Search results for: analytical approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14898

Search results for: analytical approach

14898 Applications of Analytical Probabilistic Approach in Urban Stormwater Modeling in New Zealand

Authors: Asaad Y. Shamseldin

Abstract:

Analytical probabilistic approach is an innovative approach for urban stormwater modeling. It can provide information about the long-term performance of a stormwater management facility without being computationally very demanding. This paper explores the application of the analytical probabilistic approach in New Zealand. The paper presents the results of a case study aimed at development of an objective way of identifying what constitutes a rainfall storm event and the estimation of the corresponding statistical properties of storms using two selected automatic rainfall stations located in the Auckland region in New Zealand. The storm identification and the estimation of the storm statistical properties are regarded as the first step in the development of the analytical probabilistic models. The paper provides a recommendation about the definition of the storm inter-event time to be used in conjunction with the analytical probabilistic approach.

Keywords: hydrology, rainfall storm, storm inter-event time, New Zealand, stormwater management

Procedia PDF Downloads 301
14897 An Analytical Approach to Calculate Thermo-Mechanical Stresses in Integral Abutment Bridge Piles

Authors: Jafar Razmi

Abstract:

Integral abutment bridges are bridges that do not have joints. If these bridges are subject to large seasonal and daily temperature variations, the expansion and contraction of the bridge slab is transferred to the piles. Since the piles are deep into the soil, displacement induced by slab can cause bending and stresses in piles. These stresses cause fatigue and failure of piles. A complex mechanical interaction exists between the slab, pile, soil and abutment. This complex interaction needs to be understood in order to calculate the stresses in piles. This paper uses a mechanical approach in developing analytical equations for the complex structure to determine the stresses in piles. The solution to these analytical solutions is developed and compared with finite element analysis results and experimental data. Our comparison shows that using analytical approach can accurately predict the displacement in piles. This approach offers a simplified technique that can be utilized without the need for computationally extensive finite element model.

Keywords: integral abutment bridges, piles, thermo-mechanical stress, stress and strains

Procedia PDF Downloads 210
14896 Current of Drain for Various Values of Mobility in the Gaas Mesfet

Authors: S. Belhour, A. K. Ferouani, C. Azizi

Abstract:

In recent years, a considerable effort (experience, numerical simulation, and theoretical prediction models) has characterised by high efficiency and low cost. Then an improved physics analytical model for simulating is proposed. The performance of GaAs MESFETs has been developed for use in device design for high frequency. This model is based on mathematical analysis, and a new approach for the standard model is proposed, this approach allowed to conceive applicable model for MESFET’s operating in the turn-one or pinch-off region and valid for the short-channel and the long channel MESFET’s in which the two dimensional potential distribution contributed by the depletion layer under the gate is obtained by conventional approximation. More ever, comparisons between the analytical models with different values of mobility are proposed, and a good agreement is obtained.

Keywords: analytical, gallium arsenide, MESFET, mobility, models

Procedia PDF Downloads 48
14895 A Green Analytical Curriculum for Renewable STEM Education

Authors: Mian Jiang, Zhenyi Wu

Abstract:

We have incorporated green components into existing analytical chemistry curriculum with the aims to present a more environment benign approach in both teaching laboratory and undergraduate research. These include the use of cheap, sustainable, and market-available material; minimized waste disposal, replacement of non-aqueous media; and scale-down in sample/reagent consumption. Model incorporations have covered topics in quantitative chemistry as well as instrumental analysis, lower division as well as upper level, and research in traditional titration, spectroscopy, electrochemical analysis, and chromatography. The green embedding has made chemistry more daily life relevance, and application focus. Our approach has the potential to expand into all STEM fields to make renewable, high-impact education experience for undergraduate students.

