Search results for: correction factors for axisymmetric models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16893

Search results for: correction factors for axisymmetric models

15663 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset

Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli

Abstract:

Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.

Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence

Procedia PDF Downloads 78
15662 Using Hierarchical Modelling to Understand the Role of Plantations in the Abundance of Koalas, Phascolarctos cinereus

Authors: Kita R. Ashman, Anthony R. Rendall, Matthew R. E. Symonds, Desley A. Whisson

Abstract:

Forest cover is decreasing globally, chiefly due to the conversion of forest to agricultural landscapes. In contrast, the area under plantation forestry is increasing significantly. For wildlife occupying landscapes where native forest is the dominant land cover, plantations generally represent a lower value habitat; however, plantations established on land formerly used for pasture may benefit wildlife by providing temporary forest habitat and increasing connectivity. This study investigates the influence of landscape, site, and climatic factors on koala population density in far south-west Victoria where there has been extensive plantation establishment. We conducted koala surveys and habitat characteristic assessments at 72 sites across three habitat types: plantation, native vegetation blocks, and native vegetation strips. We employed a hierarchical modeling framework for estimating abundance and constructed candidate multinomial N-mixture models to identify factors influencing the abundance of koalas. We detected higher mean koala density in plantation sites (0.85 per ha) than in either native block (0.68 per ha) or native strip sites (0.66 per ha). We found five covariates of koala density and using these variables, we spatially modeled koala abundance and discuss factors that are key in determining large-scale distribution and density of koala populations. We provide a distribution map that can be used to identify high priority areas for population management as well as the habitat of high conservation significance for koalas. This information facilitates the linkage of ecological theory with the on-ground implementation of management actions and may guide conservation planning and resource management actions to consider overall landscape configuration as well as the spatial arrangement of plantations adjacent to the remnant forest.

Keywords: abundance modelling, arboreal mammals plantations, wildlife conservation

Procedia PDF Downloads 115
15661 Important Factors Affecting the Effectiveness of Quality Control Circles

Authors: Sogol Zarafshan

Abstract:

The present study aimed to identify important factors affecting the effectiveness of quality control circles in a hospital, as well as rank them using a combination of fuzzy VIKOR and Grey Relational Analysis (GRA). The study population consisted of five academic members and five experts in the field of nursing working in a hospital, who were selected using a purposive sampling method. Also, a sample of 107 nurses was selected through a simple random sampling method using their employee codes and the random-number table. The required data were collected using a researcher-made questionnaire which consisted of 12 factors. The validity of this questionnaire was confirmed through giving the opinions of experts and academic members who participated in the present study, as well as performing confirmatory factor analysis. Its reliability also was verified (α=0.796). The collected data were analyzed using SPSS 22.0 and LISREL 8.8, as well as VIKOR–GRA and IPA methods. The results of ranking the factors affecting the effectiveness of quality control circles showed that the highest and lowest ranks were related to ‘Managers’ and supervisors’ support’ and ‘Group leadership’. Also, the highest hospital performance was for factors such as ‘Clear goals and objectives’ and ‘Group cohesiveness and homogeneity’, and the lowest for ‘Reward system’ and ‘Feedback system’, respectively. The results showed that although ‘Training the members’, ‘Using the right tools’ and ‘Reward system’ were factors that were of great importance, the organization’s performance for these factors was poor. Therefore, these factors should be paid more attention by the studied hospital managers and should be improved as soon as possible.

Keywords: Quality control circles, Fuzzy VIKOR, Grey Relational Analysis, Importance–Performance Analysis

Procedia PDF Downloads 135
15660 Analysis of the Contribution of Drude and Brendel Model Terms to the Dielectric Function

Authors: Christopher Mkirema Maghanga, Maurice Mghendi Mwamburi

Abstract:

Parametric modeling provides a means to deeper understand the properties of materials. Drude, Brendel, Lorentz and OJL incorporated in SCOUT® software are some of the models used to study dielectric films. In our work, we utilized Brendel and Drude models to extract the optical constants from spectroscopic data of fabricated undoped and niobium doped titanium oxide thin films. The individual contributions by the two models were studied to establish how they influence the dielectric function. The effect of dopants on their influences was also analyzed. For the undoped films, results indicate minimal contribution from the Drude term due to the dielectric nature of the films. However as doping levels increase, the rise in the concentration of free electrons favors the use of Drude model. Brendel model was confirmed to work well with dielectric films - the undoped titanium Oxide films in our case.

