Search results for: iron deficiency anaemia
126 Investigation of the Role of Lipoprotein a rs10455872 Gene Polymorphism in Childhood Obesity
Authors: Mustafa M. Donma, Ayşen Haksayar, Bahadır Batar, Buse Tepe, Birol Topçu, Orkide Donma
Abstract:
Childhood obesity is an ever-increasing health problem. The Association of obesity with severe chronic diseases such as diabetes and cardiovascular diseases makes the problem life-threatening. Aside from psychological, societal and metabolic factors, genetic polymorphisms have gained importance concerning etiology in recent years. The aim of this study was to evaluate the relationship between rs10455872 gene polymorphism in the Lipoprotein (a) locus and the development of childhood obesity. This was a prospective study carried out according to the Helsinki Declarations. The study protocol was approved by the Institutional Ethics Committee. This study was supported by Tekirdag Namik Kemal University Rectorate, Scientific Research Projects Coordination Unit. Project No: NKUBAP.02.TU.20.278. A total of 180 children (103 obese (OB) and 77 healthy), aged 6-18 years, without any acute or chronic disease, participated in the study. Two different groups were created: OB and healthy control. Each group was divided into two further groups depending on the nature of the polymorphism. Anthropometric measurements were taken during the detailed physical examination. Laboratory tests and TANITA measurements were performed. For the statistical evaluations, SPSS version 28.0 was used. A P-value smaller than 0.05 was the statistical significance degree. The distribution of lipoprotein (a) rs10455872 gene polymorphism did not differ between OB and healthy children. Children with AG genotype in both OB and control groups had lower body mass index (BMI), diagnostic obesity notation model assessment index (DONMA II), body fat ratio (BFR), C-reactive protein (CRP), and metabolic syndrome index (MetS index) values compared to children with normal AA genotype. In the OB group, serum iron, vitamin B12, hemoglobin, MCV, and MCH values were found to be higher in the AG genotype group than those of children with the normal AA genotype. A significant correlation was found between the MetS index and BFR among OB children with normal homozygous genotype. MetS index increased as BFR increased in this group. However, such a correlation was not observed in the OB group with heterozygous AG genotype. To the best of our knowledge, the association of lipoprotein (a) rs10455872 gene polymorphism with the etiology of childhood obesity has not been studied yet. Therefore, this study was the first report suggesting polymorphism with AG genotype as a good risk factor for obesity.Keywords: child, gene polymorphism, lipoprotein (a), obesity, rs10455872
Procedia PDF Downloads 77125 Sustainable Urban Growth of Neighborhoods: A Case Study of Alryad-Khartoum
Authors: Zuhal Eltayeb Awad
Abstract:
Alryad neighborhood is located in Khartoum town– the administrative center of the Capital of Sudan. The neighborhood is one of the high-income residential areas with villa type development of low-density. It was planned and developed in 1972 with large plots (600-875m²), wide crossing roads and balanced environment. Recently the area transformed into more compact urban form of high density, mixed-use integrated development with more intensive use of land; multi-storied apartments. The most important socio-economic process in the neighborhood has been the commercialization and deinitialization of the area in connect with the displacement of the residential function. This transformation affected the quality of the neighborhood and the inter-related features of the built environment. A case study approach was chosen to gather the necessary qualitative and quantitative data. A detailed survey on existing development pattern was carried out over the whole area of Alryad. Data on the built and social environment of the neighborhoods were collected through observations, interviews and secondary data sources. The paper reflected a theoretical and empirical interest in the particular characteristics of compact neighborhood with high density, and mixed land uses and their effect on social wellbeing of the residents all in the context of the sustainable development. The research problem is focused on the challenges of transformation that associated with compact neighborhood that created multiple urban problems, e.g., stress of essential services (water supply, electricity, and drainage), congestion of streets and demand for parking. The main objective of the study is to analyze the transformation of this area from residential use to commercial and administrative use. The study analyzed the current situation of the neighborhood compared to the five principles of sustainable neighborhood prepared by UN Habitat. The study found that the neighborhood is experienced changes that occur to inner-city residential areas and the process of change of the neighborhood was originated by external forces due to the declining economic situation of the whole country. It is evident that non-residential uses have taken place uncontrolled, unregulated and haphazardly that led to damage the residential environment and deficiency in infrastructure. The quality of urban life and in particular on levels of privacy was reduced, the neighborhood changed gradually to be a central business district that provides services to the whole Khartoum town. The change of house type may be attributed to a demand-led housing market and absence of policy. The results showed that Alryad is not fully sustainable and self-contained, street network characteristics and mixed land-uses development are compatible with the principles of sustainability. The area of streets represents 27.4% of the total area of the neighborhood. Residential density is 4,620 people/ km², that is lower than the recommendations, and the limited block land-use specialization is higher than 10% of the blocks. Most inhabitants have a high income so that there is no social mix in the neighborhood. The study recommended revision of the current zoning regulations in order to control and regulate undesirable development in the neighborhood and provide new solutions which allow promoting the neighborhood sustainable development.Keywords: compact neighborhood, land uses, mixed use, residential area, transformation
Procedia PDF Downloads 129124 Management of Nutrition Education in Spa Resorts in Poland
Authors: Joanna Wozniak-Holecka, Sylwia Jaruga-Sekowska
Abstract:
There are 45 statutory spa and treatment areas in Poland, and the demand for spa and treatment services increases year by year. Within each type of spa treatment facilities, nutritional education services are provided. During spa treatment, the patient learns the principles of rational nutrition and applied diet therapy. It should help him develop proper eating habits, which will also follow at home. However, the nutrition education system of spa resort patients should be considered as very imperfect and requiring a definite systemic correction. It has, at the same time, a wide human and infrastructure base, which guarantees to obtain positive reinforcement in the scope of undertaken activities and management. Unfortunately, this advantage is not fully used. The aim of the project was to assess the quality of implemented nutritional education and to assess the diet of patients in spa treatment entities from a nationwide perspective. The material for the study was data obtained as part of an in-depth interview conducted among nutrition department managers (25 interviews) and a survey addressed to patients (600 questionnaires) of a selected group of spa resorts from across the country about the implementation of nutritional education in institutions. Also, decade menus for the basic diet, easily digestible diet and diet with limitation of easily digestible carbohydrates (a total of 1,120 menus) were obtained for the study. Almost 2/3 of respondents (73.2%) were overweight or obese, but only 32.8% decided on an easily digestible or low-energy diet during the treatment. Most of the surveyed patients rated the nutrition in spa resorts as satisfactory. Classes on nutrition education were carried out mainly by a dietitian (65% of meetings), the other educators were doctors and nurses. The meetings (95%) were of a group nature and lasted only 30 minutes on average. The subjects of the classes concerned the principles of proper nutrition and composition of meals, a nutrition pyramid and a diet adapted to a given disease. The assessed menus did not meet the nutrition standards and, therefore, did not provide patients with the correct quality of nutrition. The norm of protein, fat, vitamin A, B12, phosphorus, iron and sodium was exceeded, while vitamin D, folic acid, magnesium and zinc were not enough than recommended. The study allowed to conclude that there is a large discrepancy between the recommendations presented during the nutrition education classes and the quality of diet implemented in the examined institutions. The project may contribute to the development of effective educational tools in nutrition, especially about a specific group of chronically ill patients.Keywords: diet, management, nutritional education, spa resort
Procedia PDF Downloads 144123 Benefits of Monitoring Acid Sulfate Potential of Coffee Rock (Indurated Sand) across Entire Dredge Cycle in South East Queensland
Authors: S. Albert, R. Cossu, A. Grinham, C. Heatherington, C. Wilson
Abstract:
Shipping trends suggest increasing vessel size and draught visiting Australian ports highlighting potential challenges to port infrastructure and requiring optimization of shipping channels to ensure safe passage for vessels. The Port of Brisbane in Queensland, Australia has an 80 km long access shipping channel which vessels must transit 15 km of relatively shallow coffee rock (generic class of indurated sands where sand grains are bound within an organic clay matrix) outcrops towards the northern passage in Moreton Bay. This represents a risk to shipping channel deepening and maintenance programs as the dredgeability of this material is more challenging due to its high cohesive strength compared with the surrounding marine sands and potential higher acid sulfate risk. In situ assessment of acid sulfate sediment for dredge spoil control is an important tool in mitigating ecological harm. The coffee rock in an anoxic undisturbed state does not pose any acid sulfate risk, however when disturbed via dredging it’s vital to ensure that any present iron sulfides are either insignificant or neutralized. To better understand the potential risk we examined the reduction potential of coffee rock across the entire dredge cycle in order to accurately portray the true outcome of disturbed acid sulfate sediment in dredging operations in Moreton Bay. In December 2014 a dredge trial was undertaken with a trailing suction hopper dredger. In situ samples were collected prior to dredging revealed acid sulfate potential above threshold guidelines which could lead to expensive dredge spoil management. However, potential acid sulfate risk was then monitored in the hopper and subsequent discharge, both showing a significant reduction in acid sulfate potential had occurred. Additionally, the acid neutralizing capacity significantly increased due to the inclusion of shell fragments (calcium carbonate) from the dredge target areas. This clearly demonstrates the importance of assessing potential acid sulfate risk across the entire dredging cycle and highlights the need to carefully evaluate sources of acidity.Keywords: acid sulfate, coffee rock, indurated sand, dredging, maintenance dredging
