Search results for: satellite imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2008

Search results for: satellite imaging

808 Central Nervous System Lesion Differentiation in the Emergency Radiology Department

Authors: Angelis P. Barlampas

Abstract:

An 89 years old woman came to the emergency department complaining of long-lasting headaches and nausea. A CT examination was performed, and a homogeneous midline anterior cranial fossa lesion was revealed, which was situated near the base and measured 2,4 cm in diameter. The patient was allergic, and an i.v.c injection could not be done on the spot, and neither could an MRI exam because of metallic implants. How could someone narrow down the differential diagnosis? The interhemispheric meningioma is usually a silent midline lesion with no edema, and most often presents as a homogeneous, solid type, isodense, or slightly hyperdense mass ( usually the smallest lesions as this one ). Of them, 20-30% have some calcifications. Hyperostosis is typical for meningiomas that abut the base of the skull but is absent in the current case, presumably of a more cephalad location that is borderline away from the bone. Because further investigation could not be done, as the patient was allergic to the contrast media, some other differential options should be considered. Regarding the site of the lesion, the most common other entities to keep in mind are the following: Metastasis, tumor of skull base, abscess, primary brain tumors, meningioma, giant aneurysm of the anterior cerebral artery, olfactory neuroblastoma, interhemispheric meningioma, giant aneurysm of the anterior cerebral artery, midline lesion. Appearance will depend on whether the aneurysm is non-thrombosed, or partially, or completely thrombosed. Non-contrast: slightly hyperdense, well-defined round extra-axial mass, may demonstrate a peripheral calcified rim, olfactory neuroblastoma, midline lesion. The mass is of soft tissue attenuation and is relatively homogeneous. Focal calcifications are occasionally present. When an intracranial extension is present, peritumoral cysts between it and the overlying brain are often present. Final diagnosis interhemispheric meningioma (Known from the previous patient’s history). Meningiomas come from the meningocytes or the arachnoid cells of the meninges. They are usually found incidentally, have an indolent course, and their most common location is extra-axial, parasagittal, and supratentorial. Other locations include the sphenoid ridge, olfactory groove, juxtasellar, infratentorial, intraventricular, pineal gland area, and optic nerve meningioma. They are clinically silent entities, except for large ones, which can present with headaches, changes in personality status, paresis, or symptomatology according to their specific site and may cause edema of the surrounding brain tissue. Imaging findings include the presence of calcifications, the CSF cleft sign, hyperostosis of adjacent bone, dural tail, and white matter buckling sign. After i.v.c. injection, they enhance brightly and homogenously, except for large ones, which may exhibit necrotic areas or may be heavily calcified. Malignant or cystic variants demonstrate more heterogeneity and less intense enhancement. Sometimes, it is inevitable that the needed CT protocol cannot be performed, especially in the emergency department. In these cases, the radiologist must focus on the characteristic imaging features of the unenhanced lesion, as well as in previous examinations or a known lesion history, in order to come to the right report conclusion.

Keywords: computed tomography, emergency radiology, metastasis, tumor of skull base, abscess, primary brain tumors, meningioma, giant aneurysm of the anterior cerebral artery, olfactory neuroblastoma, interhemispheric meningioma

Procedia PDF Downloads 69
807 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments

Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc).

Keywords: defuzzification, floating search, fuzzy clustering, Zernike moments

Procedia PDF Downloads 452
806 Bone Fracture Detection with X-Ray Images Using Mobilenet V3 Architecture

Authors: Ashlesha Khanapure, Harsh Kashyap, Abhinav Anand, Sanjana Habib, Anupama Bidargaddi

Abstract:

Technologies that are developing quickly are being developed daily in a variety of disciplines, particularly the medical field. For the purpose of detecting bone fractures in X-ray pictures of different body segments, our work compares the ResNet-50 and MobileNetV3 architectures. It evaluates accuracy and computing efficiency with X-rays of the elbow, hand, and shoulder from the MURA dataset. Through training and validation, the models are evaluated on normal and fractured images. While ResNet-50 showcases superior accuracy in fracture identification, MobileNetV3 showcases superior speed and resource optimization. Despite ResNet-50’s accuracy, MobileNetV3’s swifter inference makes it a viable choice for real-time clinical applications, emphasizing the importance of balancing computational efficiency and accuracy in medical imaging. We created a graphical user interface (GUI) for MobileNet V3 model bone fracture detection. This research underscores MobileNetV3’s potential to streamline bone fracture diagnoses, potentially revolutionizing orthopedic medical procedures and enhancing patient care.

Keywords: CNN, MobileNet V3, ResNet-50, healthcare, MURA, X-ray, fracture detection

Procedia PDF Downloads 69
805 A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple

Authors: Hasan Basaran, Emre Unal

Abstract:

Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established.