Keywords: green analytical chemistry, pencil lead, mercury, renewable

Procedia PDF Downloads 292
14894 Numerical and Analytical Approach for Film Condensation on Different Forms of Surfaces

Authors: A. Kazemi Jouybari, A. Mirabdolah Lavasani

Abstract:

This paper seeks to the solution of condensation around of a flat plate, circular and elliptical tube in way of numerical and analytical methods. Also, it calculates the entropy production rates. The first, problem was solved by using mesh dynamic and rational assumptions, next it was compared with the numerical solution that the result had acceptable errors. An additional supporting relation was applied based on a characteristic of condensation phenomenon for condensing elements. As it has been shown here, due to higher rates of heat transfer for elliptical tubes, they have more entropy production rates, in comparison to circular ones. Findings showed that two methods were efficient. Furthermore, analytical methods can be used to optimize the problem and reduce the entropy production rate.

Keywords: condensation, numerical solution, analytical solution, entropy rate

Procedia PDF Downloads 180
14893 Analytical Approach to Study the Uncertainties Related to the Behavior of Structures Submitted to Differential Settlement

Authors: Elio El Kahi, Michel Khouri, Olivier Deck, Pierre Rahme, Rasool Mehdizadeh

Abstract:

Recent developments in civil engineering create multiple interaction problems between the soil and the structure. One of the major problems is the impact of ground movements on buildings. Consequently, managing risks associated with these movements, requires a determination of the different influencing factors and a specific knowledge of their variability/uncertainty. The main purpose of this research is to study the behavior of structures submitted to differential settlement, in order to assess their vulnerability, taking into consideration the different sources of uncertainties. Analytical approach is applied to investigate on one hand the influence of these uncertainties that are related to the soil, and on the other hand the structure stiffness variation with the presence of openings and the movement transmitted between them as related to the origin and shape of the free-field movement. Results reveal the effect of taking these uncertainties into consideration, and specify the dominant and most significant parameters that control the ground movement associated with the Soil-Structure Interaction (SSI) phenomenon.

Keywords: analytical approach, building, damage, differential settlement, soil-structure interaction, uncertainties

Procedia PDF Downloads 199
14892 Analytical Formulae for the Approach Velocity Head Coefficient

Authors: Abdulrahman Abdulrahman

Abstract:

Critical depth meters, such as abroad crested weir, Venture Flume and combined control flume are standard devices for measuring flow in open channels. The discharge relation for these devices cannot be solved directly, but it needs iteration process to account for the approach velocity head. In this paper, analytical solution was developed to calculate the discharge in a combined critical depth-meter namely, a hump combined with lateral contraction in rectangular channel with subcritical approach flow including energy losses. Also analytical formulae were derived for approach velocity head coefficient for different types of critical depth meters. The solution was derived by solving a standard cubic equation considering energy loss on the base of trigonometric identity. The advantage of this technique is to avoid iteration process adopted in measuring flow by these devices. Numerical examples are chosen for demonstration of the proposed solution.

Keywords: broad crested weir, combined control meter, control structures, critical flow, discharge measurement, flow control, hydraulic engineering, hydraulic structures, open channel flow

Procedia PDF Downloads 244
14891 An Enhanced Approach in Validating Analytical Methods Using Tolerance-Based Design of Experiments (DoE)

Authors: Gule Teri

Abstract:

The effective validation of analytical methods forms a crucial component of pharmaceutical manufacturing. However, traditional validation techniques can occasionally fail to fully account for inherent variations within datasets, which may result in inconsistent outcomes. This deficiency in validation accuracy is particularly noticeable when quantifying low concentrations of active pharmaceutical ingredients (APIs), excipients, or impurities, introducing a risk to the reliability of the results and, subsequently, the safety and effectiveness of the pharmaceutical products. In response to this challenge, we introduce an enhanced, tolerance-based Design of Experiments (DoE) approach for the validation of analytical methods. This approach distinctly measures variability with reference to tolerance or design margins, enhancing the precision and trustworthiness of the results. This method provides a systematic, statistically grounded validation technique that improves the truthfulness of results. It offers an essential tool for industry professionals aiming to guarantee the accuracy of their measurements, particularly for low-concentration components. By incorporating this innovative method, pharmaceutical manufacturers can substantially advance their validation processes, subsequently improving the overall quality and safety of their products. This paper delves deeper into the development, application, and advantages of this tolerance-based DoE approach and demonstrates its effectiveness using High-Performance Liquid Chromatography (HPLC) data for verification. This paper also discusses the potential implications and future applications of this method in enhancing pharmaceutical manufacturing practices and outcomes.

