Search results for: fatty acid methyl esters
2647 Zebrafish Larvae Model: A High Throughput Screening Tool to Study Autism
Authors: Shubham Dwivedi, Raghavender Medishetti, Rita Rani, Aarti Sevilimedu, Pushkar Kulkarni, Yogeeswari Perumal
Abstract:
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder of early onset, characterized by impaired sociability, cognitive function and stereotypies. There is a significant urge to develop and establish new animal models with ASD-like characteristics for better understanding of underlying mechanisms. The aim of the present study was to develop a cost and time effective zebrafish model with quantifiable parameters to facilitate mechanistic studies as well as high-throughput screening of new molecules for autism. Zebrafish embryos were treated with valproic acid and a battery of behavioral tests (anxiety, inattentive behavior, irritability and social impairment) was performed on larvae at 7th day post fertilization, followed by study of molecular markers of autism. This model shows a significant behavioural impairment in valproic acid treated larvae in comparison to control which was again supported by alteration in few marker genes and proteins of autism. The model also shows a rescue of behavioural despair with positive control drugs. The model shows robust parameters to study behavior, molecular mechanism and drug screening approach in a single frame. Thus we postulate that our 7 days zebrafish larval model for autism can help in high throughput screening of new molecules on autism.Keywords: autism, zebrafish, valproic acid, neurodevelopment, behavioral assay
Procedia PDF Downloads 1622646 Determination of Physicochemical Properties, Bioaccessibility of Phenolics and Antioxidant Capacity of Mineral Enriched Linden Herbal Tea Beverage
Authors: Senem Suna, Canan Ece Tamer, Ömer Utku Çopur
Abstract:
In this research, dried linden (Tilia argentea) leaves and blossoms were used as a raw material for mineral enriched herbal tea beverage production. For this aim, %1 dried linden was infused with boiling water (100 °C) for 5 minutes. After cooling, sucrose, citric acid, ascorbic acid, natural lemon flavor and natural mineral water were added. Beverage samples were plate filtered, filled into 200-mL glass bottles, capped then pasteurized at 98 °C for 15 minutes. Water soluble dry matter, titratable acidity, ascorbic acid, pH, minerals (Fe, Ca, Mg, K, Na), color (L*, a*, b*), turbidity, bioaccessible phenolics and antioxidant capacity were analyzed. Water soluble dry matter, titratable acidity, and ascorbic were determined as 7.66±0.28 g/100 g, 0.13±0.00 g/100 mL, and 19.42±0.62 mg/100 mL, respectively. pH was measured as 3.69. Fe, Ca, Mg, K and Na contents of the beverage were determined as 0.12±0.00, 115.48±0.05, 34.72±0.14, 48.67±0.43 and 85.72±1.01 mg/L, respectively. Color was measured as 13.63±0.05, -4.33±0.05, and 3.06±0.05 for L*, a*, and b* values. Turbidity was determined as 0.69±0.07 NTU. Bioaccessible phenolics were determined as 312.82±5.91 mg GAE/100 mL. Antioxidant capacities of chemical (MetOH:H2O:HCl) and physiological extracts (in vitro digestive enzymatic extraction) with DPPH (27.59±0.53 and 0.17±0.02 μmol trolox/mL), FRAP (21.01±0.97 and 13.27±0.19 μmol trolox/mL) and CUPRAC (44.71±9.42 and 2.80±0.64 μmol trolox/mL) methods were also evaluated. As a result, enrichment with natural mineral water was proposed for the development of functional and nutritional values together with a good potential for commercialization.Keywords: linden, herbal tea beverage, bioaccessibility, antioxidant capacity
Procedia PDF Downloads 1742645 Electrospun Nanofibers from Amphiphlic Block Copolymers and Their Graphene Nanocomposites
Authors: Hussein M. Etmimi, Peter E. Mallon
Abstract:
Electrospinning uses an electrical charge to draw very fine fibers (typically on the micro or nano scale) from a liquid or molten precursor. Over the years, this method has become a widely used and a successful technique to process polymer materials and their composites into nanofibers. The main focus of this work is to study the electrospinning of multi-phase amphiphilic copolymers and their nanocomposites, which contain graphene as the nanofiller material. In such amphiphilic materials, the constituents segments are incompatible and thus the solid state morphology will be determined by the composition of the various constituents as well as the method of preparation. In this study, amphiphilic block copolymers of poly(dimethyl siloxane) and poly(methyl methacrylate) (PDMS-b-PMMA) with well-defined structures were synthesized and the solution electrospinning of these materials and their properties were investigated. Atom transfer radical polymerization (ATRP) was used to obtain the controlled block copolymers with relatively high molar masses and narrow dispersity. First, PDMS macroinitiators with different chain length of 1000, 5000 and 10000 g/mol were synthesized