Keywords: chief-deputy satellites, feedback linearization, follower-leader satellites, formation flight, fuel consumption, model predictive control, rendezvous, sliding mode

Procedia PDF Downloads 105
804 Introducing New and Less Known Sources of Geomorphosites for Geotourism Development, with Examples from Misho-dagh Mountain in Northwestern Iran

Authors: Davoud Mokhtari

Abstract:

One of the factors behind the increasing development of geotourism is the identification and introduction of new facets of amazing geosphere phenomena. The Misho-Dagh Mountains in northwestern Iran are one of the rich geodiversity areas. The presence of some rare and interesting phenomena in this mountain has increased the potential of this region for geotourism development. Active pressure ridges, arcuate valleys, sag Ponds, granite complexes, glacial rock springs, and displaced habitats due to tectonic activity are among the most significant phenomena in the study area. The research is based on the literature review of geotourism and personal research experiences on geomorphosites of the northwest of Iran. Monitoring the changes of geomorphosites and evaluation of corresponding changes in the geomorphosite̕s location and their capabilities using satellite images and fieldwork is done. In this study, six geomorphosite were introduced, each with special characteristics and with one of the geotourism topics. Selection of this location of northwestern Iran is due to the focus of author of this paper is on this part of the country, and there is no doubt that such places, even with higher values of geotourism, there are in various parts of Iran and the world that could be interested in this field of emerging science. From in situ observations taken in the field and estimating a level of impact, employing assessment techniques, and then finally extrapolating the resultant factors across all case studies, we have been able to generate a geotourism map for future planning purposes. Accordingly, it should be noted that we are not just part of the landscape of the geomorphosites. The geomorphosites are also part of our landscape. It is hoped that the findings of this paper can open a new world of geotourism that, if is not associated with geomorphological processes, will be very short.

Keywords: geotourism, sources of geotourism, geotouristic areas, mishow_dagh, northwest of Iran

Procedia PDF Downloads 93
803 Fluorescent Imaging with Hoechst 34580 and Propidium Iodide in Determination of Toxic Changes of Cyanobacterial Oligopeptides in Rotifers

Authors: Adam Bownik, Małgorzata Adamczuk, Barbara Pawlik-Skowrońska

Abstract:

Certain strains of cyanobacteria, microorganisms forming water blooms, produce toxic secondary metabolites. Although various effects of cyanotoxins in aquatic animals are known, little data can be found on the influence of some cyanobacterial oligopeptides beyond microcystins. The aim of the present study was to determine the toxicity of novel pure cyanobacterial oligopeptides: microginin FR-1 (MGFR1) and anabaenopeptin-A (ANA-A) on a transparent model rotifer Brachionus calyciflorus with the use of fluorescent double staining with Hoechst 34580 and propidium iodide. The obtained results showed that both studied oligopeptides decreased the fluorescence intensity of animals stained with Hoechst 34580 in a concentration-dependent manner. On the other hand, a concentration-dependent increase of propidium iodide fluorescence was noted in the exposed rotifers. The results suggest that MGFR-1 and ANA-A should be considered as a potent toxic agent to freshwater rotifers, and fluorescent staining with Hoechst and propidium iodide may be a valuable tool for determination of toxicity of cyanobacterial oligopeptides in rotifers.

Keywords: cyanobacteria, brachionus, oligopeptides, fluorescent staining, hoechst, propidium iodide

Procedia PDF Downloads 131
802 KCBA, A Method for Feature Extraction of Colonoscopy Images

Authors: Vahid Bayrami Rad

Abstract:

In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.

Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature

Procedia PDF Downloads 57
801 Enhancing Sensitivity in Multifrequency Atomic Force Microscopy

Authors: Babak Eslami

Abstract:

Bimodal and trimodal AFM have provided additional capabilities to scanning probe microscopy characterization techniques. These capabilities have specifically enhanced material characterization of surfaces and provided subsurface imaging in addition to conventional topography images. Bimodal and trimodal AFM, being different techniques of multifrequency AFM, are based on exciting the cantilever’s fundamental eigenmode with second and third eigenmodes simultaneously. Although higher eigenmodes provide a higher number of observables that can provide additional information about the sample, they cause experimental challenges. In this work, different experimental approaches for enhancing AFM images in multifrequency for different characterization goals are provided. The trade-offs between eigenmodes including the advantages and disadvantages of using each mode for different samples (ranging from stiff to soft matter) in both air and liquid environments are provided. Additionally, the advantage of performing conventional single tapping mode AFM with higher eigenmodes of the cantilever in order to reduce sample indentation is discussed. These analyses are performed on widely used polymers such as polystyrene, polymethyl methacrylate and air nanobubbles on different surfaces in both air and liquid.