Keywords: tolerance-based design, design of experiments, analytical method validation, quality control, biopharmaceutical manufacturing

Procedia PDF Downloads 39
14890 Groundwater Seepage Estimation into Amirkabir Tunnel Using Analytical Methods and DEM and SGR Method

Authors: Hadi Farhadian, Homayoon Katibeh

Abstract:

In this paper, groundwater seepage into Amirkabir tunnel has been estimated using analytical and numerical methods for 14 different sections of the tunnel. Site Groundwater Rating (SGR) method also has been performed for qualitative and quantitative classification of the tunnel sections. The obtained results of above-mentioned methods were compared together. The study shows reasonable accordance with results of the all methods unless for two sections of tunnel. In these two sections there are some significant discrepancies between numerical and analytical results mainly originated from model geometry and high overburden. SGR and the analytical and numerical calculations, confirm the high concentration of seepage inflow in fault zones. Maximum seepage flow into tunnel has been estimated 0.425 lit/sec/m using analytical method and 0.628 lit/sec/m using numerical method occurred in crashed zone. Based on SGR method, six sections of 14 sections in Amirkabir tunnel axis are found to be in "No Risk" class that is supported by the analytical and numerical seepage value of less than 0.04 lit/sec/m.

Keywords: water Seepage, Amirkabir Tunnel, analytical method, DEM, SGR

Procedia PDF Downloads 443
14889 Convective Brinkman-Forchiemer Extended Flow through Channel Filled with Porous Material: An Approximate Analytical Approach

Authors: Basant K. Jha, M. L. Kaurangini

Abstract:

An approximate analytical solution is presented for convective flow in a horizontal channel filled with porous material. The Brinkman-Forchheimer extension of Darcy equation is utilized to model the fluid flow while the energy equation is utilized to model temperature distribution in the channel. The solutions were obtained utilizing the newly suggested technique and compared with those obtained from an implicit finite-difference solution.

Keywords: approximate analytical, convective flow, porous material, Brinkman-Forchiemer

Procedia PDF Downloads 349
14888 Analytical Response Characterization of High Mobility Transistor Channels

Authors: F. Z. Mahi, H. Marinchio, C. Palermo, L. Varani

Abstract:

We propose an analytical approach for the admittance response calculation of the high mobility InGaAs channel transistors. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The total currents and the potentials matrix relation between the gate and the drain terminals determine the frequency-dependent small-signal admittance response. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand, to control the appearance of plasma resonances, and on the other hand, can give significant information about the admittance phase frequency dependence.

Keywords: small-signal admittance, Poisson equation, currents and potentials matrix, the drain and the gate terminals, analytical model

Procedia PDF Downloads 513
14887 An Integrated Mathematical Approach to Measure the Capacity of MMTS

Authors: Bayan Bevrani, Robert L. Burdett, Prasad K. D. V. Yarlagadda

Abstract:

This article focuses upon multi-modal transportation systems (MMTS) and the issues surrounding the determination of system capacity. For that purpose a multi-objective framework is advocated that integrates all the different modes and many different competing capacity objectives. This framework is analytical in nature and facilitates a variety of capacity querying and capacity expansion planning.

Keywords: analytical model, capacity analysis, capacity query, multi-modal transportation system (MMTS)

Procedia PDF Downloads 326
14886 Intelligent Chemistry Approach to Improvement of Oxygenates Analytical Method in Light Hydrocarbon by Multidimensional Gas Chromatography - FID and MS

Authors: Ahmed Aboforn

Abstract:

Butene-1 product is consider effectively raw material in Polyethylene production, however Oxygenates impurities existing will be effected ethylene/butene-1 copolymers synthesized through titanium-magnesium-supported Ziegler-Natta catalysts. Laterally, Petrochemical industries are challenge against poor quality of Butene-1 and other C4 mix – feedstock that reflected on business impact and production losing. In addition, propylene product suffering from contamination by oxygenates components and causing for lose production and plant upset of Polypropylene process plants. However, Multidimensional gas chromatography (MDGC) innovative analytical methodology is a chromatography technique used to separate complex samples, as mixing different functional group as Hydrocarbon and oxygenates compounds and have similar retention factors, by running the eluent through two or more columns instead of the customary single column. This analytical study striving to enhance the quality of Oxygenates analytical method, as monitoring the concentration of oxygenates with accurate and precise analytical method by utilizing multidimensional GC supported by Backflush technique and Flame Ionization Detector, which have high performance separation of hydrocarbon and Oxygenates; also improving the minimum detection limits (MDL) to detect the concentration <1.0 ppm. However different types of oxygenates as (Alcohols, Aldehyde, Ketones, Ester and Ether) may be determined in other Hydrocarbon streams asC3, C4-mix, until C12 mixture, supported by liquid injection auto-sampler.

Keywords: analytical chemistry, gas chromatography, petrochemicals, oxygenates

Procedia PDF Downloads 41
14885 Analytical Solution for Stellar Distance Based on Photon Dominated Cosmic Expansion Model

Authors: Xiaoyun Li, Suoang Longzhou

Abstract:

This paper derives the analytical solution of stellar distance according to its redshift based on the photon-dominated universe expansion model. Firstly, it calculates stellar separation speed and the farthest distance of observable stars via simulation. Then the analytical solution of stellar distance according to its redshift is derived. It shows that when the redshift is large, the stellar distance (and its separation speed) is not proportional to its redshift due to the relativity effect. It also reveals the relationship between stellar age and its redshift. The correctness of the analytical solution is verified by the latest astronomic observations of Ia supernovas in 2020.

Keywords: redshift, cosmic expansion model, analytical solution, stellar distance

Procedia PDF Downloads 130
14884 An Analytical Wall Function for 2-D Shock Wave/Turbulent Boundary Layer Interactions

Authors: X. Wang, T. J. Craft, H. Iacovides

Abstract:

When handling the near-wall regions of turbulent flows, it is necessary to account for the viscous effects which are important over the thin near-wall layers. Low-Reynolds- number turbulence models do this by including explicit viscous and also damping terms which become active in the near-wall regions, and using very fine near-wall grids to properly resolve the steep gradients present. In order to overcome the cost associated with the low-Re turbulence models, a more advanced wall function approach has been implemented within OpenFoam and tested together with a standard log-law based wall function in the prediction of flows which involve 2-D shock wave/turbulent boundary layer interactions (SWTBLIs). On the whole, from the calculation of the impinging shock interaction, the three turbulence modelling strategies, the Lauder-Sharma k-ε model with Yap correction (LS), the high-Re k-ε model with standard wall function (SWF) and analytical wall function (AWF), display good predictions of wall-pressure. However, the SWF approach tends to underestimate the tendency of the flow to separate as a result of the SWTBLI. The analytical wall function, on the other hand, is able to reproduce the shock-induced flow separation and returns predictions similar to those of the low-Re model, using a much coarser mesh.

Keywords: SWTBLIs, skin-friction, turbulence modeling, wall function

Procedia PDF Downloads 309
14883 Uneven Habitat Characterisation by Using Geo-Gebra Software in the Lacewings (Insecta: Neuroptera), Knowing When to Calculate the Habitat: Creating More Informative Ecological Experiments

Authors: Hakan Bozdoğan

Abstract:

A wide variety of traditional methodologies has been enhanced for characterising smooth habitats in order to find out different environmental objectives. The habitats were characterised based on size and shape by using Geo-Gebra Software. In this study, an innovative approach to researching habitat characterisation in the lacewing species, GeoGebra software is utilised. This approach is demonstrated using the example of ‘surface area’ as an analytical concept, wherein the goal was to increase clearness for researchers, and to improve the quality of researching in survey area. In conclusion, habitat characterisation using the mathematical programme provides a unique potential to collect more comprehensible and analytical information about in shapeless areas beyond the range of direct observations methods. This research contributes a new perspective for assessing the structure of habitat, providing a novel mathematical tool for the research and management of such habitats and environments. Further surveys should be undertaken at additional sites within the Amanos Mountains for a comprehensive assessment of lacewings habitat characterisation in an analytical plane. This paper is supported by Ahi Evran University Scientific Research Projects Coordination Unit, Projects No:TBY.E2.17.001 and TBY.A4.16.001.

