Search results for: adaptive power factor (APF)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11836

Search results for: adaptive power factor (APF)

10606 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint

Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu

Abstract:

With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.

Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning

Procedia PDF Downloads 71
10605 Exploring Probabilistic Models for Transient Stability Analysis of Renewable-Dominant Power Grid

Authors: Phuong Nguyen

Abstract:

Along with the ongoing energy transition, the electrical power system is getting more vulnerable with the increasing penetration of renewable energy sources (RES). By replacing a large amount of fossil fuel-based power plants with RES, the rotating mass of the power grid is decreasing drastically, which has been reported by a number of system operators. This leads to a huge challenge for operators to secure the operation of their grids in all-time horizon ranges, from sub-seconds to minutes and even hours. There is a need to revise the grid capabilities in dealing with transient (angle) stability and voltage dynamics. While the traditional approaches relied on deterministic scenarios (worst-case scenarios), there is also a need to cover a whole range of probabilities regarding a wide range of uncertainties coming from massive RES units. To contribute to handle these issues, this paper aims to focus on developing a new analytical approach for transient stability.

Keywords: transient stability, uncertainties, renewable energy sources, analytical approach

Procedia PDF Downloads 67
10604 Heuristics for Optimizing Power Consumption in the Smart Grid

Authors: Zaid Jamal Saeed Almahmoud

Abstract:

Our increasing reliance on electricity, with inefficient consumption trends, has resulted in several economical and environmental threats. These threats include wasting billions of dollars, draining limited resources, and elevating the impact of climate change. As a solution, the smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing the peak power consumption under a fixed delay requirement is a significant problem in the smart grid. In addition, matching demand to supply is a key requirement for the success of the future electricity. In this work, we consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-Hard, we propose two versions of a heuristic algorithm for solving this problem. Our theoretical analysis and experimental results show that our proposed heuristics outperform existing methods by providing a better approximation to the optimal solution. In addition, we consider dynamic pricing methods to minimize the peak load and match demand to supply in the smart grid. Our contribution is the proposal of generic, as well as customized pricing heuristics to minimize the peak demand and match demand with supply. In addition, we propose optimal pricing algorithms that can be used when the maximum deadline period of the power jobs is relatively small. Finally, we provide theoretical analysis and conduct several experiments to evaluate the performance of the proposed algorithms.

Keywords: heuristics, optimization, smart grid, peak demand, power supply

Procedia PDF Downloads 82
10603 Water Saving in Electricity Generation System Considering Natural Gas Limitation

Authors: Mehdi Ganjkhani, Sobhan Badakhshan, Seyedvahid Hosseini

Abstract:

Power plants exploit striking proportion of underground water consumption. Correspondingly, natural gas-fired power plants need less water than the other conventional power plants. Therefore, shifting unit commitment planning toward these power plants would help to save water consumption. This paper discusses the impacts of water consumption limitation on natural gas consumption and vice versa as a short-term water consumption management solution. To do so, conventional unit commitment problem is extended by adding water consumption and natural gas constraints to the previous constrains. The paper presents the impact of water saving on natural gas demands as well as natural gas shortage on water demand. Correspondingly, the additional cost of electricity production according to the aforementioned constraints is evaluated. Finally, a test system is applied to investigate potentials and impacts of water saving and natural gas shortage. Different scenarios are conducted and the results are presented. The results of the study illustrate that in order to use less water for power production it needs to use more natural gas. Meanwhile, natural gas shortage causes to utilize more amount of water in aggregate.

Keywords: electric energy generation system, underground water sources, unit commitment, water consumption saving, natural gas

Procedia PDF Downloads 185
10602 Magnetomechanical Effects on MnZn Ferrites

Authors: Ibrahim Ellithy, Mauricio Esguerra, , Rewanth Radhakrishnan

Abstract:

In this study, the effects of hydrostatic stress on the magnetic properties of MnZn ferrite rings of different power grades, were measured and analyzed in terms of the magneto-mechanical effect on core losses was modeled via the Hodgdon-Esguerra hysteresis model. The results show excellent agreement with the model and a correlation between the permeability drop and the core loss increase in dependence of the material grade properties. These results emphasize the vulnerabilities of MnZn ferrites when subjected to mechanical perturbations, especially in real-world scenarios like under-road embedding for WPT.