Keywords: multifrequency, sensitivity, soft matter, polymer

Procedia PDF Downloads 134
800 India and Space Insurance Policy: An Analytical Insight

Authors: Shreyas Jayasimha, Suneel Anand Sundharesan, Rohan Tigadi

Abstract:

In the recent past, the United States of America and Russia were the only two dominant players in the field of space exploration and had a virtual monopoly in the field of space and technology. However, this has changed over the past few years. Many other nation states such as India, China, and the UK have made significant progress in this field. Amongst these nations, the growth and development of the Indian space program have been nothing short of a miracle. Starting recently, India has successfully launched a series of satellites including its much acclaimed Mangalyaan mission, which placed a satellite in Mars’ orbit. The fact that India was able to attain this feat in its attempt demonstrates the enormous growth potential and promise that the Indian space program holds for the coming years. However, unlike other space-faring nations, India does not have a comprehensive and consolidated space insurance policy. In this regard, it is pertinent to note that, the costs and risks involved in a administering a space program are enormous. Therefore, in the absence of a comprehensive space insurance policy, any losses from an unsuccessful will have to be borne by the state exchequer. Thus, in order to ensure that Indian space program continues on its upward trajectory, the Indian establishment should seriously consider formulating a comprehensive insurance policy. This paper intends to analyze the international best practices followed by other space-faring nations in relation to space insurance policy. Thereafter, the authors seek to examine the current regime in India relating to space insurance policy. Finally, the authors will conclude by providing a series of recommendations regarding the essential elements that should be part of any Indian space insurance policy regime.

Keywords: India, space insurance policy, space law, Indian space research organization

Procedia PDF Downloads 230
799 Simulation of Climatic Change Effects on the Potential Fishing Zones of Dorado Fish (Coryphaena hippurus L.) in the Colombian Pacific under Scenarios RCP Using CMIP5 Model

Authors: Adriana Martínez-Arias, John Josephraj Selvaraj, Luis Octavio González-Salcedo

Abstract:

In the Colombian Pacific, Dorado fish (Coryphaena hippurus L.) fisheries is of great commercial interest. However, its habitat and fisheries may be affected by climatic change especially by the actual increase in sea surface temperature. Hence, it is of interest to study the dynamics of these species fishing zones. In this study, we developed Artificial Neural Networks (ANN) models to predict Catch per Unit Effort (CPUE) as an indicator of species abundance. The model was based on four oceanographic variables (Chlorophyll a, Sea Surface Temperature, Sea Level Anomaly and Bathymetry) derived from satellite data. CPUE datasets for model training and cross-validation were obtained from logbooks of commercial fishing vessel. Sea surface Temperature for Colombian Pacific were projected under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 using Coupled Model Intercomparison Project Phase 5 (CMIP5) and CPUE maps were created. Our results indicated that an increase in sea surface temperature reduces the potential fishing zones of this species in the Colombian Pacific. We conclude that ANN is a reliable tool for simulation of climate change effects on the potential fishing zones. This research opens a future agenda for other species that have been affected by climate change.

Keywords: climatic change, artificial neural networks, dorado fish, CPUE

Procedia PDF Downloads 246
798 Peg@GDF3:TB3+ – Rb Nanocomposites for Deep-Seated X-Ray Induced Photodynamic Therapy in Oncology

Authors: E.A. Kuchma

Abstract:

Photodynamic therapy (PDT) is considered an alternative and minimally invasive cancer treatment modality compared to chemotherapy and radiation therapy. PDT includes three main components: a photosensitizer (PS), oxygen, and a light source. PS is injected into the patient's body and then selectively accumulates in the tumor. However, the light used in PDT (spectral range 400–700 nm) is limited to superficial lesions, and the light penetration depth does not exceed a few cm. The problem of PDT (poor visible light transmission) can be solved by using X-rays. The penetration depth of X-rays is ten times greater than that of visible light. Therefore, X-ray radiation easily penetrates through the tissues of the body. The aim of this work is to develop universal nanocomposites for X-ray photodynamic therapy of deep and superficial tumors using scintillation nanoparticles of gadolinium fluoride (GdF3), doped with Tb3+, coated with a biocompatible coating (PEG) and photosensitizer RB (Rose Bengal). PEG@GdF3:Tb3+(15%) – RB could be used as an effective X-ray, UV, and photoluminescent mediator to excite a photosensitizer for generating reactive oxygen species (ROS) to kill tumor cells via photodynamic therapy. GdF3 nanoparticles can also be used as contrast agents for computed tomography (CT) and magnetic resonance imaging (MRI).