Keywords: uneven habitat shape, habitat assessment, lacewings, Geo-Gebra Software

Procedia PDF Downloads 250
14882 An Improved Tie Force Method for Progressive Collapse Resistance Design of Precast Concrete Cross Wall Structures

Authors: M. Tohidi, J. Yang, C. Baniotopoulos

Abstract:

Progressive collapse of buildings typically occurs when abnormal loading conditions cause local damages, which leads to a chain reaction of failure and ultimately catastrophic collapse. The tie force (TF) method is one of the main design approaches for progressive collapse. As the TF method is a simplified method, further investigations on the reliability of the method is necessary. This study aims to develop an improved TF method to design the cross wall structures for progressive collapse. To this end, the pullout behavior of strands in grout was firstly analyzed; and then, by considering the tie force-slip relationship in the friction stage together with the catenary action mechanism, a comprehensive analytical method was developed. The reliability of this approach is verified by the experimental results of concrete block pullout tests and full scale floor-to-floor joints tests undertaken by Portland Cement Association (PCA). Discrepancies in the tie force between the analytical results and codified specifications have suggested the deficiency of TF method, hence an improved model based on the analytical results has been proposed to address this concern.

Keywords: cross wall, progressive collapse, ties force method, catenary, analytical

Procedia PDF Downloads 433
14881 Use of the SWEAT Analysis Approach to Determine the Effectiveness of a School's Implementation of Its Curriculum

Authors: Prakash Singh

Abstract:

The focus of this study is on the use of the SWEAT analysis approach to determine how effectively a school, as an organization, has implemented its curriculum. To gauge the feelings of the teaching staff, unstructured interviews were employed in this study, asking the participants for their ideas and opinions on each of the three identified aspects of the school: instructional materials, media and technology; teachers’ professional competencies; and the curriculum. This investigation was based on the five key components of the SWEAT model: strengths, weaknesses, expectations, abilities, and tensions. The findings of this exploratory study evoke the significance of the SWEAT achievement model as a tool for strategic analysis to be undertaken in any organization. The findings further affirm the usefulness of this analytical tool for human resource development. Employees have expectations, but competency gaps in their professional abilities may hinder them from fulfilling their tasks in terms of their job description. Also, tensions in the working environment can contribute to their experiences of tobephobia (fear of failure). The SWEAT analysis approach detects such shortcomings in any organization and can therefore culminate in the development of programmes to address such concerns. The strategic SWEAT analysis process can provide a clear distinction between success and failure, and between mediocrity and excellence in organizations. However, more research needs to be done on the effectiveness of the SWEAT analysis approach as a strategic analytical tool.

Keywords: SWEAT analysis, strategic analysis, tobephobia, competency gaps

Procedia PDF Downloads 470
14880 A Numerical Study on the Connection of an SC Wall to an RC Foundation

Authors: Siamak Epackachi, Andrew S. Whittaker, Amit H. Varma

Abstract:

There are a large number of methods to connect SC walls to RC foundations. An experimental study of the cyclic nonlinear behavior of SC walls in the NEES laboratory at the University at Buffalo used a connection detail involving the post-tensioning of a steel baseplate to the SC wall to a RC foundation. This type of connection introduces flexibility that influenced substantially the global response of the SC walls. The assumption of a rigid base, which would be commonly made by practitioners, would lead to a substantial overestimation of initial stiffness. This paper presents an analytical approach to characterize the rotational flexibility and to predict the initial stiffness of flexure-critical SC wall piers with baseplate connection. The good agreement between the analytical and test results confirmed the utility of the proposed method for calculating the initial stiffness of an SC wall with baseplate connection.