Keywords: modeling, Brendel model, optical constants, titanium oxide, Drude Model

Procedia PDF Downloads 183
15659 Role of ICT and Wage Inequality in Organization

Authors: Shoji Katagiri

Abstract:

This study deals with wage inequality in organization and shows the relationship between ICT and wage in organization. To do so, we incorporate ICT’s factors in organization into our model. ICT’s factors are efficiencies of Enterprise Resource Planning (ERP), Computer Assisted Design/Computer Assisted Manufacturing (CAD/CAM), and NETWORK. The improvement of ICT’s factors decrease the learning cost to solve problem pertaining to the hierarchy in organization. The improvement of NETWORK increases the wage inequality within workers and decreases within managers and entrepreneurs. The improvements of CAD/CAM and ERP increases the wage inequality within all agent, and partially increase it between the agents in hierarchy.

Keywords: endogenous economic growth, ICT, inequality, capital accumulation

Procedia PDF Downloads 260
15658 Factors Influencing Respectful Perinatal Care Among Healthcare Professionals In Low-and Middle-resource Countries: A Systematic Review

Authors: Petronella Lunda, Catharina Susanna Minnie, Welma Lubbe

Abstract:

Background This review aimed to provide healthcare professionals with a scientific summary of the best available research evidence on factors influencing respectful perinatal care. The review question was ‘What were the perceptions of midwives and doctors on factors that influence respectful perinatal care?’ Methods A detailed search was done on electronic databases: EBSCOhost: Medline, OAlster, Scopus, SciELO, Science Direct, PubMed, Psych INFO, and SocINDEX. The databases were searched for available literature using a predetermined search strategy. Reference lists of included studies were analysed to identify studies missing from databases. The phenomenon of interest was factors influencing maternity care practices according to midwives and doctors. Pre-determined inclusion and exclusion criteria were used during the selection of potential studies. In total, 13 studies were included in the data analysis and synthesis. Three themes were identified and a total of nine sub-themes. Results Studies conducted in various settings were included in the study. Multiple factors influencing respectful perinatal care were identified. During data synthesis, three themes emerged: healthcare institution, healthcare professionals, and women-related factors. Alongside the themes were sub-themes human resources, medical supplies, norms and practices, physical infrastructure, healthcare professional competencies and attributes, women’s knowledge, and preferences. The three factors influence the provision of respectful perinatal care; addressing them might improve the provision of the care. Conclusion Addressing factors that influence respectful perinatal care is vital towards the prevention of compromised patient care during the perinatal period as these factors have the potential to accelerate or hinder provision of respectful care.

Keywords: doctors, maternity care, midwives, obstetrician, perceptions, perinatal care, respectful care

Procedia PDF Downloads 21
15657 The Mediating Role of Artificial Intelligence (AI) Driven Customer Experience in the Relationship Between AI Voice Assistants and Brand Usage Continuance

Authors: George Cudjoe Agbemabiese, John Paul Kosiba, Michael Boadi Nyamekye, Vanessa Narkie Tetteh, Caleb Nunoo, Mohammed Muniru Husseini

Abstract:

The smartphone industry continues to experience massive growth, evidenced by expanding markets and an increasing number of brands, models and manufacturers. As technology advances rapidly, manufacturers of smartphones are consistently introducing new innovations to keep up with the latest evolving industry trends and customer demand for more modern devices. This study aimed to assess the influence of artificial intelligence (AI) voice assistant (VA) on improving customer experience, resulting in the continuous use of mobile brands. Specifically, this article assesses the role of hedonic, utilitarian, and social benefits provided by AIVA on customer experience and the continuance intention to use mobile phone brands. Using a primary data collection instrument, the quantitative approach was adopted to examine the study's variables. Data from 348 valid responses were used for the analysis based on structural equation modeling (SEM) with AMOS version 23. Three main factors were identified to influence customer experience, which results in continuous usage of mobile phone brands. These factors are social benefits, hedonic benefits, and utilitarian benefits. In conclusion, a significant and positive relationship exists between the factors influencing customer experience for continuous usage of mobile phone brands. The study concludes that mobile brands that invest in delivering positive user experiences are in a better position to improve usage and increase preference for their brands. The study recommends that mobile brands consider and research their prospects' and customers' social, hedonic, and utilitarian needs to provide them with desired products and experiences.

Keywords: artificial intelligence, continuance usage, customer experience, smartphone industry

Procedia PDF Downloads 80
15656 Ethanol Chlorobenzene Dosimetr Usage for Measuring Dose of the Intraoperative Linear Electron Accelerator System

Authors: Mojtaba Barzegar, Alireza Shirazi, Saied Rabi Mahdavi

Abstract:

Intraoperative radiation therapy (IORT) is an innovative treatment modality that the delivery of a large single dose of radiation to the tumor bed during the surgery. The radiotherapy success depends on the absorbed dose delivered to the tumor. The achievement better accuracy in patient treatment depends upon the measured dose by standard dosimeter such as ionization chamber, but because of the high density of electric charge/pulse produced by the accelerator in the ionization chamber volume, the standard correction factor for ion recombination Ksat calculated with the classic two-voltage method is overestimated so the use of dose/pulse independent dosimeters such as chemical Fricke and ethanol chlorobenzene (ECB) dosimeters have been suggested. Dose measurement is usually calculated and calibrated in the Zmax. Ksat calculated by comparison of ion chamber response and ECB dosimeter at each applicator degree, size, and dose. The relative output factors for IORT applicators have been calculated and compared with experimentally determined values and the results simulated by Monte Carlo software. The absorbed doses have been calculated and measured with statistical uncertainties less than 0.7% and 2.5% consecutively. The relative differences between calculated and measured OF’s were up to 2.5%, for major OF’s the agreement was better. In these conditions, together with the relative absorbed dose calculations, the OF’s could be considered as an indication that the IORT electron beams have been well simulated. These investigations demonstrate the utility of the full Monte Carlo simulation of accelerator head with ECB dosimeter allow us to obtain detailed information of clinical IORT beams.

Keywords: intra operative radiotherapy, ethanol chlorobenzene, ksat, output factor, monte carlo simulation

Procedia PDF Downloads 479
15655 Improving Our Understanding of the in vivo Modelling of Psychotic Disorders

Authors: Zsanett Bahor, Cristina Nunes-Fonseca, Gillian L. Currie, Emily S. Sena, Lindsay D.G. Thomson, Malcolm R. Macleod

Abstract:

Psychosis is ranked as the third most disabling medical condition in the world by the World Health Organization. Despite a substantial amount of research in recent years, available treatments are not universally effective and have a wide range of adverse side effects. Since many clinical drug candidates are identified through in vivo modelling, a deeper understanding of these models, and their strengths and limitations, might help us understand reasons for difficulties in psychosis drug development. To provide an unbiased summary of the preclinical psychosis literature we performed a systematic electronic search of PubMed for publications modelling a psychotic disorder in vivo, identifying 14,721 relevant studies. Double screening of 11,000 publications from this dataset so far established 2403 animal studies of psychosis, with the most common model being schizophrenia (95%). 61% of these models are induced using pharmacological agents. For all the models only 56% of publications test a therapeutic treatment. We propose a systematic review of these studies to assess the prevalence of reporting of measures to reduce risk of bias, and a meta-analysis to assess the internal and external validity of these animal models. Our findings are likely to be relevant to future preclinical studies of psychosis as this generation of strong empirical evidence has the potential to identify weaknesses, areas for improvement and make suggestions on refinement of experimental design. Such a detailed understanding of the data which inform what we think we know will help improve the current attrition rate between bench and bedside in psychosis research.