Keywords: X-ray induced photodynamic therapy, scintillating nanoparticle, radiosensitizer, photosensitizer

Procedia PDF Downloads 81
797 Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques

Authors: Yibeltal Chanie Manie, Zebider Asire Munyelet

Abstract:

5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment.

Keywords: optical sensor, artificial Intelligence, Internet of Things, free-space optics

Procedia PDF Downloads 64
796 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification

Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos

Abstract:

Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.

Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology

Procedia PDF Downloads 149
795 Travel Delay and Modal Split Analysis: A Case Study

Authors: H. S. Sathish, H. S. Jagadeesh, Skanda Kumar

Abstract:

Journey time and delay study is used to evaluate the quality of service, the travel time and study can also be used to evaluate the quality of traffic movement along the route and to determine the location types and extent of traffic delays. Components of delay are boarding and alighting, issue of tickets, other causes and distance between each stops. This study investigates the total journey time required to travel along the stretch and the influence the delays. The route starts from Kempegowda Bus Station to Yelahanka Satellite Station of Bangalore City. The length of the stretch is 16.5 km. Modal split analysis has been done for this stretch. This stretch has elevated highway connecting to Bangalore International Airport and the extension of metro transit stretch. From the regression analysis of total journey time it is affected by delay due to boarding and alighting moderately, Delay due to issue of tickets affects the journey time to a higher extent. Some of the delay factors affecting significantly the journey time are evident from F-test at 10 percent level of confidence. Along this stretch work trips are more prevalent as indicated by O-D study. Modal shift analysis indicates about 70 percent of commuters are ready to shift from current system to Metro Rail System. Metro Rail System carries maximum number of trips compared to private mode. Hence Metro is a highly viable choice of mode for Bangalore Metropolitan City.

Keywords: delay, journey time, modal choice, regression analysis

Procedia PDF Downloads 497
794 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach

Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak

Abstract:

Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.

Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity

Procedia PDF Downloads 162
793 Investigation of the Low-Level Jet Role in Transportation of Shamal Dust Storms in Southwest Iran

Authors: Nasim Hossein Hamzeh, Abbas Ranjbar Saadat Abadi, Maggie Chel Gee Ooi, Steven Soon-Kai Kong, Christian Opp

Abstract:

Dust storm is one of the most important natural disasters in the world, where the Middle East suffers frequently due to the existence of the dust belt region. As a country in the Middle East, Iran mostly is affected by the dust storms from some internal and also external dust sources, mostly originating from deserts in Iraq, Syria, and Saudi Arabia. In this study, some severe Shamal dust storms were investigated in Southwest Iran. The measured 〖PM〗_10 reached up to 834 μg m-3 in some stations in west Iran and Iran-Iraq borders, while the measured 〖PM〗_10 reached up to 4947 μg m-3 SW stations in northern shores of the Persian Gulf. During these severe dust storms, a low-level jet was observed at 930hPa atmospheric level in north Iraq and south Iraq. the jet core and its width were about 16 ms-1 and 100 km, respectively, in the cases where it is located in the NW regions of Iraq and northeastern Syria (at 35°N and 40-41°E), So the jet was stronger at higher latitudes (34°N - 35°N) than at lower latitudes (32°N). Therefore, suitable conditions have been created for lifting of dust sources located in northwestern Iraq and northeastern Syria. The topography surrounding the Mesopotamia and north of the Persian Gulf play a major role in the development of the Low-Level Jet through the interaction of meteorological conditions and mountain forcing. Also, the output of CALIPSO satellite images show dust rising to higher than 5 km in these dust cases, that confirming the influence of Shamal wind on the dust storm occurrence.

Keywords: dust storm, shamal wind, the persian gulf, southwest Iran

Procedia PDF Downloads 94
792 A Rare Case of Dissection of Cervical Portion of Internal Carotid Artery, Diagnosed Postpartum

Authors: Bidisha Chatterjee, Sonal Grover, Rekha Gurung

Abstract:

Postpartum dissection of the internal carotid artery is a relatively rare condition and is considered as an underlying aetiology in 5% to 25% of strokes under the age of 30 to 45 years. However, 86% of these cases recover completely and 14% have mild focal neurological symptoms. Prognosis is generally good with early intervention. The risk quoted for a repeat carotid artery dissection in subsequent pregnancies is less than 2%. 36-year Caucasian primipara presented on postnatal day one of forceps delivery with tachycardia. In the intrapartum period she had a history of prolonged rupture of membranes and developed intrapartum sepsis and was treated with antibiotics. Postpartum ECG showed septal inferior T wave inversion and a troponin level of 19. Subsequently Echocardiogram ruled out post-partum cardiomyopathy. Repeat ECG showed improvement of the previous changes and in the absence of symptoms no intervention was warranted. On day 4 post-delivery, she had developed symptoms of droopy right eyelid, pain around the right eye and itching in the right ear. On examination, she had developed right sided ptosis, unequal pupils (Rt miotic pupil). Cranial nerve examination, reflexes, sensory examination and muscle power was normal. Apart from migraine, there was no medical or family history of note. In view of Horner’s on the right, she had a CT Angiogram and subsequently MR/MRA and was diagnosed with dissection of the cervical portion of the right internal carotid artery. She was discharged on a course of Aspirin 75mg. By 6 week post-natal follow up patient had recovered significantly with occasional episodes of unequal pupils and tingling of right toes which resolved spontaneously. Cervical artery dissection, including VAD and carotid artery dissection, are rare complications of pregnancy with an estimated annual incidence of 2.6–3 per 100,000 pregnancy hospitalizations. Aetiology remains unclear though trauma during straining at labour, underlying arterial disease and preeclampsia have been implicated. Hypercoagulable state during pregnancy and puerperium could also be an important factor. 60-90% cases present with severe headache and neck pain and generally precede neurological symptoms like ipsilateral Horner’s syndrome, retroorbital pain, tinnitus and cranial nerve palsy. Although rare, the consequences of delayed diagnosis and management can lead to severe and permanent neurological deficits. Patients with a strong index of suspicion should undergo an MRI or MRA of head and neck. Antithrombotic and antiplatelet therapy forms the mainstay of therapy with selected cases needing endovascular stenting. Long term prognosis is favourable with either complete resolution or minimal deficit if treatment is prompt. Patients should be counselled about the recurrence risk and possibility of stroke in future pregnancy. Coronary artery dissection is rare and treatable but needs early diagnosis and treatment. Post-partum headache and neck pain with neurological symptoms should prompt urgent imaging followed by antithrombotic and /or antiplatelet therapy. Most cases resolve completely or with minimal sequelae.

Keywords: postpartum, dissection of internal carotid artery, magnetic resonance angiogram, magnetic resonance imaging, antiplatelet, antithrombotic

Procedia PDF Downloads 98
791 Estimation of Natural Pozzolan Reserves in the Volcanic Province of the Moroccan Middle Atlas Using a Geographic Information System in Order to Valorize Them

Authors: Brahim Balizi, Ayoub Aziz, Abdelilah Bellil, Abdellali El Khadiri, Jamal Mabrouki

Abstract:

Mio-polio-quaternary volcanism of the Tabular Middle Atlas, which corresponds to prospective levels of exploitable usable raw minerals, is a feature of Morocco's Middle Atlas, especially the Azrou-Timahdite region. Given their importance in national policy in terms of human development by supporting the sociological and economic component, this area has consequently been the focus of various research and prospecting of these levels in order to develop these reserves. The outcome of this labor is a massive amount of data that needs to be managed appropriately because it comes from multiple sources and formats, including side points, contour lines, geology, hydrogeology, hydrology, geological and topographical maps, satellite photos, and more. In this regard, putting in place a Geographic Information System (GIS) is essential to be able to offer a side plan that makes it possible to see the most recent topography of the area being exploited, to compute the volume of exploitation that occurs every day, and to make decisions with the fewest possible restrictions in order to use the reserves for the realization of ecological light mortars The three sites' mining will follow the contour lines in five steps that are six meters high and decline. It is anticipated that each quarry produces about 90,000 m3/year. For a single quarry, this translates to a daily production of about 450 m3 (200 days/year). About 3,540,240 m3 and 10,620,720 m3, respectively, represent the possible net exploitable volume in place for a single quarry and the three exploitable zones.

Keywords: GIS, topography, exploitation, quarrying, lightweight mortar

Procedia PDF Downloads 29
790 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array

Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang

Abstract:

Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.

Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA

Procedia PDF Downloads 230
789 CT Images Based Dense Facial Soft Tissue Thickness Measurement by Open-source Tools in Chinese Population

Authors: Ye Xue, Zhenhua Deng

Abstract:

Objectives: Facial soft tissue thickness (FSTT) data could be obtained from CT scans by measuring the face-to-skull distances at sparsely distributed anatomical landmarks by manually located on face and skull. However, automated measurement using 3D facial and skull models by dense points using open-source software has become a viable option due to the development of computed assisted imaging technologies. By utilizing dense FSTT information, it becomes feasible to generate plausible automated facial approximations. Therefore, establishing a comprehensive and detailed, densely calculated FSTT database is crucial in enhancing the accuracy of facial approximation. Materials and methods: This study utilized head CT scans from 250 Chinese adults of Han ethnicity, with 170 participants originally born and residing in northern China and 80 participants in southern China. The age of the participants ranged from 14 to 82 years, and all samples were divided into five non-overlapping age groups. Additionally, samples were also divided into three categories based on BMI information. The 3D Slicer software was utilized to segment bone and soft tissue based on different Hounsfield Unit (HU) thresholds, and surface models of the face and skull were reconstructed for all samples from CT data. Following procedures were performed unsing MeshLab, including converting the face models into hollowed cropped surface models amd automatically measuring the Hausdorff Distance (referred to as FSTT) between the skull and face models. Hausdorff point clouds were colorized based on depth value and exported as PLY files. A histogram of the depth distributions could be view and subdivided into smaller increments. All PLY files were visualized of Hausdorff distance value of each vertex. Basic descriptive statistics (i.e., mean, maximum, minimum and standard deviation etc.) and distribution of FSTT were analysis considering the sex, age, BMI and birthplace. Statistical methods employed included Multiple Regression Analysis, ANOVA, principal component analysis (PCA). Results: The distribution of FSTT is mainly influenced by BMI and sex, as further supported by the results of the PCA analysis. Additionally, FSTT values exceeding 30mm were found to be more sensitive to sex. Birthplace-related differences were observed in regions such as the forehead, orbital, mandibular, and zygoma. Specifically, there are distribution variances in the depth range of 20-30mm, particularly in the mandibular region. Northern males exhibit thinner FSTT in the frontal region of the forehead compared to southern males, while females shows fewer distribution differences between the northern and southern, except for the zygoma region. The observed distribution variance in the orbital region could be attributed to differences in orbital size and shape. Discussion: This study provides a database of Chinese individuals distribution of FSTT and suggested opening source tool shows fine function for FSTT measurement. By incorporating birthplace as an influential factor in the distribution of FSTT, a greater level of detail can be achieved in facial approximation.

Keywords: forensic anthropology, forensic imaging, cranial facial reconstruction, facial soft tissue thickness, CT, open-source tool

Procedia PDF Downloads 59
788 Theory of Mind and Its Brain Distribution in Patients with Temporal Lobe Epilepsy

Authors: Wei-Han Wang, Hsiang-Yu Yu, Mau-Sun Hua

Abstract:

Theory of Mind (ToM) refers to the ability to infer another’s mental state. With appropriate ToM, one can behave well in social interactions. A growing body of evidence has demonstrated that patients with temporal lobe epilepsy (TLE) may have damaged ToM due to impact on regions of the underlying neural network of ToM. However, the question of whether there is cerebral laterality for ToM functions remains open. This study aimed to examine whether there is cerebral lateralization for ToM abilities in TLE patients. Sixty-seven adult TLE patients and 30 matched healthy controls (HC) were recruited. Patients were classified into right (RTLE), left (LTLE), and bilateral (BTLE) TLE groups on the basis of a consensus panel review of their seizure semiology, EEG findings, and brain imaging results. All participants completed an intellectual test and four tasks measuring basic and advanced ToM. The results showed that, on all ToM tasks; (1)each patient group performed worse than HC; (2)there were no significant differences between LTLE and RTLE groups; (3)the BTLE group performed the worst. It appears that the neural network responsible for ToM is distributed evenly between the cerebral hemispheres.

Keywords: cerebral lateralization, social cognition, temporal lobe epilepsy, theory of mind

Procedia PDF Downloads 420
787 CT-Scan Transition of Pulmonary Edema Due to Water-Soluble Paint Inhalation

Authors: Masashi Kanazawa, Takaaki Nakano, Masaaki Takemoto, Tomonori Imamura, Mamiko Sugimura, Toshitaka Ito

Abstract:

Introduction: We experienced a massive disaster due to inhalation of water-soluble paint. Sixteen patients were brought to our emergency room, and pulmonary edema was revealed on the CT images of 12 cases. Purpose: Transition of chest CT-scan findings in cases with pulmonary edema was examined. Method: CT-scans were performed on the 1st, 2nd, 5th, and 19th days after the inhalation event. Patients whose pulmonary edema showed amelioration or exacerbation were classified into the improvement or the exacerbation group, respectively. Those with lung edema findings appearing at different sites after the second day were classified into the changing group. Results: Eight, one and three patients were in the improvement, exacerbation and changing groups, respectively. In all cases, the pulmonary edema had disappeared from CT images on the 19th day after the inhalation event. Conclusion: Inhalation of water-soluble paints is considered to be relatively safe. However, our observations in these emergency cases suggest that, even if pulmonary edema is not severe immediately after the exposure, new lesions may appear later and existing lesions may worsen. Follow-up imaging is thus necessary for about two weeks.