Procedia PDF Downloads 368122 Leukocyte Transcriptome Analysis of Patients with Obesity-Related High Output Heart Failure
Authors: Samantha A. Cintron, Janet Pierce, Mihaela E. Sardiu, Diane Mahoney, Jill Peltzer, Bhanu Gupta, Qiuhua Shen
Abstract:
High output heart failure (HOHF) is characterized a high output state resulting from an underlying disease process and is commonly caused by obesity. As obesity levels increase, more individuals will be at risk for obesity-related HOHF. However, the underlying pathophysiologic mechanisms of obesity-related HOHF are not well understood and need further research. The aim of the study was to describe the differences in leukocyte transcriptomes of morbidly obese patients with HOHF and those with non-HOHF. In this cross-sectional study, the study team collected blood samples, demographics, and clinical data of six patients with morbid obesity and HOHF and six patients with morbid obesity and non-HOHF. The study team isolated the peripheral blood leukocyte RNA and applied stranded total RNA sequencing. Differential gene expression was calculated, and Ingenuity Pathway Analysis software was used to interpret the canonical pathways, functional changes, upstream regulators, and mechanistic and causal networks that were associated with the significantly different leukocyte transcriptomes. The study team identified 116 differentially expressed genes; 114 were upregulated, and 2 were downregulated in the HOHF group (Benjamini-Hochberg adjusted p-value ≤ 0.05 and log2(fold-change) of ±1). The differentially expressed genes were involved with cell proliferation, mitochondrial function, erythropoiesis, erythrocyte stability, and apoptosis. The top upregulated canonical pathways associated with differentially expressed genes were autophagy, adenosine monophosphate-activated protein kinase signaling, and senescence pathways. Upstream regulator GATA Binding Protein 1 (GATA1) and a network associated with nuclear factor kappa-light chain-enhancer of activated B cells (NF-kB) were also identified based on the different leukocyte transcriptomes of morbidly obese patients with HOHF and non-HOHF. To the author’s best knowledge, this is the first study that reported the differential gene expression in patients with obesity-related HOHF and demonstrated the unique pathophysiologic mechanisms underlying the disease. Further research is needed to determine the role of cellular function and maintenance, inflammation, and iron homeostasis in obesity-related HOHF.Keywords: cardiac output, heart failure, obesity, transcriptomics
Procedia PDF Downloads 55121 The Role of Nickel on the High-Temperature Corrosion of Modell Alloys (Stainless Steels) before and after Breakaway Corrosion at 600°C: A Microstructural Investigation
Authors: Imran Hanif, Amanda Persdotter, Sedigheh Bigdeli, Jesper Liske, Torbjorn Jonsson
Abstract:
Renewable fuels such as biomass/waste for power production is an attractive alternative to fossil fuels in order to achieve a CO₂ -neutral power generation. However, the combustion results in the release of corrosive species. This puts high demands on the corrosion resistance of the alloys used in the boiler. Stainless steels containing nickel and/or nickel containing coatings are regarded as suitable corrosion resistance material especially in the superheater regions. However, the corrosive environment in the boiler caused by the presence of water vapour and reactive alkali very rapidly breaks down the primary protection, i.e., the Cr-rich oxide scale formed on stainless steels. The lifetime of the components, therefore, relies on the properties of the oxide scale formed after breakaway, i.e., the secondary protection. The aim of the current study is to investigate the role of varying nickel content (0–82%) on the high-temperature corrosion of model alloys with 18% Cr (Fe in balance) in the laboratory mimicking industrial conditions at 600°C. The influence of nickel is investigated on both the primary protection and especially the secondary protection, i.e., the scale formed after breakaway, during the oxidation/corrosion process in the dry O₂ (primary protection) and more aggressive environment such as H₂O, K₂CO₃ and KCl (secondary protection). All investigated alloys experience a very rapid loss of the primary protection, i.e., the Cr-rich (Cr, Fe)₂O₃, and the formation of secondary protection in the aggressive environments. The microstructural investigation showed that secondary protection of all alloys has a very similar microstructure in all more aggressive environments consisting of an outward growing iron oxide and inward growing spinel-oxide (Fe, Cr, Ni)₃O₄. The oxidation kinetics revealed that it is possible to influence the protectiveness of the scale formed after breakaway (secondary protection) through the amount of nickel in the alloy. The difference in oxidation kinetics of the secondary protection is linked to the microstructure and chemical composition of the complex spinel-oxide. The detailed microstructural investigations were carried out using the extensive analytical techniques such as electron back scattered diffraction (EBSD), energy dispersive X-rays spectroscopy (EDS) via the scanning and transmission electron microscopy techniques and results are compared with the thermodynamic calculations using the Thermo-Calc software.Keywords: breakaway corrosion, EBSD, high-temperature oxidation, SEM, TEM
Procedia PDF Downloads 142120 Defective Autophagy Disturbs Neural Migration and Network Activity in hiPSC-Derived Cockayne Syndrome B Disease Models
Authors: Julia Kapr, Andrea Rossi, Haribaskar Ramachandran, Marius Pollet, Ilka Egger, Selina Dangeleit, Katharina Koch, Jean Krutmann, Ellen Fritsche
Abstract:
It is widely acknowledged that animal models do not always represent human disease. Especially human brain development is difficult to model in animals due to a variety of structural and functional species-specificities. This causes significant discrepancies between predicted and apparent drug efficacies in clinical trials and their subsequent failure. Emerging alternatives based on 3D in vitro approaches, such as human brain spheres or organoids, may in the future reduce and ultimately replace animal models. Here, we present a human induced pluripotent stem cell (hiPSC)-based 3D neural in a vitro disease model for the Cockayne Syndrome B (CSB). CSB is a rare hereditary disease and is accompanied by severe neurologic defects, such as microcephaly, ataxia and intellectual disability, with currently no treatment options. Therefore, the aim of this study is to investigate the molecular and cellular defects found in neural hiPSC-derived CSB models. Understanding the underlying pathology of CSB enables the development of treatment options. The two CSB models used in this study comprise a patient-derived hiPSC line and its isogenic control as well as a CSB-deficient cell line based on a healthy hiPSC line (IMR90-4) background thereby excluding genetic background-related effects. Neurally induced and differentiated brain sphere cultures were characterized via RNA Sequencing, western blot (WB), immunocytochemistry (ICC) and multielectrode arrays (MEAs). CSB-deficiency leads to an altered gene expression of markers for autophagy, focal adhesion and neural network formation. Cell migration was significantly reduced and electrical activity was significantly increased in the disease cell lines. These data hint that the cellular pathologies is possibly underlying CSB. By induction of autophagy, the migration phenotype could be partially rescued, suggesting a crucial role of disturbed autophagy in defective neural migration of the disease lines. Altered autophagy may also lead to inefficient mitophagy. Accordingly, disease cell lines were shown to have a lower mitochondrial base activity and a higher susceptibility to mitochondrial stress induced by rotenone. Since mitochondria play an important role in neurotransmitter cycling, we suggest that defective mitochondria may lead to altered electrical activity in the disease cell lines. Failure to clear the defective mitochondria by mitophagy and thus missing initiation cues for new mitochondrial production could potentiate this problem. With our data, we aim at establishing a disease adverse outcome pathway (AOP), thereby adding to the in-depth understanding of this multi-faced disorder and subsequently contributing to alternative drug development.Keywords: autophagy, disease modeling, in vitro, pluripotent stem cells
Procedia PDF Downloads 120119 Extraction of Scandium (Sc) from an Ore with Functionalized Nanoporous Silicon Adsorbent
Authors: Arezoo Rahmani, Rinez Thapa, Juha-Matti Aalto, Petri Turhanen, Jouko Vepsalainen, Vesa-PekkaLehto, Joakim Riikonen
Abstract:
Production of Scandium (Sc) is a complicated process because Sc is found only in low concentrations in ores and the concentration of Sc is very low compared with other metals. Therefore, utilization of typical extraction processes such as solvent extraction is problematic in scandium extraction. The Adsorption/desorption method can be used, but it is challenging to prepare materials, which have good selectivity, high adsorption capacity, and high stability. Therefore, efficient and environmentally friendly methods for Sc extraction are needed. In this study, the nanoporous composite material was developed for extracting Sc from an Sc ore. The nanoporous composite material offers several advantageous properties such as large surface area, high chemical and mechanical stability, fast diffusion of the metals in the material and possibility to construct a filter out of the material with good flow-through properties. The nanoporous silicon material was produced by first stabilizing the surfaces with a silicon carbide layer and then functionalizing the surface with bisphosphonates that act as metal chelators. The surface area and porosity of the material were characterized by N₂ adsorption and the morphology was studied by scanning electron microscopy (SEM). The bisphosphonate content of the material was studied by thermogravimetric analysis (TGA). The concentration of metal ions in the adsorption/desorption experiments was measured with inductively coupled plasma mass spectrometry (ICP-MS). The maximum capacity of the material was 25 µmol/g Sc at pH=1 and 45 µmol/g Sc at pH=3, obtained from adsorption isotherm. The selectivity of the material towards Sc in artificial solutions containing several metal ions was studied at pH one and pH 3. The result shows good selectivity of the nanoporous composite towards adsorption of Sc. Scandium was less efficiently adsorbed from solution leached from the ore of Sc because of excessive amounts of iron (Fe), aluminum (Al) and titanium (Ti) which disturbed the adsorption process. For example, the concentration of Fe was more than 4500 ppm, while the concentration of Sc was only three ppm, approximately 1500 times lower. Precipitation methods were developed to lower the concentration of the metals other than Sc. Optimal pH for precipitation was found to be pH 4. The concentration of Fe, Al and Ti were decreased by 99, 70, 99.6%, respectively, while the concentration of Sc decreased only 22%. Despite the large reduction in the concentration of other metals, more work is needed to further increase the relative concentration of Sc compared with other metals to efficiently extract it using the developed nanoporous composite material. Nevertheless, the developed material may provide an affordable, efficient and environmentally friendly method to extract Sc on a large scale.Keywords: adsorption, nanoporous silicon, ore solution, scandium
Procedia PDF Downloads 146118 Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode
Authors: Sai Snehitha Yadavalli, K. Sruthi, Swati Ghosh Acharyya
Abstract:
Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used.Keywords: cadmium, cobalt, electrochemical sensing, glassy carbon electrodes, heavy metal Ions, Iron, lead, polyvinyl chloride, potentiostat, square wave anodic stripping voltammetry
Procedia PDF Downloads 103117 The Impact of Roof Thermal Performance on the Indoor Thermal Comfort in a Natural Ventilated Building Envelope in Hot Climatic Climates
Authors: J. Iwaro, A. Mwasha, K. Ramsubhag
Abstract:
Global warming has become a threat of our time. It poses challenges to the existence of beings on earth, the built environment, natural environment and has made a clear impact on the level of energy and water consumption. As such, increase in the ambient temperature increases indoor and outdoor temperature level of the buildings which brings about the use of more energy and mechanical air conditioning systems. In addition, in view of the increased modernization and economic growth in the developing countries, a significant amount of energy is being used, especially those with hot climatic conditions. Since modernization in developing countries is rising rapidly, more pressure is being placed on the buildings and energy resources to satisfy the indoor comfort requirements. This paper presents a sustainable passive roof solution as a means of reducing energy cooling loads for satisfying human comfort requirements in a hot climate. As such, the study based on the field study data discusses indoor thermal roof design strategies for a hot climate by investigating the impacts of roof thermal performance on indoor thermal comfort in naturally ventilated building envelope small scaled structures. In this respect, the traditional concrete flat roof, corrugated galvanised iron roof and pre-painted standing seam roof were used. The experiment made used of three identical small scale physical models constructed and sited on the roof of a building at the University of the West Indies. The results show that the utilization of insulation in traditional roofing systems will significantly reduce heat transfer between the internal and ambient environment, thus reducing the energy demand of the structure and the relative carbon footprint of a structure per unit area over its lifetime. Also, the application of flat slab concrete roofing system showed the best performance as opposed to the metal roof sheeting alternative systems. In addition, it has been shown experimentally through this study that a sustainable passive roof solution such as insulated flat concrete roof in hot dry climate has a better cooling strength that can provide building occupant with a better thermal comfort, conducive indoor conditions and energy efficiency.Keywords: building envelope, roof, energy consumption, thermal comfort
Procedia PDF Downloads 271116 Nanoparticles Modification by Grafting Strategies for the Development of Hybrid Nanocomposites
Authors: Irati Barandiaran, Xabier Velasco-Iza, Galder Kortaberria
Abstract:
Hybrid inorganic/organic nanostructured materials based on block copolymers are of considerable interest in the field of Nanotechnology, taking into account that these nanocomposites combine the properties of polymer matrix and the unique properties of the added nanoparticles. The use of block copolymers as templates offers the opportunity to control the size and the distribution of inorganic nanoparticles. This research is focused on the surface modification of inorganic nanoparticles to reach a good interface between nanoparticles and polymer matrices which hinders the nanoparticle aggregation. The aim of this work is to obtain a good and selective dispersion of Fe3O4 magnetic nanoparticles into different types of block copolymers such us, poly(styrene-b-methyl methacrylate) (PS-b-PMMA), poly(styrene-b-ε-caprolactone) (PS-b-PCL) poly(isoprene-b-methyl methacrylate) (PI-b-PMMA) or poly(styrene-b-butadiene-b-methyl methacrylate) (SBM) by using different grafting strategies. Fe3O4 magnetic nanoparticles have been surface-modified with polymer or block copolymer brushes following different grafting methods (grafting to, grafting from and grafting through) to achieve a selective location of nanoparticles into desired domains of the block copolymers. Morphology of fabricated hybrid nanocomposites was studied by means of atomic force microscopy (AFM) and with the aim to reach well-ordered nanostructured composites different annealing methods were used. Additionally, nanoparticle amount has been also varied in order to investigate the effect of the nanoparticle content in the morphology of the block copolymer. Nowadays different characterization methods were using in order to investigate magnetic properties of nanometer-scale electronic devices. Particularly, two different techniques have been used with the aim of characterizing synthesized nanocomposites. First, magnetic force microscopy (MFM) was used to investigate qualitatively the magnetic properties taking into account that this technique allows distinguishing magnetic domains on the sample surface. On the other hand, magnetic characterization by vibrating sample magnetometer and superconducting quantum interference device. This technique demonstrated that magnetic properties of nanoparticles have been transferred to the nanocomposites, exhibiting superparamagnetic behavior similar to that of the maghemite nanoparticles at room temperature. Obtained advanced nanostructured materials could found possible applications in the field of dye-sensitized solar cells and electronic nanodevices.Keywords: atomic force microscopy, block copolymers, grafting techniques, iron oxide nanoparticles
Procedia PDF Downloads 262115 Evaluation of Simple, Effective and Affordable Processing Methods to Reduce Phytates in the Legume Seeds Used for Feed Formulations
Authors: N. A. Masevhe, M. Nemukula, S. S. Gololo, K. G. Kgosana
Abstract:
Background and Study Significance: Legume seeds are important in agriculture as they are used for feed formulations due to their nutrient-dense, low-cost, and easy accessibility. Although they are important sources of energy, proteins, carbohydrates, vitamins, and minerals, they contain abundant quantities of anti-nutritive factors that reduce the bioavailability of nutrients, digestibility of proteins, and mineral absorption in livestock. However, the removal of these factors is too costly as it requires expensive state-of-the-art techniques such as high pressure and thermal processing. Basic Methodologies: The aim of the study was to investigate cost-effective methods that can be used to reduce the inherent phytates as putative antinutrients in the legume seeds. The seeds of Arachis hypogaea, Pisum sativum and Vigna radiata L. were subjected to the single processing methods viz raw seeds plus dehulling (R+D), soaking plus dehulling (S+D), ordinary cooking plus dehulling (C+D), infusion plus dehulling (I+D), autoclave plus dehulling (A+D), microwave plus dehulling (M+D) and five combined methods (S+I+D; S+A+D; I+M+D; S+C+D; S+M+D). All the processed seeds were dried, ground into powder, extracted, and analyzed on a microplate reader to determine the percentage of phytates per dry mass of the legume seeds. Phytic acid was used as a positive control, and one-way ANOVA was used to determine the significant differences between the means of the processing methods at a threshold of 0.05. Major Findings: The results of the processing methods showed the percentage yield ranges of 39.1-96%, 67.4-88.8%, and 70.2-93.8% for V. radiata, A. hypogaea and P. sativum, respectively. Though the raw seeds contained the highest contents of phytates that ranged between 0.508 and 0.527%, as expected, the R+D resulted in a slightly lower phytate percentage range of 0.469-0.485%, while other processing methods resulted in phytate contents that were below 0.35%. The M+D and S+M+D methods showed low phytate percentage ranges of 0.276-0.296% and 0.272-0.294%, respectively, where the lowest percentage yield was determined in S+M+D of P. sativum. Furthermore, these results were found to be significantly different (p<0.05). Though phytates cause micronutrient deficits as they chelate important minerals such as calcium, zinc, iron, and magnesium, their reduction may enhance nutrient bioavailability since they cannot be digested by the ruminants. Concluding Statement: Despite the nutritive aspects of the processed legume seeds, which are still in progress, the M+D and S+M+D methods, which significantly reduced the phytates in the investigated legume seeds, may be recommended to the local farmers and feed-producing industries so as to enhance animal health and production at an affordable cost.Keywords: anti-nutritive factors, extraction, legume seeds, phytate
Procedia PDF Downloads 28114 Challenging Convections: Rethinking Literature Review Beyond Citations