Keywords: animal models, psychosis, systematic review, schizophrenia

Procedia PDF Downloads 290
15654 Psychosocial Factors in Relation to Musculoskeletal Disorders among Nursing Professionals in Kurdistan Region, Iraq

Authors: Karwan Khudhir

Abstract:

A cross-sectional study was carried out to determine the prevalence of musculoskeletal disorders (MSDs) and psychosocial factors associated with it, among Kurdistan nursing professionals. Simple random sampling was used to select 220 nurses and data were collected by self-administrative questionnaire. Results of the study showed that the overall prevalence of MSDs among Kurdistan nurses was 74% in different body regions and, by body regions, neck pain was reported to be the highest complaint of twelve-month MSDs (48.4%) compared to other body parts. Logistic regression analysis indicated 6 variables that are significantly associated with musculoskeletal disorders: smoking (OR=19.472, 95% CI: 5.396, 70.273), BMI (OR= 5.106, 95% CI: 1.735, 15.025), physical activity (OR=8.639, 95% CI: 3.075, 24.271), psychological demand (OR=6.685, 95% CI: 3.318, 13.468), social support (OR=3.143, 95% CI: 1.202, 4.814) and job satisfaction (OR=2.44, 95% CI: 1.04, 5.63). Prevention strategies and health education which emphasizes on psychosocial risk factors and how to improve working conditions should be introduced.

Keywords: Kurdistan Region, Iraq, musculoskeletal disorders, nurses, psycho-social factors

Procedia PDF Downloads 221
15653 Transport Emission Inventories and Medical Exposure Modeling: A Missing Link for Urban Health

Authors: Frederik Schulte, Stefan Voß

Abstract:

The adverse effects of air pollution on public health are an increasingly vital problem in planning for urban regions in many parts of the world. The issue is addressed from various angles and by distinct disciplines in research. Epidemiological studies model the relative increase of numerous diseases in response to an increment of different forms of air pollution. A significant share of air pollution in urban regions is related to transport emissions that are often measured and stored in emission inventories. Though, most approaches in transport planning, engineering, and operational design of transport activities are restricted to general emission limits for specific air pollutants and do not consider more nuanced exposure models. We conduct an extensive literature review on exposure models and emission inventories used to study the health impact of transport emissions. Furthermore, we review methods applied in both domains and use emission inventory data of transportation hubs such as ports, airports, and urban traffic for an in-depth analysis of public health impacts deploying medical exposure models. The results reveal specific urban health risks related to transport emissions that may improve urban planning for environmental health by providing insights in actual health effects instead of only referring to general emission limits.

Keywords: emission inventories, exposure models, transport emissions, urban health

Procedia PDF Downloads 389
15652 Safety Factors for Improvement of Labor's Health and Safety in Construction Industry of Pakistan

Authors: Ahsan Ali Khan

Abstract:

During past few years, researchers are emphasizing more on the need of safety in construction industry. This need of safety is an important issue in developing countries. As due to development they are facing huge construction growth. This research is done to evaluate labor safety condition in construction industry of Pakistan. The research carried out through questionnaire survey at different construction sites. Useful data are gathered from these sites which then factor analyzed resulting in five factors. These factors reflect that most of the workers are aware of the safety need, but they divert this responsibility towards management and claim that the work is more essential for management instead of safety. Moreover, those work force which is unaware of safety state that there is lack of any training and guidance from upper management which lead to many unfavorable events on construction sites. There is need of implementation safety activities by management like training, formulation of rules and policies. This research will be helpful to divert management attention towards safety need so they will make efforts for safety of their manpower—the workers.

