational Health Literacy in Germany

Authors: Florian Tille, Heide Weishaar, Bernhard Gibis, Susanne Schnitzer

Abstract:

Introduction: The quality of patient-doctor communication and of written health information is central to organizational health literacy (HL). Whether patients understand their doctors’ explanations and textual material on health, however, is understudied. This study identifies the overall levels of patient understanding of health information and its associations with patients’ social characteristics in outpatient health care in Germany. Materials & Methods: This analysis draws on data collected via a 2017 national health survey with a sample of 6,105 adults. Quality of communication was measured for consultations with general practitioners (GPs) and specialists (SPs) via the Ask Me 3 program questions, and through a question on written health material. Correlations with social characteristics were explored employing bivariate and multivariate logistic regression analyses. Results: Over 90% of all respondents reported that they had understood their doctors’ explanations during the last consultation. Failed understanding was strongly correlated with patients’ very poor health (Odds Ratio [OR]: 5.19; 95% confidence interval [CI]: 2.23–12.10; ref. excellent/very good health), current health problem (OR: 6.54, CI: 1.70–25.12; ref. preventive examination) and age 65 years and above (OR: 2.97, CI: 1.10–8.00; ref. 18 to 34 years). Fewer patients answered they understood written material well (86.7% for las visit at GP, 89.7% at SP). Understanding written material poorly was highly associated with basic education (OR: 4.20, CI: 2.76–6.39; ref. higher education) and 65 years old and above (OR: 2.66, CI: 1.43–4.96). Discussion: Overall ratings of oral patient-doctor communication and written communication of health information are high. Yet, a considerable share of patients reports not-understanding their doctors and poor understanding of the written health-related material. Interventions that can contribute to improving organizational HL in outpatient care in Germany include HL training for doctors, reducing system barriers to easily-accessible health information for patients and combining oral and written health communication means. Conclusion: This work adds to the study of organizational HL in Germany. To increase patient understanding of health-relevant information and thereby possibly reduce health disparities, meeting the communication needs especially of persons in different age groups, with basic education and in very poor health is suggested.

Keywords: health survey, organizational health literacy, patient-doctor communication, social characteristics, outpatient care, Ask Me 3

Procedia PDF Downloads 166
15445 Experimental Characterization of the Shear Behavior of Fiber Reinforced Concrete Beam Elements in Chips

Authors: Djamal Atlaoui, Youcef Bouafia

Abstract:

This work deals with the experimental study of the mechanical behavior, by shear tests (fracture shear), elements of concrete beams reinforced with fibers in chips. These fibers come from the machining waste of the steel parts. The shear tests are carried out on prismatic specimens of dimensions 10 x 20 x 120 cm3. The fibers are characterized by mechanical resistance and tearing. The optimal composition of the concrete was determined by the workability test. Two fiber contents are selected for this study (W = 0.6% and W = 0.8%) and a BT control concrete (W = 0%) of the same composition as the matrix is developed to serve as a reference with a sand-to-gravel ratio (S/G) of concrete matrix equal to 1. The comparison of the different results obtained shows that the chips fibers confer a significant ductility to the material after cracking of the concrete. Also, the fibers used limit diagonal cracks in shear and improve strength and rigidity.

Keywords: characterization, chips fibers, cracking mode, ductility, undulation, shear

Procedia PDF Downloads 132
15444 Non-Linear Finite Element Analysis of Bonded Single Lap Joint in Composite Material

Authors: A. Benhamena, L. Aminallah, A. Aid, M. Benguediab, A. Amrouche

Abstract:

The goal of this work is to analyze the severity of interfacial stress distribution in the single lap adhesive joint under tensile loading. The three-dimensional and non-linear finite element method based on the computation of the peel and shear stresses was used to analyze the fracture behaviour of single lap adhesive joint. The effect of the loading magnitude and the overlap length on the distribution of peel and shear stresses was highlighted. A good correlation was found between the FEM simulations and the analytical results.

Keywords: aluminum 2024-T3 alloy, single-lap adhesive joints, Interface stress distributions, material nonlinear analysis, adhesive, bending moment, finite element method

Procedia PDF Downloads 569
15443 Contribution in Fatigue Life Prediction of Composite Material

Authors: Mostefa Bendouba, Djebli Abdelkader, Abdelkrim Aid, Mohamed Benguediab

Abstract:

The damage evolution mechanism is one of the important focuses of fatigue behaviour investigation of composite materials and also is the foundation to predict fatigue life of composite structures for engineering application. This paper is dedicated to a damage investigation under two block loading cycle fatigue conditions submitted to composite material. The loading sequence effect and the influence of the cycle ratio of the first stage on the cumulative fatigue life were studied herein. Two loading sequences, i.e., high-to-low and low-to-high cases are considered in this paper. The proposed damage indicator is connected cycle by cycle to the S-N curve and the experimental results are in agreement with model expectations. Some experimental researches are used to validate this proposition.