Keywords: steel-plate composite shear wall, flexure-critical wall, cyclic loading, analytical model

Procedia PDF Downloads 310
14879 Analytical Similarity Assessment of Bevacizumab Biosimilar Candidate MB02 Using Multiple State-of-the-Art Assays

Authors: Marie-Elise Beydon, Daniel Sacristan, Isabel Ruppen

Abstract:

MB02 (Alymsys®) is a candidate biosimilar to bevacizumab, which was developed against the reference product (RP) Avastin® sourced from both the European Union (EU) and United States (US). MB02 has been extensively characterized comparatively to Avastin® at a physicochemical and biological level using sensitive orthogonal state-of-the-art analytical methods. MB02 has been demonstrated similar to the RP with regard to its primary and higher-order structure, post- and co-translational profiles such as glycosylation, charge, and size variants. Specific focus has been put on the characterization of Fab-related activities, such as binding to VEGF A 165, which directly reflect the bevacizumab mechanism of action. Fc-related functionality was also investigated, including binding to FcRn, which is indicative of antibodies' half-life. The data generated during the analytical similarity assessment demonstrate the high analytical similarity of MB02 to its RP.

Keywords: analytical similarity, bevacizumab, biosimilar, MB02

Procedia PDF Downloads 238
14878 Exploring Probabilistic Models for Transient Stability Analysis of Renewable-Dominant Power Grid

Authors: Phuong Nguyen

Abstract:

Along with the ongoing energy transition, the electrical power system is getting more vulnerable with the increasing penetration of renewable energy sources (RES). By replacing a large amount of fossil fuel-based power plants with RES, the rotating mass of the power grid is decreasing drastically, which has been reported by a number of system operators. This leads to a huge challenge for operators to secure the operation of their grids in all-time horizon ranges, from sub-seconds to minutes and even hours. There is a need to revise the grid capabilities in dealing with transient (angle) stability and voltage dynamics. While the traditional approaches relied on deterministic scenarios (worst-case scenarios), there is also a need to cover a whole range of probabilities regarding a wide range of uncertainties coming from massive RES units. To contribute to handle these issues, this paper aims to focus on developing a new analytical approach for transient stability.

Keywords: transient stability, uncertainties, renewable energy sources, analytical approach

Procedia PDF Downloads 40
14877 A Modified Decoupled Semi-Analytical Approach Based On SBFEM for Solving 2D Elastodynamic Problems

Authors: M. Fakharian, M. I. Khodakarami

Abstract:

In this paper, a new trend for improvement in semi-analytical method based on scale boundaries in order to solve the 2D elastodynamic problems is provided. In this regard, only the boundaries of the problem domain discretization are by specific sub-parametric elements. Mapping functions are uses as a class of higher-order Lagrange polynomials, special shape functions, Gauss-Lobatto -Legendre numerical integration, and the integral form of the weighted residual method, the matrix is diagonal coefficients in the equations of elastodynamic issues. Differences between study conducted and prior research in this paper is in geometry production procedure of the interpolation function and integration of the different is selected. Validity and accuracy of the present method are fully demonstrated through two benchmark problems which are successfully modeled using a few numbers of DOFs. The numerical results agree very well with the analytical solutions and the results from other numerical methods.

Keywords: 2D elastodynamic problems, lagrange polynomials, G-L-Lquadrature, decoupled SBFEM

Procedia PDF Downloads 404
14876 Terrorism: Definition, History and Different Approaches in the Analysis of Terrorism Phenomenon

Authors: Shabnam Dadparvar, Laijin Shen, Farzad Ravanbod

Abstract:

Nowadays, the political phenomenon of terrorism is considered as an effective factor on political, social, and economic changes. It has replaced the recognized political phenomena such as revolutions, wars (total war among two or more political units with distinct identities in the form of national states), coups d’état, insurgencies and etc. and has challenged political life in all its levels (sub national, national, and international political groups). In this paper by using descriptive-analytical method, the authors try to explain the spread of this political phenomenon across the world, its definition and types, also analyze different approaches to understand it. The authors believe that the Logical-Rational approach is the best way to explain and understand this phenomenon.