Keywords: labor's safety, management role, Pakistan, safety factors

Procedia PDF Downloads 191
15651 Removal of Basic Yellow 28 Dye from Aqueous Solutions Using Plastic Wastes

Authors: Nadjib Dahdouh, Samira Amokrane, Elhadj Mekatel, Djamel Nibou

Abstract:

The removal of Basic Yellow 28 (BY28) from aqueous solutions by plastic wastes PMMA was investigated. The characteristics of plastic wastes PMMA were determined by SEM, FTIR and chemical composition analysis. The effects of solution pH, initial Basic Yellow 28 (BY28) concentration C, solid/liquid ratio R, and temperature T were studied in batch experiments. The Freundlich and the Langmuir models have been applied to the adsorption process, and it was found that the equilibrium followed well Langmuir adsorption isotherm. A comparison of kinetic models applied to the adsorption of BY28 on the PMMA was evaluated for the pseudo-first-order and the pseudo-second-order kinetic models. It was found that used models were correlated with the experimental data. Intraparticle diffusion model was also used in these experiments. The thermodynamic parameters namely the enthalpy ∆H°, entropy ∆S° and free energy ∆G° of adsorption of BY28 on PMMA were determined. From the obtained results, the negative values of Gibbs free energy ∆G° indicated the spontaneity of the adsorption of BY28 by PMMA. The negative values of ∆H° revealed the exothermic nature of the process and the negative values of ∆S° suggest the stability of BY28 on the surface of SW PMMA.

Keywords: removal, Waste PMMA, BY28 dye, equilibrium, kinetic study, thermodynamic study

Procedia PDF Downloads 153
15650 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters

Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu

Abstract:

An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.

Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters

Procedia PDF Downloads 309
15649 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations

Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White

Abstract:

Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.

Keywords: climate, degradation, HVAC, neighborhood component analysis

Procedia PDF Downloads 431
15648 A Review on Pathological Gaming among Adolescents

Authors: Anjali Malik

Abstract:

This paper presents a review of the literature on behavioral addictions with a particular focus on understanding online gaming habits among adolescents. Extant researches yielded many different sets of antecedent factors for developing pathological online gaming behavior. This paper draws findings from the most-cited publications most closely associated with factors explaining why individuals develop such kind of problematic behavior. What emerges as central to understanding this phenomenon is the presence of multiple variable causes that take into account the individual, the environment and their interaction to explain the risk behavior such as pathological online gaming. In addition to that role of some mediating factors and pull factors has also been discussed, along with the consequences on personal, social and academic performance resulting from such kind of addictive behavior. The paper also makes recommendations for future research including developing a deeper understanding of the phenomena studied here by examining the relative contribution of these multiple-risk contexts.

Keywords: pathological gaming, gaming addiction, adolescents, behavior

Procedia PDF Downloads 230
15647 Employing Operations Research at Universities to Build Management Systems

Authors: Abdallah A. Hlayel

Abstract:

Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that affect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decision-making.

Keywords: best candidates' method, decision making, decision support system, operations research

Procedia PDF Downloads 445
15646 What are the Factors Underlying the Differences between Young Saudi Women in Traditional Families that Choose to Conform to the Society Norms, and Young Saudi Women who do not Conform?

Authors: Mai Al-Subaie

Abstract:

This research suggests that women in traditional families of Saudi Arabia are divided into two groups, the one who conform to the society and the new type of women that has been emerged due to the changing and development of the culture, who do not want to conform to the rules. The factors underlying the differences were explored by using a test and an interview. That concluded some of the main factors that were a real effect of why some women still want to follow the society and traditional rules, and other want to break free.

Keywords: conformity, non conformity, females, Saudi Arabia

Procedia PDF Downloads 508
15645 Risk Factors for High School Dropouts

Authors: Genesis F. Dela Cruz, Liza C. Costa

Abstract:

The study is concerned with the Risk factors of dropping out among Grade VII students for SY 2012-2013. A total of 87 Grade VII Students-At-Risk-of-Dropping Out (SARDOs) were involved in this study. The descriptive survey method was used in this study. A 50-item questionnaire was used in data gathering. Expert validation was done to determine the validity and reliability of the instrument. The study used Chi Square, Kruskal Wallis Test and Mann Whitney Test in the statistical treatment of data. The study revealed that the respondents are within the standard age limit for Grade VII students in the Philippines which is 13 years old. Males more than females usually becomes SARDOs. SARDOs come from low economic status and complete families contrary to the common belief that they came from single-parent families. The study also showed that parent’s involvement in educating their children on family-related factors contributed to the very good perception on the family related factors. Based on age, there are no significant differences in their perception of the four major recognized risk factors for dropping out among all ages. There are no significant differences in their perception of the family, individual and community related factors for dropping out based on sex. However, females have a more favorable perception when it comes to school related factors. No significant differences in their perception of dropping out were also noted when they are classified according to distance of school from home. The respondents do not differ in their perception on family, individual and community related factors when they are classified according to type of family. When surveyed regarding the respondents’ reason for being absent, it was found out that laziness and being late are the two major reasons. Respondents also perceived remedial and tutorial classes as school-initiated intervention measure to prevent school disengagement or dropping out.

Keywords: drop-out, guidance and counseling, school initiated intervention, students at risk of dropping out

Procedia PDF Downloads 283
15644 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 338
15643 Dynamic Reliability for a Complex System and Process: Application on Offshore Platform in Mozambique

Authors: Raed KOUTA, José-Alcebiades-Ernesto HLUNGUANE, Eric Châtele

Abstract:

The search for and exploitation of new fossil energy resources is taking place in the context of the gradual depletion of existing deposits. Despite the adoption of international targets to combat global warming, the demand for fuels continues to grow, contradicting the movement towards an energy-efficient society. The increase in the share of offshore in global hydrocarbon production tends to compensate for the depletion of terrestrial reserves, thus constituting a major challenge for the players in the sector. Through the economic potential it represents, and the energy independence it provides, offshore exploitation is also a challenge for States such as Mozambique, which have large maritime areas and whose environmental wealth must be considered. The exploitation of new reserves on economically viable terms depends on available technologies. The development of deep and ultra-deep offshore requires significant research and development efforts. Progress has also been made in managing the multiple risks inherent in this activity. Our study proposes a reliability approach to develop products and processes designed to live at sea. Indeed, the context of an offshore platform requires highly reliable solutions to overcome the difficulties of access to the system for regular maintenance and quick repairs and which must resist deterioration and degradation processes. One of the characteristics of failures that we consider is the actual conditions of use that are considered 'extreme.' These conditions depend on time and the interactions between the different causes. These are the two factors that give the degradation process its dynamic character, hence the need to develop dynamic reliability models. Our work highlights mathematical models that can explicitly manage interactions between components and process variables. These models are accompanied by numerical resolution methods that help to structure a dynamic reliability approach in a physical and probabilistic context. The application developed makes it possible to evaluate the reliability, availability, and maintainability of a floating storage and unloading platform for liquefied natural gas production.

Keywords: dynamic reliability, offshore plateform, stochastic process, uncertainties

Procedia PDF Downloads 120
15642 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 87
15641 Tax Morale Dimensions Analysis in Portugal and Spain

Authors: Cristina Sá, Carlos Gomes, António Martins

Abstract:

The reasons that explain different behaviors towards tax obligations in similar countries are not completely understood yet. The main purpose of this paper is to identify and compare the factors that influence tax morale levels in Portugal and Spain. We use data from European Values Study (EVS). Using a sample of 2,652 individuals, a factor analysis was used to extract the underlying dimensions of tax morale of Portuguese and Spanish taxpayers. Based on a factor analysis, the results of this paper show that sociological and behavioral factors, psychological factors and political factors are important for a good understanding of taxpayers’ behavior in Iberian Peninsula. This paper added value relies on the analyses of a wide range of variables and on the comparison between Portugal and Spain. Our conclusions provided insights that tax authorities and politicians can use to better focus their strategies and actions in order to increase compliance, reduce tax evasion, fight underground economy and increase country´s competitiveness.

Keywords: compliance, tax morale, Portugal, Spain

Procedia PDF Downloads 308
15640 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building

Authors: Yazan Al-Kofahi, Jamal Alqawasmi.

Abstract:

In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.