Keywords: fatigue, damage acumulation, composite, evolution

Procedia PDF Downloads 499
15442 Mesoscopic Defects of Forming and Induced Properties on the Impact of a Composite Glass/Polyester

Authors: Bachir Kacimi, Fatiha Teklal, Arezki Djebbar

Abstract:

Forming processes induce residual deformations on the reinforcement and sometimes lead to mesoscopic defects, which are more recurrent than macroscopic defects during the manufacture of complex structural parts. This study deals with the influence of the fabric shear and buckles defects, which appear during draping processes of composite, on the impact behavior of a glass fiber reinforced polymer. To achieve this aim, we produced several specimens with different amplitude of deformations (shear) and defects on the fabric using a specific bench. The specimens were manufactured using the contact molding and tested with several impact energies. The results and measurements made on tested specimens were compared to those of the healthy material. The results showed that the buckle defects have a negative effect on elastic parameters and revealed a larger damage with significant out-of-plane mode relatively to the healthy composite material. This effect is the consequence of a local fiber impoverishment and a disorganization of the fibrous network, with a reorientation of the fibers following the out-of-plane buckling of the yarns, in the area where the defects are located. For the material with calibrated shear of the reinforcement, the increased local fiber rate due to the shear deformations and the contribution to stiffness of the transverse yarns led to an increase in mechanical properties.

Keywords: Defects, Forming, Impact, Induced properties, Textiles

Procedia PDF Downloads 138
15441 Polyacrylates in Poly (Lactic Acid) Matrix, New Biobased Polymer Material

Authors: Irena Vuković-Kwiatkowska, Halina Kaczmarek

Abstract:

Poly (lactic acid) is well known polymer, often called green material because of its origin (renewable resources) and biodegradability. This biopolymer can be used in the packaging industry very often. Poor resistance to permeation of gases is the disadvantage of poly (lactic acid). The permeability of gases and vapor through the films applied for packages and bottles generally should be very low to prolong products shelf-life. We propose innovation method of PLA gas barrier modification using electromagnetic radiation in ultraviolet range. Poly (lactic acid) (PLA) and multifunctional acrylate monomers were mixed in different composition. Final films were obtained by photochemical reaction (photocrosslinking). We tested permeability to water vapor and carbon dioxide through these films. Also their resistance to UV radiation was also studied. The samples were conditioned in the activated sludge and in the natural soil to test their biodegradability. An innovative method of PLA modification allows to expand its usage, and can reduce the future costs of waste management what is the result of consuming such materials like PET and HDPE. Implementation of our material for packaging will contribute to the protection of the environment from the harmful effects of extremely difficult to biodegrade materials made from PET or other plastic

Keywords: interpenetrating polymer network, packaging films, photocrosslinking, polyacrylates dipentaerythritol pentaacrylate DPEPA, poly (lactic acid), polymer biodegradation

Procedia PDF Downloads 477
15440 Supply Chain Collaboration Comparison Practices between Developed and Developing Countries

Authors: Maria Jose Granero Paris, Ana Isabel Jimenez Zarco, Agustin Pablo Alvarez Herranz

Abstract:

In the industrial sector the collaboration along the supply chain is key especially in order to develop product, production methods or process innovations. The access to resources and knowledge not being available inside the company, the achievement of cost competitive solutions, the reduction of the time required to innovate are some of the benefits linked with the collaboration with suppliers. The big industrial manufacturers have a long tradition to collaborate with their suppliers to develop new products in the developed countries. Since they have increased their global supply chains and global sourcing activities, the objective of the research is to analyse if the same best practices, way of working, experiences, information technology tools, governance methodologies are applied when collaborating with suppliers in the developed world or in developing countries. Most of the current research focuses to analyse the Supply Chain Collaboration in the developed countries and in recent years the number of publications related to the Supply Chain Collaboration in developing countries has increased, but there is still a lack of research comparing both and analysing the similarities, differences and key success factors among the Supply Chain Collaboration practices in developed and developing countries. With this gap in mind, the research under preparation will focus on the following goals: -Identify the most important elements required for a successful supply chain collaboration in the developed and developing countries. -Set up the optimal governance framework to manage the supply chain collaboration in the developed and developing countries. -Define some recommendations about required improvements in the current supply chain collaboration business relationship practices in place. Following the case methodology we will analyze the way manufacturers and suppliers collaborate in the development of new products, production methods or process innovations and in the set up of new global supply chains in two industries with different level of technology intensity and collaboration history being the automotive and aerospace industries.