Keywords: hydrostatic stress, power ferrites, core losses, wireless power transfer

Procedia PDF Downloads 60
10601 Planning and Management Options for Pastoral Resource: Case of Mecheria Region, Algeria

Authors: Driss Haddouche

Abstract:

Pastoral crisis in Algeria has its origins in rangeland degradation which are the main factor in any activity in the steppe zones. Indeed, faced with the increasing human and animal population on a living space smaller and smaller, there is an overuse of what remains of the steppe range lands, consequently the not sustainability of biomass production. Knowing the amount of biomass available, the practice of grazing options, taking into account the use of "Use Factor" factor remains an essential method for managing pastoral resources. This factor has three options: at 40% Conservative pasture; at 60 % the beginning of overgrazing; at 80% destructive grazing. Accessibility on the pasture is based on our field observations of a type any flock along a grazing cycle. The main purpose of these observations is to highlight the speed of herd grazing situation. Several individuals from the herd were timed to arrive at an average duration of about 5 seconds to move between two tufts of grass, separated by a distance of one meter. This gives a rate of 5 s/m (0.72 km/h) flat. This speed varies depending on the angle of the slope. Knowing the speed and slope of each pixel of the study area, given by the digital elevation model of Spot Image (MNE) and whose pitch is 15 meters, a map of pasture according to the distances is generated. Knowing the stocking and biomass available, the examination of the common Mécheria at regular distances (8.64 km or 12 hours of grazing, 17.28 km or 24 hours of grazing and 25.92 Km or 36 hours of grazing), offers three different options (conservation grazing resource: utilization at 40%; overgrazing statements for use at 60% and grazing destructive for use by more than 80%) for each distance traveled by sheep from the starting point is the town of Mécheria.

Keywords: pastoral crisis, biomass, animal charge, use factor, Algeria

Procedia PDF Downloads 520
10600 Analyzing Soviet and Post-Soviet Contemporary Russian Foreign Policy by Applying the Theory of Political Realism

Authors: Simon Tsipis

Abstract:

In this study, we propose to analyze Russian foreign policy conduct by applying the theory of Political Realism and the qualitative comparative method of analysis. We find that the paradigm of Political Realism supplies us with significant insights into the sources of contemporary Russian foreign policy conduct since the power factor was and remains an integral element in Russian foreign policies, especially when we apply comparative analysis and compare it with the behavior of its Soviet predecessor. Through the lens of the Realist theory, a handful of Russian foreign policy-making becomes clearer and much more comprehensible.

Keywords: realism, Russia, cold war, Soviet Union, European security

Procedia PDF Downloads 107
10599 Investigation of Minor Actinide-Contained Thorium Fuel Impacts on CANDU-Type Reactor Neutronics Using Computational Method

Authors: S. A. H. Feghhi, Z. Gholamzadeh, Z. Alipoor, C. Tenreiro

Abstract:

Currently, thorium fuel has been especially noticed because of its proliferation resistance than long half-life alpha emitter minor actinides, breeding capability in fast and thermal neutron flux and mono-isotopic naturally abundant. In recent years, efficiency of minor actinide burning up in PWRs has been investigated. Hence, a minor actinide-contained thorium based fuel matrix can confront both proliferation resistance and nuclear waste depletion aims. In the present work, minor actinide depletion rate in a CANDU-type nuclear core modeled using MCNP code has been investigated. The obtained effects of minor actinide load as mixture of thorium fuel matrix on the core neutronics has been studiedwith comparingpresence and non-presence of minor actinide component in the fuel matrix.Depletion rate of minor actinides in the MA-contained fuel has been calculated using different power loads.According to the obtained computational data, minor actinide loading in the modeled core results in more negative reactivity coefficients. The MA-contained fuel achieves less radial peaking factor in the modeled core. The obtained computational results showed 140 kg of 464 kg initial load of minor actinide has been depleted in during a 6-year burn up in 10 MW power.

Keywords: minor actinide burning, CANDU-type reactor, MCNPX code, neutronic parameters

Procedia PDF Downloads 452
10598 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling

Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha

Abstract:

The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.

Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat

Procedia PDF Downloads 44
10597 Experimental Analysis on Heat Transfer Enhancement in Double Pipe Heat Exchanger Using Al2O3/Water Nanofluid and Baffled Twisted Tape Inserts

Authors: Ratheesh Radhakrishnan, P. C. Sreekumar, K. Krishnamoorthy

Abstract:

Heat transfer augmentation techniques ultimately results in the reduction of thermal resistance in a conventional heat exchanger by generating higher convective heat transfer coefficient. It also results in reduction of size, increase in heat duty, decrease in approach temperature difference and reduction in pumping power requirements for heat exchangers. Present study deals with compound augmentation technique, which is not widely used. The study deals with the use of Alumina (Al2O3)/water nanofluid and baffled twisted tape inserts in double pipe heat exchanger as compound augmentation technique. Experiments were conducted to evaluate the heat transfer coefficient and friction factor for the flow through the inner tube of heat exchanger in turbulent flow range (8000Keywords: enhancement, heat transfer coefficient, friction factor, twisted tape, nanofluid

Procedia PDF Downloads 346
10596 Novel Spoke-Type BLDC Motor Design for Cost Effective and High Power Density

Authors: Suyong Kim

Abstract:

Recently because of the rise in the price of rare earth magnet, interest of non-rare earth or less-rare earth motor is growing. Especially to achieve the high power density, Spoke-Type BLDC (Brushless Permanent Magnet) Motor with ferrite permanent magnet are spotlighted. But Spoke-Type Ferrite BLDC Motor has much of magnetic flux leakage in the direction of rotor shaft. In order to solve this problem, there are two conventional ways. But conventional ways bring the increases of product cost or the decreases of the power density. Therefore, this paper proposes new Spoke-Type BLDC Rotor shape that has the advantages of both conventional methods. The new shape is consists of a one-piece core. The inside and the outside of the rotor are open alternately. So it can take reduced production cost and high power density.

Keywords: motor, BLDC, spoke, ferrite

Procedia PDF Downloads 562
10595 Low Power, Highly Linear, Wideband LNA in Wireless SOC

Authors: Amir Mahdavi

Abstract:

In this paper a highly linear CMOS low noise amplifier (LNA) for ultra-wideband (UWB) applications is proposed. The proposed LNA uses a linearization technique to improve second and third-order intercept points (IIP3). The linearity is cured by repealing the common-mode section of all intermodulation components from the cascade topology current with optimization of biasing current use symmetrical and asymmetrical circuits for biasing. Simulation results show that maximum gain and noise figure are 6.9dB and 3.03-4.1dB over a 3.1–10.6 GHz, respectively. Power consumption of the LNA core and IIP3 are 2.64 mW and +4.9dBm respectively. The wideband input impedance matching of LNA is obtained by employing a degenerating inductor (|S11|<-9.1 dB). The circuit proposed UWB LNA is implemented using 0.18 μm based CMOS technology.

Keywords: highly linear LNA, low-power LNA, optimal bias techniques

Procedia PDF Downloads 275
10594 Effect of Scarp Topography on Seismic Ground Motion

Authors: Haiping Ding, Rongchu Zhu, Zhenxia Song

Abstract:

Local irregular topography has a great impact on earthquake ground motion. For scarp topography, using numerical simulation method, the influence extent and scope of the scarp terrain on scarp's upside and downside ground motion are discussed in case of different vertical incident SV waves. The results show that: (1) The amplification factor of scarp's upside region is greater than that of the free surface, while the amplification factor of scarp's downside part is less than that of the free surface; (2) When the slope angle increases, for x component, amplification factors of the scarp upside also increase, while the downside part decrease with it. For z component, both of the upside and downside amplification factors will increase; (3) When the slope angle changes, the influence scope of scarp's downside part is almost unchanged, but for the upside part, it slightly becomes greater with the increase of slope angle; (4) Due to the existence of the scarp, the z component ground motion appears at the surface. Its amplification factor increases for larger slope angle, and the peaks of the surface responses are related with incident waves. However, the input wave has little effects on the x component amplification factors.