Authors: Hassan Younis
Abstract:
Purpose: The objective of this study is to review influential papers in the sustainability and supply chain studies domain, leveraging insights from this review to develop a structured framework for academics and researchers. This framework aims to assist scholars in identifying the most impactful publications for their scholarly pursuits. Subsequently, the study will apply and trial the developed framework on selected scholarly articles within the sustainability and supply chain studies domain to evaluate its efficacy, practicality, and reliability. Design/Methodology/Approach: Utilizing the "Publish or Perish" tool, a search was conducted to locate papers incorporating "sustainability" and "supply chain" in their titles. After rigorous filtering steps, a panel of university professors identified five crucial criteria for evaluating research robustness: average yearly citation counts (25%), scholarly contribution (25%), alignment of findings with objectives (15%), methodological rigor (20%), and journal impact factor (15%). These five evaluation criteria are abbreviated as “ACMAJ" framework. Each paper then received a tiered score (1-3) for each criterion, normalized within its category, and summed using weighted averages to calculate a Final Normalized Score (FNS). This systematic approach allows for objective comparison and ranking of the research based on its impact, novelty, rigor, and publication venue. Findings: The study's findings highlight the lack of structured frameworks for assessing influential sustainability research in supply chain management, which often results in a dependence on citation counts. A complete model that incorporates five essential criteria has been suggested as a response. By conducting a methodical trial on specific academic articles in the field of sustainability and supply chain studies, the model demonstrated its effectiveness as a tool for identifying and selecting influential research papers that warrant additional attention. This work aims to fill a significant deficiency in existing techniques by providing a more comprehensive approach to identifying and ranking influential papers in the field. Practical Implications: The developed framework helps scholars identify the most influential sustainability and supply chain publications. Its validation serves the academic community by offering a credible tool and helping researchers, students, and practitioners find and choose influential papers. This approach aids field literature reviews and study suggestions. Analysis of major trends and topics deepens our grasp of this critical study area's changing terrain. Originality/Value: The framework stands as a unique contribution to academia, offering scholars an important and new tool to identify and validate influential publications. Its distinctive capacity to efficiently guide scholars, learners, and professionals in selecting noteworthy publications, coupled with the examination of key patterns and themes, adds depth to our understanding of the evolving landscape in this critical field of study.Keywords: supply chain management, sustainability, framework, model
Procedia PDF Downloads 52113 Assessment of Groundwater Quality in Karakulam Grama Panchayath in Thiruvananthapuram, Kerala State, South India
Authors: D. S. Jaya, G. P. Deepthi
Abstract:
Groundwater is vital to the livelihoods and health of the majority of the people since it provides almost the entire water resource for domestic, agricultural and industrial uses. Groundwater quality comprises the physical, chemical, and bacteriological qualities. The present investigation was carried out to determine the physicochemical and bacteriological quality of the ground water sources in the residential areas of Karakulam Grama Panchayath in Thiruvananthapuram district, Kerala state in India. Karakulam is located in the eastern suburbs of Thiruvananthapuram city. The major drinking water source of the residents in the study area are wells. The present study aims to assess the portability and irrigational suitability of groundwater in the study area. The water samples were collected from randomly selected dug wells and bore wells in the study area during post monsoon and pre-monsoon seasons of the year 2014 after a preliminary field survey. The physical, chemical and bacteriological parameters of the water samples were analysed following standard procedures. The concentration of heavy metals (Cd, Pb, and Mn) in the acid digested water samples were determined by using an Atomic Absorption Spectrophotometer. The results showed that the pH of well water samples ranged from acidic to the alkaline level. In the majority of well water samples ( > 54%) the iron and magnesium content were found high in both the seasons studied, and the values were above the permissible limits of WHO drinking water quality standards. Bacteriological analyses showed that 63% of the wells were contaminated with total coliforms in both the seasons studied. Irrigational suitability of groundwater was assessed by determining the chemical indices like Sodium Percentage (%Na), Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), Permeability Index (PI), and the results indicate that the well water in the study area is good for irrigation purposes. Therefore, the study reveals the degradation of drinking water quality groundwater sources in Karakulam Grama Panchayath in Thiruvananthapuram District, Kerala in terms of its chemical and bacteriological characteristics and is not potable without proper treatment. In the study, more than 1/3rd of the wells tested were positive for total coliforms, and the bacterial contamination may pose threats to public health. The study recommends the need for periodic well water quality monitoring in the study area and to conduct awareness programs among the residents.Keywords: bacteriological, groundwater, irrigational suitability, physicochemical, portability
Procedia PDF Downloads 263112 The Characterization and Optimization of Bio-Graphene Derived From Oil Palm Shell Through Slow Pyrolysis Environment and Its Electrical Conductivity and Capacitance Performance as Electrodes Materials in Fast Charging Supercapacitor Application
Authors: Nurhafizah Md. Disa, Nurhayati Binti Abdullah, Muhammad Rabie Bin Omar
Abstract:
This research intends to identify the existing knowledge gap because of the lack of substantial studies to fabricate and characterize bio-graphene created from Oil Palm Shell (OPS) through the means of pre-treatment and slow pyrolysis. By fabricating bio-graphene through OPS, a novel material can be found to procure and used for graphene-based research. The characterization of produced bio-graphene is intended to possess a unique hexagonal graphene pattern and graphene properties in comparison to other previously fabricated graphene. The OPS will be fabricated by pre-treatment of zinc chloride (ZnCl₂) and iron (III) chloride (FeCl3), which then induced the bio-graphene thermally by slow pyrolysis. The pyrolizer's final temperature and resident time will be set at 550 °C, 5/min, and 1 hour respectively. Finally, the charred product will be washed with hydrochloric acid (HCL) to remove metal residue. The obtained bio-graphene will undergo different analyses to investigate the physicochemical properties of the two-dimensional layer of carbon atoms with sp2 hybridization hexagonal lattice structure. The analysis that will be taking place is Raman Spectroscopy (RAMAN), UV-visible spectroscopy (UV-VIS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). In retrospect, RAMAN is used to analyze three key peaks found in graphene, namely D, G, and 2D peaks, which will evaluate the quality of the bio-graphene structure and the number of layers generated. To compare and strengthen graphene layer resolves, UV-VIS may be used to establish similar results of graphene layer from last layer analysis and also characterize the types of graphene procured. A clear physical image of graphene can be obtained by analyzation of TEM in order to study structural quality and layers condition and SEM in order to study the surface quality and repeating porosity pattern. Lastly, establishing the crystallinity of the produced bio-graphene, simultaneously as an oxygen contamination factor and thus pristineness of the graphene can be done by XRD. In the conclusion of this paper, this study is able to obtain bio-graphene through OPS as a novel material in pre-treatment by chloride ZnCl₂ and FeCl3 and slow pyrolization to provide a characterization analysis related to bio-graphene that will be beneficial for future graphene-related applications. The characterization should yield similar findings to previous papers as to confirm graphene quality.Keywords: oil palm shell, bio-graphene, pre-treatment, slow pyrolysis
Procedia PDF Downloads 84111 Peculiarities of Absorption near the Edge of the Fundamental Band of Irradiated InAs-InP Solid Solutions
Authors: Nodar Kekelidze, David Kekelidze, Elza Khutsishvili, Bela Kvirkvelia
Abstract:
The semiconductor devices are irreplaceable elements for investigations in Space (artificial Earth satellite, interplanetary space craft, probes, rockets) and for investigation of elementary particles on accelerators, for atomic power stations, nuclear reactors, robots operating on heavily radiation contaminated territories (Chernobyl, Fukushima). Unfortunately, the most important parameters of semiconductors dramatically worsen under irradiation. So creation of radiation-resistant semiconductor materials for opto and microelectronic devices is actual problem, as well as investigation of complicated processes developed in irradiated solid states. Homogeneous single crystals of InP-InAs solid solutions were grown with zone melting method. There has been studied the dependence of the optical absorption coefficient vs photon energy near fundamental absorption edge. This dependence changes dramatically with irradiation. The experiments were performed on InP, InAs and InP-InAs solid solutions before and after irradiation with electrons and fast neutrons. The investigations of optical properties were carried out on infrared spectrophotometer in temperature range of 10K-300K and 1mkm-50mkm spectral area. Radiation fluencies of fast neutrons was equal to 2·1018neutron/cm2 and electrons with 3MeV, 50MeV up to fluxes of 6·1017electron/cm2. Under irradiation, there has been revealed the exponential type of the dependence of the optical absorption coefficient vs photon energy with energy deficiency. The indicated phenomenon takes place at high and low temperatures as well at impurity different concentration and practically in all cases of irradiation by various energy electrons and fast neutrons. We have developed the common