Keywords: global supply chain networks, Supply Chain Collaboration, supply chain governance, supply chain performance

Procedia PDF Downloads 603
15439 The Onset of Ironing during Casing Expansion

Authors: W. Assaad, D. Wilmink, H. R. Pasaribu, H. J. M. Geijselaers

Abstract:

Shell has developed a mono-diameter well concept for oil and gas wells as opposed to the traditional telescopic well design. A Mono-diameter well design allows well to have a single inner diameter from the surface all the way down to reservoir to increase production capacity, reduce material cost and reduce environmental footprint. This is achieved by expansion of liners (casing string) concerned using an expansion tool (e.g. a cone). Since the well is drilled in stages and liners are inserted to support the borehole, overlap sections between consecutive liners exist which should be expanded. At overlap, the previously inserted casing which can be expanded or unexpanded is called the host casing and the newly inserted casing is called the expandable casing. When the cone enters the overlap section, an expandable casing is expanded against a host casing, a cured cement layer and formation. In overlap expansion, ironing or lengthening may appear instead of shortening in the expandable casing when the pressure exerted by the host casing, cured cement layer and formation exceeds a certain limit. This pressure is related to cement strength, thickness of cement layer, host casing material mechanical properties, host casing thickness, formation type and formation strength. Ironing can cause implications that hinder the deployment of the technology. Therefore, the understanding of ironing becomes essential. A physical model is built in-house to calculate expansion forces, stresses, strains and post expansion casing dimensions under different conditions. In this study, only free casing and overlap expansion of two casings are addressed while the cement and formation will be incorporated in future study. Since the axial strain can be predicted by the physical model, the onset of ironing can be confirmed. In addition, this model helps in understanding ironing and the parameters influencing it. Finally, the physical model is validated with Finite Element (FE) simulations and small-scale experiments. The results of the study confirm that high pressure leads to ironing when the casing is expanded in tension mode.

Keywords: casing expansion, cement, formation, metal forming, plasticity, well design

Procedia PDF Downloads 179
15438 Halal Authentication for Some Product Collected from Jordanian Market Using Real-Time PCR

Authors: Omar S. Sharaf

Abstract:

The mitochondrial 12s rRNA (mt-12s rDNA) gene for pig-specific was developed to detect material from pork species in different products collected from Jordanian market. The amplification PCR products of 359 bp and 531 bp were successfully amplified from the cyt b gene of pig the amplification product using mt-12S rDNA gene were successfully produced a single band with a molecular size of 456 bp. In the present work, the PCR amplification of mtDNA of cytochrome b has been shown as a suitable tool for rapid detection of pig DNA. 100 samples from different dairy, gelatin and chocolate based products and 50 samples from baby food formula were collected and tested to a presence of any pig derivatives. It was found that 10% of chocolate based products, 12% of gelatin and 56% from dairy products and 5.2% from baby food formula showed single band from mt-12S rDNA gene.

Keywords: halal food, baby infant formula, chocolate based products, PCR, Jordan

Procedia PDF Downloads 532
15437 Disaster Management Supported by Unmanned Aerial Systems

Authors: Agoston Restas

Abstract:

Introduction: This paper describes many initiatives and shows also practical examples which happened recently using Unmanned Aerial Systems (UAS) to support disaster management. Since the operation of manned aircraft at disasters is usually not only expensive but often impossible to use as well, in many cases managers fail to use the aerial activity. UAS can be an alternative moreover cost-effective solution for supporting disaster management. Methods: This article uses thematic division of UAS applications; it is based on two key elements, one of them is the time flow of managing disasters, other is its tactical requirements. Logically UAS can be used like pre-disaster activity, activity immediately after the occurrence of a disaster and the activity after the primary disaster elimination. Paper faces different disasters, like dangerous material releases, floods, earthquakes, forest fires and human-induced disasters. Research used function analysis, practical experiments, mathematical formulas, economic analysis and also expert estimation. Author gathered international examples and used own experiences in this field as well. Results and discussion: An earthquake is a rapid escalating disaster, where, many times, there is no other way for a rapid damage assessment than aerial reconnaissance. For special rescue teams, the UAS application can help much in a rapid location selection, where enough place remained to survive for victims. Floods are typical for a slow onset disaster. In contrast, managing floods is a very complex and difficult task. It requires continuous monitoring of dykes, flooded and threatened areas. UAS can help managers largely keeping an area under observation. Forest fires are disasters, where the tactical application of UAS is already well developed. It can be used for fire detection, intervention monitoring and also for post-fire monitoring. In case of nuclear accident or hazardous material leakage, UAS is also a very effective or can be the only one tool for supporting disaster management. Paper shows some efforts using UAS to avoid human-induced disasters in low-income countries as part of health cooperation.

Keywords: disaster management, floods, forest fires, Unmanned Aerial Systems

Procedia PDF Downloads 236