Keywords: scarp topography, ground motion, amplification factor, vertical incident wave

Procedia PDF Downloads 257
10593 Study on the Effects of Geometrical Parameters of Helical Fins on Heat Transfer Enhancement of Finned Tube Heat Exchangers

Authors: H. Asadi, H. Naderan Tahan

Abstract:

The aim of this paper is to investigate the effect of geometrical properties of helical fins in double pipe heat exchangers. On the other hand, the purpose of this project is to derive the hydraulic and thermal design tables and equations of double heat exchangers with helical fins. The numerical modeling is implemented to calculate the considered parameters. Design tables and correlated equations are generated by repeating the parametric numerical procedure for different fin geometries. Friction factor coefficient and Nusselt number are calculated for different amounts of Reynolds, fluid Prantle and fin twist angles for the range of laminar fluid flow in annular tube with helical fins. Results showed that friction factor coefficient and Nusselt number will be increased for higher Reynolds numbers and fins’ twist angles in general. These two parameters follow different patterns in response to Reynolds number increment. Thermal performance factor is defined to analyze these different patterns. Temperature and velocity contours are plotted against twist angle and number of fins to describe the changes in flow patterns in different geometries of twisted finned annulus. Finally twisted finned annulus friction factor coefficient, Nusselt Number and thermal performance factor are correlated by simulating the model in different design points.

Keywords: double pipe heat exchangers, heat exchanger performance, twisted fins, computational fluid dynamics

Procedia PDF Downloads 281
10592 Prevalence of Positive Serology for Celiac Disease in Children With Autism Spectrum Disorder

Authors: A. Venkatakrishnan, M. Juneja, S. Kapoor

Abstract:

Background: Gastrointestinal dysfunction is an emerging co morbidity seen in autism and may further strengthen the association between autism and celiac disease. This is supported by increased rates (22-70%) of gastrointestinal symptoms like diarrhea, constipation, abdominal discomfort/pain, and gastrointestinal inflammation in children with the etiology of autism is still elusive. In addition to genetic factors, environmental factors such as toxin exposure, intrauterine exposure to certain teratogenic drugs, are being proposed as possible contributing factors in the etiology of Autism Spectrum Disorders (ASD) in cognizance with reports of increased gut permeability and high rates of gastrointestinal symptoms noted in children with ASD, celiac disease has also been proposed as a possible etiological factor. Despite insufficient evidence regarding the benefit of restricted diets in Autism, GFD has been promoted as an alternative treatment for ASD. This study attempts to discern any correlation between ASD and celiac disease. Objective: This cross sectional study aims to determine the proportion of celiac disease in children with ASD. Methods: Study included 155 participants aged 2-12 yrs, diagnosed as ASD as per DSM-5 attending the child development center at a tertiary care hospital in Northern India. Those on gluten free diet or having other autoimmune conditions were excluded. A detailed Performa was filled which included sociodemographic details, history of gastrointestinal symptoms, anthropometry, systemic examination, and pertinent psychological testing was done using was assessed using Developmental Profile-3(DP-3) for Developmental Quotient, Childhood Autism Rating Scale-2 (CARS-2) for severity of ASD, Vineland Adaptive Behavior Scales (VABS) for adaptive behavior, Child Behavior Checklist (CBCL) for behavioral problems and BAMBI (Brief Autism Mealtime Behavior Scales) for feeding problems. Screening for celiac was done by TTG-IgA levels, and total serum IgA levels were measured to exclude IgA deficiency. Those with positive screen were further planned for HLA typing and endoscopic biopsy. Results: A total of 155 cases were included, out of which 5 had low IgA levels and were hence excluded from the study. The rest 150 children had TTG levels below the ULN and normal total serum IgA level. History of Gastrointestinal symptoms was present in 51 (34%) cases abdominal pain was the most frequent complaint (16.6%), followed by constipation (12.6%). Diarrhea was seen in 8 %. Gastrointestinal symptoms were significantly more common in children with ASD above 5 yrs (p-value 0.006) and those who were verbal (p = 0.000). There was no significant association between socio-demographic factors, anthropometric data, or severity of autism with gastrointestinal symptoms. Conclusion: None of the150 patients with ASD had raised TTG levels; hence no association was found between ASD and celiac disease. There is no justification for routine screening for celiac disease in children with ASD. Further studies are warranted to evaluate association of Non Celiac Gluten Sensitivity with ASD and any role of gluten-free diet in such patients.