mechanism of this phenomenon for unirradiated materials and implemented the quantitative calculations of distinctive parameter; this is in a satisfactory agreement with experimental data. For the irradiated crystals picture get complicated. In the work, the corresponding analysis is carried out. It has been shown, that in the case of InP, irradiated with electrons (Ф=1·1017el/cm2), the curve of optical absorption is shifted to lower energies. This is caused by appearance of the tails of density of states in forbidden band due to local fluctuations of ionized impurity (defect) concentration. Situation is more complicated in the case of InAs and for solid solutions with composition near to InAs when besides noticeable phenomenon there takes place Burstein effect caused by increase of electrons concentration as a result of irradiation. We have shown, that in certain conditions it is possible the prevalence of Burstein effect. This causes the opposite effect: the shift of the optical absorption edge to higher energies. So in given solid solutions there take place two different opposite directed processes. By selection of solid solutions composition and doping impurity we obtained such InP-InAs, solid solution in which under radiation mutual compensation of optical absorption curves displacement occurs. Obtained result let create on the base of InP-InAs, solid solution radiation-resistant optical materials. Conclusion: It was established the nature of optical absorption near fundamental edge in semiconductor materials and it was created radiation-resistant optical material.Keywords: InAs-InP, electrons concentration, irradiation, solid solutions
Procedia PDF Downloads 201110 Impact of Foliar Formulations of Macro and Micro Nutrients on the Tritrophic Association of Wheat Aphid and Entomophagous Insects
Authors: Muhammad Sufyan, Muhammad J. Arif, Muhammad Arshad, Usman Shoukat
Abstract:
In Pakistan, wheat (Triticum aestivum L.) is seriously attacked by the wheat aphid. Naturally, bio control agents play an important role in managing wheat aphid. However, association among pest, natural enemies and host plant is highly affected by food resource concentration and predator/parasitoid factor of any ecosystem. The present study was conducted to estimate the effect of different dose levels of macro and micronutrients on the aphid population and its entomophagous insect on wheat and their tri-trophic association. The experiment was laid out in RCBD with six different combinations of macro and micronutrients and a control treatment. The data was initiated from the second week of the February till the maturity of the crop. Data regarding aphid population and coccinellids counts were collected on weekly basis and subjected to analysis of variance and mean comparison. The data revealed that aphid population was at peak in the last week of March. Coccinellids population increased side by side with aphid population and declined after second week of April. Aphid parasitism was maximum 25% on recommended dose of Double and Flasher and minimum 8.67% on control treatment. Maximum aphid population was observed on first April with 687.2 specimens. However, this maximum population was shown against the application of Double + Flasher treatment. The minimum aphid population was recorded after the application of HiK Gold + Flasher recommended dose on 15th April. The coccinellids population was at peak level at on 8th April and against the treatment double recommended dose of HiK gold + Flasher. Amount of nitrogen, phosphorus and potassium percentage dry leaves components was maximum (2.33, 0.18 and 2.62 % dry leaves. respectively) in plots treated with recommended double dose mixture of Double + Flasher and Hi-K Gold + Flasher while it was minimum (1.43, 0.12 and 1.77 dry leaves respectively) in plots where no nutrients applied. The result revealed that maximum parasitism was at recommended level of micro and macro nutrients application. Maximum micro nutrients zinc, copper, manganese, iron and boron found with values 46.67 ppm, 21.81 ppm, 62.35 ppm, 152.69 ppm and 36.78 respectively. The result also showed that Over application of macro and micro nutrients should be avoided because it do not help in pest control, conversely it may cause stress on plant. The treatment Double and Flasher recommended dose ratio is almost comparable with recommended dose and present studies confirm its usefulness on wheat.Keywords: entomophagous insects, macro and micro nutrients, tri-trophic, wheat aphid
Procedia PDF Downloads 230109 Challenges to Ensure Food Safety through Sanitation and Hygiene Coverage in Bangladesh
Authors: Moshiur Rahman, Tahmida Jakia
Abstract:
Bangladesh, a densely populated South Asian country is home to more than 160 million people. In two decades ago, the people of this developing nation drank heavily contaminated surface water. Over the past thirty years, the country, and its development partners, has undertaken extensive efforts to provide microbiologically safe groundwater based drinking water through the use of tube-wells. About 85% of the people now drink tube-well water from about 11 million tube-wells/hand pumps. However, diarrhoeal and other water-related diseases are still reported among the major causes of morbidity and mortality among Bangladeshi children. This implies that the mode of transmission of pathogens through water and/or other modes continue. In addition, massive scale arsenic contamination has been recently reported in the ground water. Thirty five million people may be at risk of consuming arsenic contaminated water exceeding 0.05 mg/l in Bangladesh. Drinking of arsenic contaminated water has been linked with skin problems, cancer, cardiovascular diseases, neurological diseases, eye problems, cancer of the internal organs, and other diseases. In the study area, Narail district, recent investigations about existing water quality situations indicated presence of low to high levels of arsenic, salinity, iron, manganese and bacteriological contamination risks. As challenges for safe water exist; it is likely that sanitation and food hygiene practices are poor which lead threat to ensure food security.The main attempt of this study is to find out the challenges to ensure food security andprovide probable solutions to ensure food safety towards 0.7 million of people in study area. A survey has been conducted at Lohagara and Kalia sub district of Narail district with a pretested questionnaire. Primary data are collected through a questionnaire, while secondary data are collected from pertinent offices as well as academic journals. FGD has also been done to know the knowledge regarding water, sanitation as well as food preparation and consumption practice of community people in study area. The major focus of this study is to assess the state of sanitation and food hygiene condition of rural people. It is found that most of the villagers have lack of knowledge about food safety. Open defecation rate is high which lead threat to ensure food security.Keywords: food safety, challenges, hygiene, Bangladesh
Procedia PDF Downloads 334108 Modification of Hyrax Expansion Screw to Be Used as an Intro-Oral Distractor for Anterior Maxillary Distraction in a Patient with Cleft Lip and Palate: A Case Report
Authors: Ananya Hazare, Ranjit Kamble
Abstract:
Introduction: Patients with Cleft lip and palate (CL/P) can present with a maxillary retrution after cleft repair. Anterior Maxillary distraction osteogenesis (AMD) is a technique that provides simultaneous skeletal advancement and expansion of the soft tissues related to an anterior segment of the maxilla. This case presented is a case of AMD. The advantage of this technique is that the occlusion in the posterior segment can be maintained, and only the segment in cross bite is advanced for correction of the midfacial deficiency. The other alternative treatment is anterior movement by a Lefort 1 osteotomy. When a Lefort 1 osteotomy is compared with the Distraction osteogenesis or AMD, the disadvantages of the Le Fort 1 include a higher risk of morbidity, requirement of fixation, relapse tendency and unexpected changes in the nasal form. These complications were eliminated by AMD technique. This was followed by placement of the implant in the bone formed after AMD. Hence complete surgical, orthodontic and prosthodontics rehabilitation of the patient was done by an interdisciplinary approach. Methods: Patient presented with repaired UCL/P of the right side with midfacial retrusion. Intro-oral examination revealed a good occlusion in the posterior arch and anterior Crossbite from canine to canine. Patient's both maxillary lateral incisors were missing. The lower arch was well aligned with all teeth present. The study models when scored according to GOSLON yardstick received a score of 4. After pre-surgical orthodontic phase was completed an intraoral distractor was fabricated by modification of HYRAX expansion screw. After surgery, low subapical osteotomy cuts were placed and the distractor was fixed. The latency period of 5 days was observed after which the distraction was started. Distraction was done at a rate of 1 mm/day with a rhythm of 0.5mm in morning and 0.5mm in the evening. The total distraction of 12 mm was done. After a consolidation period, the distractor was removed, and retention by a removable partial denture was given. Radiographic examination confirmed mature bone formation in the distracted segment. Implants were placed and allowed to osseointegrate for approximately 4 months and were then loaded with abutments. Results: Total distraction done was 12mm and after relapse it was 8mm. After consolidation phase the radiographic examination revealed a B2 quality of bone according to the Misch's classification and sufficient height from the maxillary sinus. These findings were indicative for placement of implants in the distracted bone formed in premolar region. Implants were placed and after radiographic evidence of osseointegration was seen they were loaded with abutments. Thus resulting in a complete rehabilitation of a cleft patient by an interdisciplinary approach. Conclusion: Anterior maxillary distraction can be used as an alternative method instead of complete distraction osteogenesis or Lefort 1 advancement of maxilla in cases where the advancement needed is minimum. Use of HYRAX expansion screw modified as intra-oral distractor can be used in such cases, which significantly reduces the cost of treatment, as expensive distractors are not used. This technique is very useful and efficient in countries like India where the patient cannot afford expensive treatment options.Keywords: cleft lip and palate, distraction osteogenesis, anterior maxillary distraction, orthodontics and dentofacial orthopaedics, hyrax expansion screw modification