Keywords: CT scan, intoxication, pulmonary edema, water-soluble paint

Procedia PDF Downloads 173
786 Satellites and Drones: Integrating Two Systems for Monitoring Air Quality and the Stress of the Plants

Authors: Bernabeo R. Alberto

Abstract:

Unmanned aerial vehicles (UAV) platforms or remotely piloted aircraft system (Rpas) - with dedicated sensors - are fundamental support to the planning, running, and control of the territory in which public safety is or may be at risk for post-disaster assessments such as flooding or landslides, for searching lost people, for crime and accident scene photography, for assisting traffic control at major events, for teaching geography, history, natural science and all those subjects that require a continuous cyclical process of observation, evaluation and interpretation. Through the use of proximal remote sensing information related to anthropic landscape and nature integration, there is an opportunity to improve knowledge and management decision-making for the safeguarding of the environment, for farming, wildlife management, land management, mapping, glacier monitoring, atmospheric monitoring, for the conservation of archeological, historical, artistic and architectural sites, allowing an exact delimitation of the site in the territory. This paper will go over many different mission types. Within each mission type, it will give a broad overview to familiarize the reader but not make them an expert. It will also give detailed information on the payloads and other testing parameters the Unmanned Aerial Vehicles (UAV) use to complete a mission. The project's goal is to improve satellite maps about the stress of the plants, air quality monitoring, and related health issues.

Keywords: proximal remote sensing, remotely piloted aircraft system, risk, safety, unmanned aerial vehicle

Procedia PDF Downloads 23
785 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs

Authors: Agastya Pratap Singh

Abstract:

This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.

Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications

Procedia PDF Downloads 32
784 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes

Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali

Abstract:

Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.

Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture

Procedia PDF Downloads 56
783 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 518
782 U11 Functionalised Luminescent Gold Nanoclusters for Pancreatic Tumor Cells Labelling

Authors: Regina M. Chiechio, Rémi Leguevél, Helene Solhi, Marie Madeleine Gueguen, Stephanie Dutertre, Xavier, Jean-Pierre Bazureau, Olivier Mignen, Pascale Even-Hernandez, Paolo Musumeci, Maria Jose Lo Faro, Valerie Marchi

Abstract:

Thanks to their ultra-small size, high electron density, and low toxicity, gold nanoclusters (Au NCs) have unique photoelectrochemical and luminescence properties that make them very interesting for diagnosis bio-imaging and theranostics. These applications require control of their delivery and interaction with cells; for this reason, the surface chemistry of Au NCs is essential to determine their interaction with the targeted biological objects. Here we demonstrate their ability as markers of pancreatic tumor cells. By functionalizing the surface of the NCs with a recognition peptite (U11), the nanostructures are able to preferentially bind to pancreatic cancer cells via a receptor (uPAR) overexpressed by these cells. Furthermore, the NCs can mark even the nucleus without the need of fixing the cells. These nanostructures can therefore be used as a non-toxic, multivalent luminescent platform, capable of selectively recognizing tumor cells for bioimaging, drug delivery, and radiosensitization.

Keywords: gold nanoclusters, luminescence, biomarkers, pancreatic cancer, biomedical applications, bioimaging, fluorescent probes, drug delivery

Procedia PDF Downloads 153
781 Spatial Variation of Nitrogen, Phosphorus and Potassium Contents of Tomato (Solanum lycopersicum L.) Plants Grown in Greenhouses (Springs) in Elmali-Antalya Region

Authors: Namik Kemal Sonmez, Sahriye Sonmez, Hasan Rasit Turkkan, Hatice Tuba Selcuk

Abstract:

In this study, the spatial variation of plant and soil nutrition contents of tomato plants grown in greenhouses was investigated in Elmalı region of Antalya. For this purpose, total of 19 sampling points were determined. Coordinates of each sampling points were recorded by using a hand-held GPS device and were transferred to satellite data in GIS. Soil samples were collected from two different depths, 0-20 and 20-40 cm, and leaf were taken from different tomato greenhouses. The soil and plant samples were analyzed for N, P and K. Then, attribute tables were created with the analyses results by using GIS. Data were analyzed and semivariogram models and parameters (nugget, sill and range) of variables were determined by using GIS software. Kriged maps of variables were created by using nugget, sill and range values with geostatistical extension of ArcGIS software. Kriged maps of the N, P and K contents of plant and soil samples showed patchy or a relatively smooth distribution in the study areas. As a result, the N content of plants were sufficient approximately 66% portion of the tomato productions. It was determined that the P and K contents were sufficient of 70% and 80% portion of the areas, respectively. On the other hand, soil total K contents were generally adequate and available N and P contents were found to be highly good enough in two depths (0-20 and 20-40 cm) 90% portion of the areas.