Keywords: autism, celiac, gastrointestinal, gluten

Procedia PDF Downloads 116
10591 Evaluating the Effect of Splitting Wind Farms on Power Output

Authors: Nazanin Naderi, Milton Smith

Abstract:

Since worldwide demand for renewable energy is increasing rapidly because of the climate problem and the limitation of fossil fuels, technologies of alternative energy sources have been developed and the electric power network now includes renewable energy resources such as wind energy. Because of the huge advantages that wind energy has, like reduction in natural gas use, price pressure, emissions of greenhouse gases and other atmospheric pollutants, electric sector water consumption and many other contributions to the nation’s economy like job creation it has got too much attention these days from different parts of the world especially in the United States which is trying to provide 20% of the nation’s energy from wind by 2030. This study is trying to evaluate the effect of splitting wind farms on power output. We are trying to find if we can get more output by installing wind turbines in different sites rather than installing all wind turbines in one site. Five potential sites in Texas have been selected as a case study and two years wind data has been gathered for these sites. Wind data are analyzed and effect of correlation between sites on power output has been evaluated. Standard deviation and autocorrelation effect has also been considered for this study. The paper has been organized as follows: After the introduction the second section gives a brief overview of wind analysis. The third section addresses the case study and evaluates correlation between sites, auto correlation of sites and standard deviation of power output. In section four we describe the results.

Keywords: auto correlation, correlation between sites, splitting wind farms, power output, standard deviation

Procedia PDF Downloads 583
10590 Thermal Effect in Power Electrical for HEMTs Devices with InAlN/GaN

Authors: Zakarya Kourdi, Mohammed Khaouani, Benyounes Bouazza, Ahlam Guen-Bouazza, Amine Boursali

Abstract:

In this paper, we have evaluated the thermal effect for high electron mobility transistors (HEMTs) heterostructure InAlN/GaN with a gate length 30nm high-performance. It also shows the analysis and simulated these devices, and how can be used in different application. The simulator Tcad-Silvaco software has used for predictive results good for the DC, AC and RF characteristic, Devices offered max drain current 0.67A; transconductance is 720 mS/mm the unilateral power gain of 180 dB. A cutoff frequency of 385 GHz, and max frequency 810 GHz These results confirm the feasibility of using HEMTs with InAlN/GaN in high power amplifiers, as well as thermal places.

Keywords: HEMT, Thermal Effect, Silvaco, InAlN/GaN

Procedia PDF Downloads 463
10589 Regional Pole Placement by Saturated Power System Stabilizers

Authors: Hisham M. Soliman, Hassan Yousef

Abstract:

This manuscript presents new results on design saturated power system stabilizers (PSS) to assign system poles within a desired region for achieving good dynamic performance. The regional pole placement is accomplished against model uncertainties caused by different load conditions. The design is based on a sufficient condition in the form of linear matrix inequalities (LMI) which forces the saturated nonlinear controller to lie within the linear zone. The controller effectiveness is demonstrated on a single machine infinite bus system.

Keywords: power system stabilizer, saturated control, robust control, regional pole placement, linear matrix inequality (LMI)

Procedia PDF Downloads 559
10588 Morphometric Relationships of Length-Weight and Length-Length of Oreochromis aureus in Relation to Body Size and Condition Factor from Pakistan

Authors: Muhammad Naeem, Abdus Salam, Sumera Yasmin, Abir Ishtiaq

Abstract:

In the present study, eighty-three wild Oreochromis aureus of different body size ranging 5.3-14.6 cm in total length were collected from the River Chenab, District Muzzafer Garh, Pakistan to investigate the parameters of length –weight, length-length relationships and condition factor in relation to size. Each fish was measured and weighed on arrival at laboratory. Log transformed regressions were used to test the allometric growth. Length-weight relationship was found highly significant (r = 0.964; P < 0.01). The values of exponent “ b” in Length–weight regression (W=aL^b), deviated from 3, showing isometric growth (b = 2.75). Results for LLRs indicated that these are highly correlated (P < 0.001). Condition factor (K) found constant with increasing body weight, however, showed negative influence with increasing total length.