Keywords: logical approach, psychological- social approach, religious approach, terrorism

Procedia PDF Downloads 297
14875 Eco Scale: A Tool for Assessing the Greenness of Pharmaceuticals Analysis

Authors: Heba M. Mohamed

Abstract:

Owing to scientific and public concern about health and environment and seeking for a better quality of life; “Green”, “Environmentally” and “Eco” friendly practices have been presented and implemented in different research areas. Subsequently, researchers’ attention is drawn in the direction of greening the analytical methodologies and taking the Green Analytical Chemistry principles (GAC) into consideration. It is of high importance to appraise the environmental impact of each of the implemented green approaches. Compared to the other traditional green metrics (E-factor, Atom economy and the process profile), the eco scale is the optimum choice to assess the environmental impact of the analytical procedures used for pharmaceuticals analysis. For analytical methodologies, Eco-Scale is calculated by allotting penalty points to any factor of the used analytical procedure which disagree and not match with the model green analysis, where the perfect green analysis has its Eco-Scale value of 100. In this work, calculation and comparison of the Eco-Scale for some of the reported green analytical methods was done, to accentuate their greening potentials. Where the different scores can reveal how green the method is, compared to the ideal value. The study emphasizes that greenness measurement is not only about the waste quantity determination but also dictates a holistic scheme, considering all factors.

Keywords: eco scale, green analysis, environmentally friendly, pharmaceuticals analysis

Procedia PDF Downloads 396
14874 Current Situation and Need in Learning Management for Developing the Analytical Thinking of Teachers in Basic Education of Thailand

Authors: S. Art-in

Abstract:

This research was a survey research. The objective of this study was to study current situation and need in learning management for developing the analytical thinking of teachers in basic education of Thailand. The target group consisted of 400 teachers teaching in basic education level. They were selected by multi-stage random sampling. The instrument used in this study was the questionnaire asking current situation and need in learning management for developing the analytical thinking, 5 level rating scale. Data were analyzed by calculating the frequency, mean, standard deviation, percentage and content analysis. The research found that: 1) For current situation, the teachers provided learning management for developing analytical thinking, in overall, in “high” level. The issue with lowest level of practice: the teachers had competency in designing and establishing the learning management plan for developing the students’ analytical thinking. Considering each aspect it was found that: 1.1) the teacher aspect; the issue with lowest level of practice was: the teachers had competency in designing and establishing the learning management plan for developing the students’ analytical thinking, and 1.2) the learning management aspect for developing the students’ analytical thinking, the issue with lowest level of practice was: the learning activities provided opportunity for students to evaluate their analytical thinking process in each learning session. 2) The teachers showed their need in learning management for developing the analytical thinking, in overall, in “the highest” level. The issue with highest level of the need was: to obtain knowledge and competency in model, technique, and method for learning management or steps of learning management for developing the students’ analytical thinking. Considering each aspect it was found that: 2.1) teacher aspect; the issue with highest level of the need was: to obtain knowledge and comprehension in model, technique, and method for learning management or steps of learning management for developing the students’ analytical thinking, and 2.2) learning management aspect for developing the analytical thinking, the issue with highest level of need consisted of the determination of learning activities as problem situation, and the opportunity for students to comprehend the problem situation as well as practice their analytical thinking in order to find the answer.

Keywords: current situation and need, learning management, analytical thinking, teachers in basic education level, Thailand

Procedia PDF Downloads 319
14873 Analytical Solution for End Depth Ratio in Rectangular Channels

Authors: Abdulrahman Abdulrahman, Abir Abdulrahman

Abstract:

Free over-fall is an instrument for measuring discharge in open channels by measuring end depth. A comprehensive researchers investigated theoretically and experimentally brink phenomenon with various approaches for different cross-sectional shapes. Anderson's method, based on Boussinq's approximation and energy approach was used to derive a pressure distribution factor at end depth. Applying the one-dimensional momentum equation and the principles of limit slope analysis, a relevant analytical solution may be derived for brink depth ratio (EDR) in prismatic rectangular channel. Also relationships between end depth ratio and slope ratio for a given non-dimensional normal or critical depth with upstream supercritical flow regime are presented. Simple indirect procedure is used to estimate the end depth discharge ratio (EDD) for subcritical and supercritical flow using measured end depth. The comparison of this analysis with all previous theoretical and experimental studies showed an excellent agreement.