Keywords: Elmali, nutrients, springs greenhouses, spatial variation, tomato

Procedia PDF Downloads 243
780 Stromal Vascular Fraction Regenerative Potential in a Muscle Ischemia/Reperfusion Injury Mouse Model

Authors: Anita Conti, Riccardo Ossanna, Lindsey A. Quintero, Giamaica Conti, Andrea Sbarbati

Abstract:

Ischemia/reperfusion (IR) injury induces muscle fiber atrophy and skeletal muscle fiber death with subsequently functionality loss. The heterogeneous pool of cells, especially mesenchymal stem cells, contained in the stromal vascular fraction (SVF) of adipose tissue could promote muscle fiber regeneration. To prevent SVF dispersion, it has been proposed the use of injectable biopolymers that work as cells carrier. A significant element of the extracellular matrix is hyaluronic acid (HA), which has been widely used in regenerative medicine as a cell scaffold given its biocompatibility, degradability, and the possibility of chemical functionalization. Connective tissue micro-fragments enriched with SVF obtained from mechanical disaggregation of adipose tissue were evaluated for IR muscle injury regeneration using low molecular weight HA as a scaffold. IR induction. Hindlimb ischemia was induced in 9 athymic nude mice through the clamping of the right quadriceps using a plastic band. Reperfusion was induced by cutting the plastic band after 3 hours of ischemic period. Contralateral (left) muscular tissue was used as healthy control. Treatment. Twenty-four hours after the IR induction, animals (n=3) were intramuscularly injected with 100 µl of SVF mixed with HA (SVF-HA). Animals treated with 100 µl of HA (n=3) and 100 µl saline solution (n=3) were used as control. Treatment monitoring. All animals were in vivo monitored by magnetic resonance imaging (MRI) at 5, 7, 14 and 18 days post-injury (dpi). High-resolution morphological T2 weighed, quantitative T2 map and Dynamic Contrast-Enhanced (DCE) images were acquired in order to assess the regenerative potential of SVF-HA treatment. Ex vivo evaluation. After 18 days from IR induction, animals were sacrificed, and the muscles were harvested for histological examination. At 5 dpi T2 high-resolution MR images clearly reveal the presence of an extensive edematous area due to IR damage for all groups identifiable as an increase of signal intensity (SI) of muscular and surrounding tissue. At 7 dpi, animals of the SVF-HA group showed a reduction of SI, and the T2relaxation time of muscle tissue of the HA-SVF group was 29±0.5ms, comparable with the T2relaxation time of contralateral muscular tissue (30±0.7ms). These suggest a reduction of edematous overflow and swelling. The T2relaxation time at 7dpi of HA and saline groups were 84±2ms and 90±5ms, respectively, which remained elevated during the rest of the study. The evaluation of vascular regeneration showed similar results. Indeed, DCE-MRI analysis revealed a complete recovery of muscular tissue perfusion after 14 dpi for the SVF-HA group, while for the saline and HA group, controls remained in a damaged state. Finally, the histological examination of SVF-HA treated animals exhibited well-defined and organized fibers morphology with a lateralized nucleus, similar to contralateral healthy muscular tissue. On the contrary, HA and saline-treated animals presented inflammatory infiltrates, with HA slightly improving the diameter of the fibers and less degenerated tissue. Our findings show that connective tissue micro-fragments enriched with SVF induce higher muscle homeostasis and perfusion restoration in contrast to control groups.

Keywords: ischemia/reperfusion injury, regenerative medicine, resonance imaging, stromal vascular fraction

Procedia PDF Downloads 128
779 Wireless Capsule Endoscope - Antenna and Channel Characterization

Authors: Mona Elhelbawy, Mac Gray

Abstract:

Traditional wired endoscopy is an intrusive process that requires a long flexible tube to be inserted through the patient’s mouth while intravenously sedated. Only images of the upper 4 feet of stomach, colon, and rectum can be captured, leaving the remaining 20 feet of small intestines. Wireless capsule endoscopy offers a painless, non-intrusive, efficient and effective alternative to traditional endoscopy. In wireless capsule endoscopy (WCE), ingestible vitamin-pill-shaped capsules with imaging capabilities, sensors, batteries, and antennas are designed to send images of the gastrointestinal (GI) tract in real time. In this paper, we investigate the radiation performance and specific absorption rate (SAR) of a miniature conformal capsule antenna operating at the Medical Implant Communication Service (MICS) frequency band in the human body. We perform numerical simulations using the finite element method based commercial software, high-frequency structure simulator (HFSS) and the ANSYS human body model (HBM). We also investigate the in-body channel characteristics between the implantable capsule and an external antenna placed on the surface of the human body.

Keywords: IEEE 802.15.6, MICS, SAR, WCE

Procedia PDF Downloads 127