Keywords: lenght-weight, Oreochromis aureus, morphometric study

Procedia PDF Downloads 431
10587 A Study on an Evacuation Test to Measure Delay Time in Using an Evacuation Elevator

Authors: Kyungsuk Cho, Seungun Chae, Jihun Choi

Abstract:

Elevators are examined as one of evacuation methods in super-tall buildings. However, data on the use of elevators for evacuation at a fire are extremely scarce. Therefore, a test to measure delay time in using an evacuation elevator was conducted. In the test, time taken to get on and get off an elevator was measured and the case in which people gave up boarding when the capacity of the elevator was exceeded was also taken into consideration. 170 men and women participated in the test, 130 of whom were young people (20 ~ 50 years old) and 40 were senior citizens (over 60 years old). The capacity of the elevator was 25 people and it travelled between the 2nd and 4th floors. A video recording device was used to analyze the test. An elevator at an ordinary building, not a super-tall building, was used in the test to measure delay time in getting on and getting off an elevator. In order to minimize interference from other elements, elevator platforms on the 2nd and 4th floors were partitioned off. The elevator travelled between the 2nd and 4th floors where people got on and off. If less than 20 people got on the elevator which was empty, the data were excluded. If the elevator carrying 10 passengers stopped and less than 10 new passengers got on the elevator, the data were excluded. Getting-on an empty elevator was observed 49 times. The average number of passengers was 23.7, it took 14.98 seconds for the passengers to get on the empty elevator and the load factor was 1.67 N/s. It took the passengers, whose average number was 23.7, 10.84 seconds to get off the elevator and the unload factor was 2.33 N/s. When an elevator’s capacity is exceeded, the excessive number of people should get off. Time taken for it and the probability of the case were measure in the test. 37% of the times of boarding experienced excessive number of people. As the number of people who gave up boarding increased, the load factor of the ride decreased. When 1 person gave up boarding, the load factor was 1.55 N/s. The case was observed 10 times, which was 12.7% of the total. When 2 people gave up boarding, the load factor was 1.15 N/s. The case was observed 7 times, which was 8.9% of the total. When 3 people gave up boarding, the load factor was 1.26 N/s. The case was observed 4 times, which was 5.1% of the total. When 4 people gave up boarding, the load factor was 1.03 N/s. The case was observed 5 times, which was 6.3% of the total. Getting-on and getting-off time data for people who can walk freely were obtained from the test. In addition, quantitative results were obtained from the relation between the number of people giving up boarding and time taken for getting on. This work was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIP) (No. CRC-16-02-KICT).

Keywords: evacuation elevator, super tall buildings, evacuees, delay time

Procedia PDF Downloads 173
10586 Harmonic Distortion Analysis in Low Voltage Grid with Grid-Connected Photovoltaic

Authors: Hedi Dghim, Ahmed El-Naggar, Istvan Erlich

Abstract:

Power electronic converters are being introduced in low voltage (LV) grids at an increasingly rapid rate due to the growing adoption of power electronic-based home appliances in residential grid. Photovoltaic (PV) systems are considered one of the potential installed renewable energy sources in distribution power systems. This trend has led to high distortion in the supply voltage which consequently produces harmonic currents in the network and causes an inherent voltage unbalance. In order to investigate the effect of harmonic distortions, a case study of a typical LV grid configuration with high penetration of 3-phase and 1-phase rooftop mounted PV from southern Germany was first considered. Electromagnetic transient (EMT) simulations were then carried out under the MATLAB/Simulink environment which contain detailed models for power electronic-based loads, ohmic-based loads as well as 1- and 3-phase PV. Note that, the switching patterns of the power electronic circuits were considered in this study. Measurements were eventually performed to analyze the distortion levels when PV operating under different solar irradiance. The characteristics of the load-side harmonic impedances were analyzed, and their harmonic contributions were evaluated for different distortion levels. The effect of the high penetration of PV on the harmonic distortion of both positive and negative sequences was also investigated. The simulation results are presented based on case studies. The current distortion levels are in agreement with relevant standards, otherwise the Total Harmonic Distortion (THD) increases under low PV power generation due to its inverse relation with the fundamental current.