Procedia PDF Downloads 256107 Effect of Several Soil Amendments on Water Quality in Mine Soils: Leaching Columns
Authors: Carmela Monterroso, Marc Romero-Estonllo, Carlos Pascual, Beatriz Rodríguez-Garrido
Abstract:
The mobilization of heavy metals from polluted soils causes their transfer to natural waters, with consequences for ecosystems and human health. Phytostabilization techniques are applied to reduce this mobility, through the establishment of a vegetal cover and the application of soil amendments. In this work, the capacity of different organic amendments to improve water quality and reduce the mobility of metals in mine-tailings was evaluated. A field pilot test was carried out with leaching columns installed on an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE/ Phy2SUDOE Projects (SOE1/P5/E0189 and SOE4/P5/E1021)). Ten columns (1 meter high by 25 cm in diameter) were packed with untreated mine tailings (control) or those treated with organic amendments. Applied amendments were based on different combinations of municipal wastes, bark chippings, biomass fly ash, and nanoparticles like aluminum oxides or ferrihydrite-type iron oxides. During the packing of the columns, rhizon-samplers were installed at different heights (10, 20, and 50 cm) from the top, and pore water samples were obtained by suction. Additionally, in each column, a bottom leachate sample was collected through a valve installed at the bottom of the column. After packing, the columns were sown with grasses. Water samples were analyzed for: pH and redox potential, using combined electrodes; salinity by conductivity meter: bicarbonate by titration, sulfate, nitrate, and chloride, by ion chromatography (Dionex 2000); phosphate by colorimetry with ammonium molybdate/ascorbic acid; Ca, Mg, Fe, Al, Mn, Zn, Cu, Cd, and Pb by flame atomic absorption/emission spectrometry (Perkin Elmer). Porewater and leachate from the control columns (packed with unamended mine tailings) were extremely acidic and had a high concentration of Al, Fe, and Cu. In these columns, no plant development was observed. The application of organic amendments improved soil conditions, which allowed the establishment of a dense cover of grasses in the rest of the columns. The combined effect of soil amendment and plant growth had a positive impact on water quality and reduced mobility of aluminum and heavy metals.Keywords: leaching, organic amendments, phytostabilization, polluted soils
Procedia PDF Downloads 110106 Proximate Composition, Minerals and Sensory Attributes of Cake, Cookies, Cracker, and Chin-Chin Prepared from Cassava-Gari Residue Flour
Authors: Alice Nwanyioma Ohuoba, Rose Erdoo Kukwa, Ukpabi Joseph Ukpabi
Abstract:
Cassava root (Manihot esculenta) is one of the important carbohydrates containing crops in Nigeria. It is a staple food, mostly in the southern part of the country, and a source of income to farmers and processors. Cassava gari processing methods result to residue fiber (solid waste) from the sieving operation, these residue fibers ( solid wastes) can be dried and milled into flour and used to prepare cakes, cookies, crackers and chin-chin instead of being thrown away mostly on farmland or near the residential area. Flour for baking or frying may contain carbohydrates and protein (wheat flour) or rich in only carbohydrates (cassava flour). Cake, cookies, crackers, and chin-chin were prepared using the residue flour obtained from the residue fiber of cassava variety NR87184 roots, processed into gari. This study is aimed at evaluating the proximate composition, mineral content and sensory attributes of these selected snacks produced. The proximate composition results obtained showed that crackers had the lowest value in moisture (2.3390%) and fat (1.7130%), but highest in carbohydrates (85.2310%). Amongst the food products, cakes recorded the highest value in protein (8.0910%). Crude fibre values ranges from 2.5265% (cookies) to 3.4165% (crackers). The result of the mineral contents showed cookies ranking the highest in Phosphorus (65.8535 ppm) and Iron (0.1150 mg/L), Calcium (1.3800mg/L) and Potassium (7.2850 mg/L) contents, while chin-chin and crackers were lowest in Sodium ( 2.7000 mg/L). The food products were also subjected to sensory attributes evaluation by thirty member panelists using 9-hedonic scale which ranged from 1 ( dislike extremely) to 9 (like extremely). The means score obtained shows all the food products having above 7.00 (above “like moderately”). This study has shown that food products that may be functional or nutraceuticals could be prepared from the residue flour. There is a call for the use of gluten-free flour in baking due to ciliac disease and other allergic causes by gluten. Therefore local carbohydrates food crops like cassava residue flour that are gluten-free, could be the solution. In addition, this could aid cassava gari processing waste management thereby reducing post-harvest losses of cassava root.Keywords: allergy, flour, food-products, gluten-free
Procedia PDF Downloads 155105 Soils Properties of Alfisols in the Nicoya Peninsula, Guanacaste, Costa Rica
Authors: Elena Listo, Miguel Marchamalo
Abstract:
This research studies the soil properties located in the watershed of Jabillo River in the Guanacaste province, Costa Rica. The soils are classified as Alfisols (T. Haplustalfs), in the flatter parts with grazing as Fluventic Haplustalfs or as a consequence of bad drainage as F. Epiaqualfs. The objective of this project is to define the status of the soil, to use remote sensing as a tool for analyzing the evolution of land use and determining the water balance of the watershed in order to improve the efficiency of the water collecting systems. Soil samples were analyzed from trial pits taken from secondary forests, degraded pastures, mature teak plantation, and regrowth -Tectona grandis L. F.- species developed favorably in the area. Furthermore, to complete the study, infiltration measurements were taken with an artificial rainfall simulator, as well as studies of soil compaction with a penetrometer, in points strategically selected from the different land uses. Regarding remote sensing, nearly 40 data samples were collected per plot of land. The source of radiation is reflected sunlight from the beam and the underside of leaves, bare soil, streams, roads and logs, and soil samples. Infiltration reached high levels. The majority of data came from the secondary forest and mature planting due to a high proportion of organic matter, relatively low bulk density, and high hydraulic conductivity. Teak regrowth had a low rate of infiltration because the studies made regarding the soil compaction showed a partial compaction over 50 cm. The secondary forest presented a compaction layer from 15 cm to 30 cm deep, and the degraded pasture, as a result of grazing, in the first 15 cm. In this area, the alfisols soils have high content of iron oxides, a fact that causes a higher reflectivity close to the infrared region of the electromagnetic spectrum (around 700mm), as a result of clay texture. Specifically in the teak plantation where the reflectivity reaches values of 90 %, this is due to the high content of clay in relation to others. In conclusion, the protective function of secondary forests is reaffirmed with regards to erosion and high rate of infiltration. In humid climates and permeable soils, the decrease of runoff is less, however, the percolation increases. The remote sensing indicates that being clay soils, they retain moisture in a better way and it means a low reflectivity despite being fine texture.Keywords: alfisols, Costa Rica, infiltration, remote sensing
Procedia PDF Downloads 694104 An Econometric Analysis of the Flat Tax Revolution
Authors: Wayne Tarrant, Ethan Petersen
Abstract:
The concept of a flat tax goes back to at least the Biblical tithe. A progressive income tax was first vociferously espoused in a small, but famous, pamphlet in 1848 (although England had an emergency progressive tax for war costs prior to this). Within a few years many countries had adopted the progressive structure. The flat tax was only reinstated in some small countries and British protectorates until Mart Laar was elected Prime Minister of Estonia in 1992. Since Estonia’s adoption of the flat tax in 1993, many other formerly Communist countries have likewise abandoned progressive income taxes. Economists had expectations of what would happen when a flat tax was enacted, but very little work has been done on actually measuring the effect. With a testbed of 21 countries in this region that currently have a flat tax, much comparison is possible. Several countries have retained progressive taxes, giving an opportunity for contrast. There are also the cases of Czech Republic and Slovakia, which have adopted and later abandoned the flat tax. Further, with over 20 years’ worth of economic history in some flat tax countries, we can begin to do some serious longitudinal study. In this paper we consider many economic variables to determine if there are statistically significant differences from before to after the adoption of a flat tax. We consider unemployment rates, tax receipts, GDP growth, Gini coefficients, and market data where the data are available. Comparisons are made through the use of event studies and time series methods. The results are mixed, but we draw statistically significant conclusions about some effects. We also look at the different implementations of the flat tax. In some countries there are equal income and corporate tax rates. In others the income tax has a lower rate, while in others the reverse is true. Each of these sends a clear message to individuals and corporations. The policy makers surely have a desired effect in mind. We group countries with similar policies, try to determine if the intended effect actually occurred, and then report the results. This is a work in progress, and we welcome the suggestion of variables to consider. Further, some of the data from before the fall of the Iron Curtain are suspect. Since there are new ruling regimes in these countries, the methods of computing different statistical measures has changed. Although we first look at the raw data as reported, we also attempt to account for these changes. We show which data seem to be fictional and suggest ways to infer the needed statistics from other data. These results are reported beside those on the reported data. Since there is debate about taxation structure, this paper can help inform policymakers of change the flat tax has caused in other countries. The work shows some strengths and weaknesses of a flat tax structure. Moreover, it provides beginnings of a scientific analysis of the flat tax in practice rather than having discussion based solely upon theory and conjecture.Keywords: flat tax, financial markets, GDP, unemployment rate, Gini coefficient