Keywords: analytical solution, brink depth, end depth, flow measurement, free over fall, hydraulics, rectangular channel

Procedia PDF Downloads 146
14872 Criteria Analysis of Residential Location Preferences: An Urban Dwellers’ Perspective

Authors: Arati Siddharth Petkar, Joel E. M. Macwan

Abstract:

Preferences for residential location are of a diverse nature. Primarily they are based on the socio-economic, socio-cultural, socio-demographic characteristics of the household. It also depends on character, and the growth potential of different areas in a city. In the present study, various criteria affecting residential location preferences from the Urban Dwellers’ perspective have been analyzed. The household survey has been conducted in two parts: Existing Buyers’ survey and Future Buyers’ survey. The analysis reveals that workplace location is the most governing criterion in deciding residential location from the majority of the urban dwellers perspective. For analyzing the importance of varied criteria, Analytical Hierarchy Process approach has been explored. The suggested approach will be helpful for urban planners, decision makers and developers, while designating a new residential area or redeveloping an existing one.

Keywords: analytical hierarchy process (AHP), household, preferences, residential location preferences, residential land use, urban dwellers

Procedia PDF Downloads 172
14871 Derivation of Fragility Functions of Marine Drilling Risers Under Ocean Environment

Authors: Pranjal Srivastava, Piyali Sengupta

Abstract:

The performance of marine drilling risers is crucial in the offshore oil and gas industry to ensure safe drilling operation with minimum downtime. Experimental investigations on marine drilling risers are limited in the literature owing to the expensive and exhaustive test setup required to replicate the realistic riser model and ocean environment in the laboratory. Therefore, this study presents an analytical model of marine drilling riser for determining its fragility under ocean environmental loading. In this study, the marine drilling riser is idealized as a continuous beam having a concentric circular cross-section. Hydrodynamic loading acting on the marine drilling riser is determined by Morison’s equations. By considering the equilibrium of forces on the marine drilling riser for the connected and normal drilling conditions, the governing partial differential equations in terms of independent variables z (depth) and t (time) are derived. Subsequently, the Runge Kutta method and Finite Difference Method are employed for solving the partial differential equations arising from the analytical model. The proposed analytical approach is successfully validated with respect to the experimental results from the literature. From the dynamic analysis results of the proposed analytical approach, the critical design parameters peak displacements, upper and lower flex joint rotations and von Mises stresses of marine drilling risers are determined. An extensive parametric study is conducted to explore the effects of top tension, drilling depth, ocean current speed and platform drift on the critical design parameters of the marine drilling riser. Thereafter, incremental dynamic analysis is performed to derive the fragility functions of shallow water and deep-water marine drilling risers under ocean environmental loading. The proposed methodology can also be adopted for downtime estimation of marine drilling risers incorporating the ranges of uncertainties associated with the ocean environment, especially at deep and ultra-deepwater.

Keywords: drilling riser, marine, analytical model, fragility

Procedia PDF Downloads 115
14870 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending

Authors: Yang Zheng, Wei Sun

Abstract:

This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.

Keywords: bending, creep, thin plate, materials engineering

Procedia PDF Downloads 436
14869 Investigate and Solving Analytic of Nonlinear Differential at Vibrations (Earthquake)and Beam-Column, by New Approach “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Sara Akbari

Abstract:

In this study, we investigate building structures nonlinear behavior also solving analytic of nonlinear differential at vibrations. As we know most of engineering systems behavior in practical are non- linear process (especial at structural) and analytical solving (no numerical) these problems are complex, difficult and sometimes impossible (of course at form of analytical solving). In this symposium, we are going to exposure one method in engineering, that can solve sets of nonlinear differential equations with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical Method (Runge-Kutte 4th) and exact solutions. Finally, we can proof AGM method could be created huge evolution for researcher and student (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software, we can analytical solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations.

Keywords: new method AGM, vibrations, beam-column, angular frequency, energy dissipated, critical load

Procedia PDF Downloads 352