Keywords: harmonic distortion analysis, power quality, PV systems, residential distribution system

Procedia PDF Downloads 258
10585 Design and Control of a Knee Rehabilitation Device Using an MR-Fluid Brake

Authors: Mina Beheshti, Vida Shams, Mojtaba Esfandiari, Farzaneh Abdollahi, Abdolreza Ohadi

Abstract:

Most of the people who survive a stroke need rehabilitation tools to regain their mobility. The core function of these devices is a brake actuator. The goal of this study is to design and control a magnetorheological brake which can be used as a rehabilitation tool. In fact, the fluid used in this brake is called magnetorheological fluid or MR that properties can change by variation of the magnetic field. The braking properties can be set as control by using this feature of the fluid. In this research, different MR brake designs are first introduced in each design, and the dimensions of the brake have been determined based on the required torque for foot movement. To calculate the brake dimensions, it is assumed that the shear stress distribution in the fluid is uniform and the fluid is in its saturated state. After designing the rehabilitation brake, the mathematical model of the healthy movement of a healthy person is extracted. Due to the nonlinear nature of the system and its variability, various adaptive controllers, neural networks, and robust have been implemented to estimate the parameters and control the system. After calculating torque and control current, the best type of controller in terms of error and control current has been selected. Finally, this controller is implemented on the experimental data of the patient's movements, and the control current is calculated to achieve the desired torque and motion.

Keywords: rehabilitation, magnetorheological fluid, knee, brake, adaptive control, robust control, neural network control, torque control

Procedia PDF Downloads 143
10584 Grandiose Narcissists’ Adaptive Trade-Offs: Mating, Parental, and Somatic Investment

Authors: Jasmine H. Gagnon

Abstract:

The present study examined how grandiose narcissists make adaptive trade-offs between mating investment, parenting investment, and somatic investment relative to individuals without narcissistic personalities. A sample of 509 males and females between the ages of 24 and 35 years old (49.31% female) completed a personality inventory assessing Honesty-Humility, Emotionality, Extraversion, Agreeableness, Conscientiousness, and Openness to Experience. In a Latent Profile Analysis (LPA), personality inventory scores were used to classify participants into latent groups. The model of best fit identified one grandiose narcissist group and three groups with non-narcissistic personalities. Covariate analyses revealed that individuals with narcissistic traits made significantly more significant somatic investments in comparison to two of the three non-narcissistic latent groups. No other significant differences between the narcissistic and non-pathological groups were found. Thus, grandiose narcissists trade off parenting and mating investments to make more significant somatic investments. That is, they expend a larger portion of their energetic resources on maintaining their physical health and careers and similar quantities of energetic resources on maintaining relationships with their offspring and potential romantic partners as individuals without narcissistic personalities.

Keywords: narcissism, grandiose narcissism, HEXACO, trade-offs, mating, parenting, somatic, dark triad

Procedia PDF Downloads 77
10583 Altered Lower Extremity Biomechanical Risk Factor Related to Anterior Cruciate Ligament Injury in Athlete with Functional Ankle Instability

Authors: Mohammad Karimizadehardakani, Hooman Minoonejad, Reza Rajabi, Ali Sharifnejad

Abstract:

Background: Ankle sprain is one of the most important risk factor of anterior cruciate ligament (ACL) injury. Also, functional ankle instability (FAI) population has alterations in lower extremity sagittal plane biomechanics during landing task. We want to examine whether biomechanical alterations demonstrated by FAI patients are associated with the mechanism of ACL injury during high risk and sport related tasks. Methods: Sixteen basketball player with FAI and 16 non-injured control performed a single-leg cross drop landing. Knee sagittal and frontal (ATSF) was calculated. Independent t-tests, multiple linear regression, and Pearson correlation were used for analysis data. Result: Subject with FAI showed more peak ATFS, posterior ground reaction force (GRF) and less knee flexion, compared to the controls (P= 0.001, P= 0.004, P= 0.011). Knee flexion (r= −0.824, P = 0.011) and posterior GRF (r= 0.901, P = .001) were correlated with ATSF; Posterior GRF was factor that most explained the variance in ATSF (R2= 0.645; P = .001) in the FAI group. Conclusions: Result of our study showed there is a potential biomechanical relationship between the presence of FAI and risk factors associated with ACL injury mechanism.