Procedia PDF Downloads 339103 Enhancing Photocatalytic Hydrogen Production: Modification of TiO₂ by Coupling with Semiconductor Nanoparticles
Authors: Saud Hamdan Alshammari
Abstract:
Photocatalytic water splitting to produce hydrogen (H₂) has obtained significant attention as an environmentally friendly technology. This process, which produces hydrogen from water and sunlight, represents a renewable energy source. Titanium dioxide (TiO₂) plays a critical role in photocatalytic hydrogen production due to its chemical stability, availability, and low cost. Nevertheless, TiO₂'s wide band gap (3.2 eV) limits its visible light absorption and might affect the effectiveness of the photocatalytic. Coupling TiO₂ with other semiconductors is a strategy that can enhance TiO₂ by narrowing its band gap and improving visible light absorption. This paper studies the modification of TiO₂ by coupling it with another semiconductor such as CdS nanoparticles using a reflux reactor and autoclave reactor that helps form a core-shell structure. Characterization techniques, including TEM and UV-Vis spectroscopy, confirmed successful coating of TiO₂ on CdS core, reduction of the band gap from 3.28 eV to 3.1 eV, and enhanced light absorption in the visible region. These modifications are attributed to the heterojunction structure between TiO₂ and CdS.The essential goal of this study is to improve TiO₂ for use in photocatalytic water splitting to enhance hydrogen production. The core-shell TiO₂@CdS nanoparticles exhibited promising results, due to band gap narrowing and improved light absorption. Future work will involve adding Pt as a co-catalyst, which is known to increase surface reaction activity by enhancing proton adsorption. Evaluation of the TiO₂@CdS@Pt catalyst will include performance assessments and hydrogen productivity tests, considering factors such as effective shapes and material ratios. Moreover, the study could be enhanced by studying further modifications to the catalyst and displaying additional performance evaluations. For instance, doping TiO₂ with metals such as nickel (Ni), iron (Fe), and cobalt (Co) and non-metals such as nitrogen (N), carbon (C), and sulfur (S) could positively influence the catalyst by reducing the band gap, enhancing the separation of photogenerated electron-hole pairs, and increasing the surface area, respectively. Additionally, to further improve catalytic performance, examining different catalyst morphologies, such as nanorods, nanowires, and nanosheets, in hydrogen production could be highly beneficial. Optimizing photoreactor design for efficient photon delivery and illumination will further enhance the photocatalytic process. These strategies collectively aim to overcome current challenges and improve the efficiency of hydrogen production via photocatalysis.Keywords: hydrogen production, photocatalytic, water spliiting, semiconductor, nanoparticles
Procedia PDF Downloads 22102 Application of Nuclear Magnetic Resonance (1H-NMR) in the Analysis of Catalytic Aquathermolysis: Colombian Heavy Oil Case
Authors: Paola Leon, Hugo Garcia, Adan Leon, Samuel Munoz
Abstract:
The enhanced oil recovery by steam injection was considered a process that only generated physical recovery mechanisms. However, there is evidence of the occurrence of a series of chemical reactions, which are called aquathermolysis, which generates hydrogen sulfide, carbon dioxide, methane, and lower molecular weight hydrocarbons. These reactions can be favored by the addition of a catalyst during steam injection; in this way, it is possible to generate the original oil in situ upgrading through the production increase of molecules of lower molecular weight. This additional effect could increase the oil recovery factor and reduce costs in transport and refining stages. Therefore, this research has focused on the experimental evaluation of the catalytic aquathermolysis on a Colombian heavy oil with 12,8°API. The effects of three different catalysts, reaction time, and temperature were evaluated in a batch microreactor. The changes in the Colombian heavy oil were quantified through nuclear magnetic resonance 1H-NMR. The relaxation times interpretation and the absorption intensity allowed to identify the distribution of the functional groups in the base oil and upgraded oils. Additionally, the average number of aliphatic carbons in alkyl chains, the number of substituted rings, and the aromaticity factor were established as average structural parameters in order to simplify the samples' compositional analysis. The first experimental stage proved that each catalyst develops a different reaction mechanism. The aromaticity factor has an increasing order of the salts used: Mo > Fe > Ni. However, the upgraded oil obtained with iron naphthenate tends to form a higher content of mono-aromatic and lower content of poly-aromatic compounds. On the other hand, the results obtained from the second phase of experiments suggest that the upgraded oils have a smaller difference in the length of alkyl chains in the range of 240º to 270°C. This parameter has lower values at 300°C, which indicates that the alkylation or cleavage reactions of alkyl chains govern at higher reaction temperatures. The presence of condensation reactions is supported by the behavior of the aromaticity factor and the bridge carbons production between aromatic rings (RCH₂). Finally, it is observed that there is a greater dispersion in the aliphatic hydrogens, which indicates that the alkyl chains have a greater reactivity compared to the aromatic structures.Keywords: catalyst, upgrading, aquathermolysis, steam
Procedia PDF Downloads 110101 Conservation of Ibis Statue Made of Composite Materials Dating to 3RD Intermediate Period - Late Period
Authors: Badawi Mahmoud, Eid Mohamed, Salih Hytham, Tahoun Mamdouh
Abstract:
Cultural properties made of types of materials; we can classify them broadly into three categories. There are organic cultural properties which have their origin in the animal and plant kingdoms. There are the inorganic cultural properties made of metal or stone. Then there are those made of both organic and inorganic materials such as metal with wood. Most cultural properties are made from several materials rather than from one single material. Cultural properties reveal a lot of information about the past and often have great artistic value. It is important to extend the life of cultural properties and preserve themif possible, that is intended to preserve them for future generations. The study of metallic relics usually includes examining the techniques used to make them and the extent to which they have corroded. The conservation science of archaeological artifacts demands an accurate grasp of the interior of the article, which cannot be seen. This is essential to elucidate the method of manufacture and provides information that is important for cleaning, restoration, and other processes of conservation. Conservation treatment does not ensure the prevention of further degradation of the archaeological artifact. Instead, it is an attempt to inhibit further degradation as much as possible. Ancient metallic artifacts are made of many materials. Some are made of a single metal, such as iron, copper, or bronze. There are also composite relics made of several metals. Almost all metals (except gold) corrode while they rest underground. Corrosion is caused by the interaction of oxygen, water, and various ions. Chloride ions play a major role in the advance of corrosion. Excavated metallic relics are usually scientifically examined as to their structure and materials and treated for preservation before being displayed for exhibition or stored in a storehouse. Bird statue hermit body is made of wood and legs and beak bronze, the object broken separated to three parts. This statue came to Grand Egyptian Museum – Conservation Centre (GEM-CC) Inorganic Lab. Statuette representing the god djehoty shaped of the bird (ibis) sculpture made of bronze and wood the body of statues made from wood and bronze from head and leg and founded remains of black resin maybe it found with mummy, the base installed by wooden statue of the ancient writings there dating, the archaeological unit decided the dating is 3rd intermediate period - late period. This study aims to do conservation process for this statue, attempt to inhibit further degradation as much as possible and fill fractures and cracks in the wooden part.Keywords: inorganic materials, metal, wood, corrosion, ibis
Procedia PDF Downloads 255100 Serum Sickness-Like Reaction to D-Mannose Supplement
Authors: Emma Plante, Charles Ekwunwa, Diego Illanes
Abstract:
Introduction: Serum Sickness-Like Reaction (SSLR) is an inflammatory immune response characterized by a rash, polyarthralgias, and fever. SSLR usually occurs in response to a new medication (most commonly antibiotics, anticonvulsants, or antiinflammatory agents) and is believed to involve the formation of drug-specific immune complexes. Here we present a case of a 16-year-old female patient who developed an SSLR in response to the D-mannose-containing over-the-counter supplement, Uqora, used to promote bladder health. Methodology: The methodology for this study included a thorough literature search for other cases of SSLR associated with D-Mannose containing products. Data collection was performed through a review of the patient’s medical record, including history, physical examination, relevant laboratory results, and treatment plan. Findings: A 16-year-old female with a history of overactive bladder and anemia presented with a diffuse urticarial rash, headaches, joint pain, and swelling for three days. Her medications included oral contraceptive pills, iron, mirabegron, UQora, and a probiotic. Physical examination revealed a diffuse urticarial rash, and her musculoskeletal exam revealed swelling and tenderness in her wrists. Her CBC, basic metabolic panel, liver function panel, lyme titers, and urinalysis were all within normal limits. The patient was referred to an allergist, who diagnosed her with SSLR. All medications were discontinued, and she was treated with a 7-day course of prednisone and cetirizine. Her symptoms resolved, and her medications were slowly resumed sequentially over several months. However, UQora triggered a recurrence of her symptoms, and it was identified as the culprit medication. Consequently, UQora was permanently discontinued, and the patient has remained symptom-free. Conclusion: This case report describes the first documented case of SSLR caused by UQora (active ingredient D-mannose). D-Mannose is a monosaccharide found in many plants and fruits, and it is commonly used to prevent urinary tract infections. While the clinical features and timeline, in this case, were typical of SSLR, UQora as the trigger was highly unusual. Clinicians should be aware of the diverse triggers of SSLR and the importance of prompt identification and management to enhance patient safety. It is possible D-mannose was not the trigger, and further research is necessary to better understand the potential therapeutic applications of D-mannose, as well as the potential risks and interactions.Keywords: serum sickness-like reaction, d-mannose, hypersensitivity reaction, urticaria