Keywords: machine learning, deep learning, artificial intelligence, sustainable building

Procedia PDF Downloads 67
15639 Critical Factors in the Formation, Development and Survival of an Eco-Industrial Park: A Systemic Understanding of Industrial Symbiosis

Authors: Iván González, Pablo Andrés Maya, Sebastián Jaén

Abstract:

Eco-industrial parks (EIPs) work as networks for the exchange of by-products, such as materials, water, or energy. This research identifies the relevant factors in the formation of EIPs in different industrial environments around the world. Then an aggregation of these factors is carried out to reduce them from 50 to 17 and classify them according to 5 fundamental axes. Subsequently, the Vester Sensitivity Model (VSM) systemic methodology is used to determine the influence of the 17 factors on an EIP system and the interrelationship between them. The results show that the sequence of effects between factors: Trust and Cooperation → Business Association → Flows → Additional Income represents the “backbone” of the system, being the most significant chain of influences. In addition, the Organizational Culture represents the turning point of the Industrial Symbiosis on which it must act correctly to avoid falling into unsustainable economic development. Finally, the flow of Information should not be lost since it is what feeds trust between the parties, and the latter strengthens the system in the face of individual or global imbalances. This systemic understanding will enable the formulation of pertinent policies by the actors that interact in the formation and permanence of the EIP. In this way, it seeks to promote large-scale sustainable industrial development, integrating various community actors, which in turn will give greater awareness and appropriation of the current importance of sustainability in industrial production.

Keywords: critical factors, eco-industrial park, industrial symbiosis, system methodology

Procedia PDF Downloads 123
15638 The Effect of the Covid-19 Pandemic on Foreign Students Studying in Hungary – What Changed?

Authors: Anita Kéri

Abstract:

Satisfying foreign student needs has been in the center of research interest in the past several years. Higher education institutions have been exploring factors influencing foreign student satisfactionto stay competitive on the educational market. Even though foreign student satisfaction and loyalty are topics investigated deeply in the literature, the academic years of 2020 and 2021 have revealed challenges never experienced before. With the COVID-19 pandemic, new factors have emerged that might influence foreign student satisfaction and loyalty in higher education. The aim of the current research is to shed lights on what factors influence foreign student satisfaction and loyalty in the post-pandemic educational era and to reveal if the effects of factors influencing satisfaction and loyalty have changed compared to previous findings. Initial results show that students are less willing to participate in online surveys during and after the pandemic. The return rate of the survey instrument is below 5%. Results also reveal that there is a slight difference in what factors have significant effects on school-related and non-school-related satisfaction and overall loyalty, measured pre- and post-pandemic times. The results of the current study help us determine what factors higher education institutions need to consider when planning the future service affordances for their foreign students that might influence their satisfaction and loyalty.

Keywords: pandemic, COVID-19, satisfacion, loyalty, service quality, higher education

Procedia PDF Downloads 163
15637 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model

Authors: Catherine Maware, Olufemi Adetunji

Abstract:

The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.

Keywords: impact measurement model, lean bundles, lean manufacturing, organizational performance

Procedia PDF Downloads 485
15636 Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, linear mixed model, multivariate conditional autoregressive model, spatial time series

Procedia PDF Downloads 395
15635 Determinants of Internationalization of Social Enterprises: A 20-Year Review

Authors: Xiaoqing Li

Abstract:

Social entrepreneurship drives the global movement as social enterprises create best ways to satisfy social needs through connecting international resources. However, what determines social enterprises to internationalize is underexplored. This study aims to answer this question by conducting a systematic review of studies of past 20 years on social enterprises' internationalization. Findings reveal that factors at the individual (entrepreneur), firm, and environment (home and host country) levels determine the degree of social enterprises' internationalization. Future research is challenged by: a. adopting an integrated approach examining the three levels to explain social enterprises' internationalization; b. the different nature of social enterprises from commercial businesses demands scholars to refine and develop appropriate theoretical models to capture the dynamism of social enterprises' internationalization behavior.

Keywords: determinants, entrepreneurship, internationalization, social enterprises

Procedia PDF Downloads 216
15634 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals

Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer

Abstract:

Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).

Keywords: diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography (VOG)

Procedia PDF Downloads 259