Keywords: functional ankle instability, anterior cruciate ligament, biomechanics, risk factor

Procedia PDF Downloads 218
10582 Designing a Low Power Consumption Mote in Wireless Sensor Network

Authors: Saidi Nabiha, Khaled Zaatouri, Walid Fajraoui, Tahar Ezzeddine

Abstract:

The market of Wireless Sensor Network WSN has a great potential and development opportunities. Researchers are focusing on optimization in many fields like efficient deployment and routing protocols. In this article, we will concentrate on energy efficiency for WSN because WSN nodes are habitually deployed in severe No Man’s Land with batteries are not rechargeable, so reducing energy consumption represents an important challenge to extend the life of the network. We will present the design of new WSN mote based on ultra low power STM32L microcontrollers and the ZIGBEE transceiver CC2520. We will compare it to existent motes and we will conclude that our mote is promising in energy consumption.

Keywords: component, WSN mote, power consumption, STM32L, sensors, CC2520

Procedia PDF Downloads 571
10581 Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid

Authors: Cha’o-Kuang Chen, Ching-Chang Cho

Abstract:

This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.

Keywords: non-Newtonian fluid, power-law fluid, natural convection, heat transfer enhancement, cavity, wavy wall

Procedia PDF Downloads 257
10580 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126℃, the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: downhole heat exchangers, geothermal power generation, organic rankine cycle, refrigerants, working fluids

Procedia PDF Downloads 313
10579 Improvising Grid Interconnection Capabilities through Implementation of Power Electronics

Authors: Ashhar Ahmed Shaikh, Ayush Tandon

Abstract:

The swift reduction of fossil fuels from nature has crucial need for alternative energy sources to cater vital demand. It is essential to boost alternative energy sources to cover the continuously increasing demand for energy while minimizing the negative environmental impacts. Solar energy is one of the reliable sources that can generate energy. Solar energy is freely available in nature and is completely eco-friendly, and they are considered as the most promising power generating sources due to their easy availability and other advantages for the local power generation. This paper is to review the implementation of power electronic devices through Solar Energy Grid Integration System (SEGIS) to increase the efficiency. This paper will also concentrate on the future grid infrastructure and various other applications in order to make the grid smart. Development and implementation of a power electronic devices such as PV inverters and power controllers play an important role in power supply in the modern energy economy. Solar Energy Grid Integration System (SEGIS) opens pathways for promising solutions for new electronic and electrical components such as advanced innovative inverter/controller topologies and their functions, economical energy management systems, innovative energy storage systems with equipped advanced control algorithms, advanced maximum-power-point tracking (MPPT) suited for all PV technologies, protocols and the associated communications. In addition to advanced grid interconnection capabilities and features, the new hardware design results in small size, less maintenance, and higher reliability. The SEGIS systems will make the 'advanced integrated system' and 'smart grid' evolutionary processes to run in a better way. Since the last few years, there was a major development in the field of power electronics which led to more efficient systems and reduction of the cost per Kilo-watt. The inverters became more efficient and had reached efficiencies in excess of 98%, and commercial solar modules have reached almost 21% efficiency.

Keywords: solar energy grid integration systems, smart grid, advanced integrated system, power electronics

Procedia PDF Downloads 179
10578 Simulation Study of a Fault at the Switch on the Operation of the Doubly Fed Induction Generator Based on the Wind Turbine

Authors: N. Zerzouri, N. Benalia, N. Bensiali

Abstract:

This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB / Simulink software illustrate the quality of the power generated at the default.

Keywords: doubly fed induction generator (DFIG), wind power generation, back to back PWM converter, default switching

Procedia PDF Downloads 461
10577 Investigation of Enhanced Geothermal System with CO2 as Working Fluid

Authors: Ruina Xu, Peixue Jiang, Feng Luo

Abstract:

The novel concept of enhanced geothermal system with CO2 instead of water as working fluid (CO2-EGS) has attracted wide attention due to additional benefit of CO2 geological storage during the power generation process. In this research, numerical investigation on a doublet CO2-EGS system is performed, focusing on the influence of the injection/production well perforation location in the targeted geothermal reservoir. Three different reservoir inlet and outlet boundary conditions are used in simulations since the well constrains are different in reality. The results show that CO2-EGS system performance of power generation and power cost vary greatly among cases of different wells perforation locations, and the optimum options under different boundary conditions are also different.

Keywords: Enhanced Geothermal System, supercritical CO2, heat transfer, CO2-EGS

Procedia PDF Downloads 284