Procedia PDF Downloads 9499 Observation on the Performance of Heritage Structures in Kathmandu Valley, Nepal during the 2015 Gorkha Earthquake
Authors: K. C. Apil, Keshab Sharma, Bigul Pokharel
Abstract:
Kathmandu Valley, capital city of Nepal houses numerous historical monuments as well as religious structures which are as old as from the 4th century A.D. The city alone is home to seven UNESCO’s world heritage sites including various public squares and religious sanctums which are often regarded as living heritages by various historians and archeological explorers. Recently on April 25, 2015, the capital city including other nearby locations was struck with Gorkha earthquake of moment magnitude (Mw) 7.8, followed by the strongest aftershock of moment magnitude (Mw) 7.3 on May 12. This study reports structural failures and collapse of heritage structures in Kathmandu Valley during the earthquake and presents preliminary findings as to the causes of failures and collapses. Field reconnaissance was carried immediately after the main shock and the aftershock, in major heritage sites: UNESCO world heritage sites, a number of temples and historic buildings in Kathmandu Durbar Square, Patan Durbar Square, and Bhaktapur Durbar Square. Despite such catastrophe, a significant number of heritage structures stood high, performing very well during the earthquake. Preliminary reports from archeological department suggest that 721 of such structures were severely affected, whereas numbers within the valley only were 444 including 76 structures which were completely collapsed. This study presents recorded accelerograms and geology of Kathmandu Valley. Structural typology and architecture of the heritage structures in Kathmandu Valley are briefly described. Case histories of damaged heritage structures, the patterns, and the failure mechanisms are also discussed in this paper. It was observed that performance of heritage structures was influenced by the multiple factors such as structural and architecture typology, configuration, and structural deficiency, local ground site effects and ground motion characteristics, age and maintenance level, material quality etc. Most of such heritage structures are of masonry type using bricks and earth-mortar as a bonding agent. The walls' resistance is mainly compressive, thus capable of withstanding vertical static gravitational load but not horizontal dynamic seismic load. There was no definitive pattern of damage to heritage structures as most of them behaved as a composite structure. Some structures were extensively damaged in some locations, while structures with similar configuration at nearby location had little or no damage. Out of major heritage structures, Dome, Pagoda (2, 3 or 5 tiered temples) and Shikhara structures were studied with similar variables. Studying varying degrees of damages in such structures, it was found that Shikhara structures were most vulnerable one where Dome structures were found to be the most stable one, followed by Pagoda structures. The seismic performance of the masonry-timber and stone masonry structures were slightly better than that of the masonry structures. Regular maintenance and periodic seismic retrofitting seems to have played pivotal role in strengthening seismic performance of the structure. The study also recommends some key functions to strengthen the seismic performance of such structures through study based on structural analysis, building material behavior and retrofitting details. The result also recognises the importance of documentation of traditional knowledge and its revised transformation in modern technology.Keywords: Gorkha earthquake, field observation, heritage structure, seismic performance, masonry building
Procedia PDF Downloads 15198 In situ Stabilization of Arsenic in Soils with Birnessite and Goethite
Authors: Saeed Bagherifam, Trevor Brown, Chris Fellows, Ravi Naidu
Abstract:
Over the last century, rapid urbanization, industrial emissions, and mining activities have resulted in widespread contamination of the environment by heavy metal(loid)s. Arsenic (As) is a toxic metalloid belonging to group 15 of the periodic table, which occurs naturally at low concentrations in soils and the earth’s crust, although concentrations can be significantly elevated in natural systems as a result of dispersion from anthropogenic sources, e.g., mining activities. Bioavailability is the fraction of a contaminant in soils that is available for uptake by plants, food chains, and humans and therefore presents the greatest risk to terrestrial ecosystems. Numerous attempts have been made to establish in situ and ex-situ technologies of remedial action for remediation of arsenic-contaminated soils. In situ stabilization techniques are based on deactivation or chemical immobilization of metalloid(s) in soil by means of soil amendments, which consequently reduce the bioavailability (for biota) and bioaccessibility (for humans) of metalloids due to the formation of low-solubility products or precipitates. This study investigated the effectiveness of two different types of synthetic manganese and iron oxides (birnessite and goethite) for stabilization of As in a soil spiked with 1000 mg kg⁻¹ of As and treated with 10% dosages of soil amendments. Birnessite was made using HCl and KMnO₄, and goethite was synthesized by the dropwise addition of KOH into Fe(NO₃) solution. The resulting contaminated soils were subjected to a series of chemical extraction studies including sequential extraction (BCR method), single-step extraction with distilled (DI) water, 2M HNO₃ and simplified bioaccessibility extraction tests (SBET) for estimation of bioaccessible fractions of As in two different soil fractions ( < 250 µm and < 2 mm). Concentrations of As in samples were measured using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that soil with birnessite reduced bioaccessibility of As by up to 92% in both soil fractions. Furthermore, the results of single-step extractions revealed that the application of both birnessite and Goethite reduced DI water and HNO₃ extractable amounts of arsenic by 75, 75, 91, and 57%, respectively. Moreover, the results of the sequential extraction studies showed that both birnessite and goethite dramatically reduced the exchangeable fraction of As in soils. However, the amounts of recalcitrant fractions were higher in birnessite, and Goethite amended soils. The results revealed that the application of both birnessite and goethite significantly reduced bioavailability and the exchangeable fraction of As in contaminated soils, and therefore birnessite and Goethite amendments might be considered as promising adsorbents for stabilization and remediation of As contaminated soils.Keywords: arsenic, bioavailability, in situ stabilisation, metalloid(s) contaminated soils
Procedia PDF Downloads 13597 Molecular Dynamics Study of Ferrocene in Low and Room Temperatures
Authors: Feng Wang, Vladislav Vasilyev
Abstract:
Ferrocene (Fe(C5H5)2, i.e., di-cyclopentadienyle iron (FeCp2) or Fc) is a unique example of ‘wrong but seminal’ in chemistry history. It has significant applications in a number of areas such as homogeneous catalysis, polymer chemistry, molecular sensing, and nonlinear optical materials. However, the ‘molecular carousel’ has been a ‘notoriously difficult example’ and subject to long debate for its conformation and properties. Ferrocene is a dynamic molecule. As a result, understanding of the dynamical properties of ferrocene is very important to understand the conformational properties of Fc. In the present study, molecular dynamic (MD) simulations are performed. In the simulation, we use 5 geometrical parameters to define the overall conformation of Fc and all the rest is a thermal noise. The five parameters are defined as: three parameters d---the distance between two Cp planes, α and δ to define the relative positions of the Cp planes, in which α is the angle of the Cp tilt and δ the angle the two Cp plane rotation like a carousel. Two parameters to position the Fe atom between two Cps, i.e., d1 for Fe-Cp1 and d2 for Fe-Cp2 distances. Our preliminary MD simulation discovered the five parameters behave differently. Distances of Fe to the Cp planes show that they are independent, practically identical without correlation. The relative position of two Cp rings, α, indicates that the two Cp planes are most likely not in a parallel position, rather, they tilt in a small angle α≠ 0°. The mean plane dihedral angle δ ≠ 0°. Moreover, δ is neither 0° nor 36°, indicating under those conditions, Fc is neither in a perfect eclipsed structure nor a perfect staggered structure. The simulations show that when the temperature is above 80K, the conformers are virtually in free rotations, A very interesting result from the MD simulation is the five C-Fe bond distances from the same Cp ring. They are surprisingly not identical but in three groups of 2, 2 and 1. We describe the pentagon formed by five carbon atoms as ‘turtle swimming’ for the motion of the Cp rings of Fc as shown in their dynamical animation video. The Fe- C(1) and Fe-C(2) which are identical as ‘the turtle back legs’, Fe-C(3) and Fe-C(4) which are also identical as turtle front paws’, and Fe-C(5) ---’the turtle head’. Such as ‘turtle swimming’ analog may be able to explain the single substituted derivatives of Fc. Again, the mean Fe-C distance obtained from MD simulation is larger than the quantum mechanically calculated Fe-C distances for eclipsed and staggered Fc, with larger deviation with respect to the eclipsed Fc than the staggered Fc. The same trend is obtained for the five Fe-C-H angles from same Cp ring of Fc. The simulated mean IR spectrum at 7K shows split spectral peaks at approximately 470 cm-1 and 488 cm-1, in excellent agreement with quantum mechanically calculated gas phase IR spectrum for eclipsed Fc. As the temperature increases over 80K, the clearly splitting IR spectrum become a very board single peak. Preliminary MD results will be presented.Keywords: ferrocene conformation, molecular dynamics simulation, conformer orientation, eclipsed and staggered ferrocene
Procedia PDF Downloads 218