by the reaction of monocarbinol terminated PDMS with α-bromoisobutyryl bromide initiator. The obtained macroinitiators were used for the polymerization of methyl methacrylate monomer to obtain the desired block copolymers using the ATRP process. Graphene oxide (GO) of different loading was then added to the copolymer solution and the resultant nanocomposites were successfully electrospun into nanofibers. The electrospinning was achieved using dimethylformamide/chloroform mixture (60:40 vl%) as electrospinning solution medium. Scanning electron microscopy (SEM) showed the successful formation of the electrospun fibers with dimensions in the nanometer range. X-ray diffraction indicated that the GO nanosheets were of an exfoliated structure, irrespective of the filler loading. Thermogravimetric analysis also showed that the thermal stability of the nanofibers was improved in the presence of GO, which was not a function of the filler loading. Differential scanning calorimetry also showed that the mechanical properties (measured as glass transition temperature) of the nanofibers was improved significantly in the presence of GO, which was a function of the filler loading.Keywords: elctrospinning, graphene oxide, nanofibers, polymethyl methacrylate (PMMA)
Procedia PDF Downloads 3062644 Use of Pig as an Animal Model for Assessing the Differential MicroRNA Profiling in Kidney after Aristolochic Acid Intoxication
Authors: Daniela E. Marin, Cornelia Braicu, Gina C. Pistol, Roxana Cojocneanu-Petric, Ioana Berindan Neagoe, Mihail A. Gras, Ionelia Taranu
Abstract:
Aristolochic acid (AA) is a carcinogenic, mutagenic, and nephrotoxic compound commonly found in the Aristolochiaceae family of plants. AA is frequently associated with urothelial carcinoma of the upper urinary tract in human and animals and is considered as being responsible for Balkan Endemic Nephropathy. The pig provides a good animal model because the porcine urological system is very similar to that of humans, both in aspects of physiology and anatomy. MicroRNA (miRNA) are small non-coding RNAs that have an impact on a wide range of biological processes by regulating gene expression at post-transcriptional level. The objective of this study was to analyze the miRNA profiling in the kidneys of AA intoxicated swine. For this purpose, ten TOPIGS-40 crossbred weaned piglets, 4-week-old, male and females with an initial average body weight of 9.83 ± 0.5 kg were studied for 28 days. They were given ad libitum access to water and feed and randomly allotted to one of the following groups: control group (C) or aristolochic acid group (AA). They were fed a maize-soybean-meal-based diet contaminated or not with 0.25mgAA/kg. To profile miRNA in the kidneys of pigs, microarrays and bioinformatics approaches were applied to analyze the miRNA in the kidney of control and AA intoxicated pigs. After normalization, our results have shown that a total of 5 known miRNAs and 4 novel miRNAs had different profiling in the kidney of intoxicated animals versus control ones. Expression of miR-32-5p, miR-497-5p, miR-423-3p, miR-218-5p, miR-128-3p were up-regulated by 0.25mgAA/kg feed, while the expression of miR-9793-5p, miR-9835-3p, miR-9840-3p, miR-4334-5p was down-regulated. The microRNA profiling in kidney of intoxicated animals was associated with modified expression of target genes as: RICTOR, LASP1, SFRP2, DKK2, BMI1, RAF1, IGF1R, MAP2K1, WEE1, HDGF, BCL2, EIF4E etc, involved in cell division cycle, apoptosis, cell differentiation and cell migration, cell signaling, cancer etc. In conclusion, this study provides new data concerning the microRNA profiling in kidney after aristolochic acid intoxications with important implications for human and animal health.Keywords: aristolochic acid, kidney, microRNA, swine
Procedia PDF Downloads 2832643 Functionalized PU Foam for Water Filtration
Authors: Nidal H. Abu-Zahra, Subhashini Gunashekar
Abstract:
Polyurethane foam is functionalized with Sulfonic acid groups to remove lead ions (Pb2+) from drinking water through a action exchange process. The synthesis is based on addition polymerization of the -NCO groups of an isocyanine with the –OH groups of a polio to form the urethane. Toluene-diisocyanateis reacted with Polypropylene glycol to form a linear pre-polymer, which is further polymerized using a chain extender, N, N-bis(2-hydorxyethyl)-2-aminoethane-sulfonic acid (BES). BES acts as a functional group site to exchange Pb2+ ions. A set of experiments was designed to study the effect of various processing parameters on the performance of the synthesized foam. The maximum Pb2+ ion exchange capacity of the foam was found to be 47ppb/g from a 100ppb Pb2+ solution over a period of 60 minutes. A multistage batch filtration process increased the lead removal to 50-54ppb/3g of foam over a period of 90 minutes.Keywords: adsorption, functionalized, ion exchange, polyurethane, sulfonic
Procedia PDF Downloads 2442642 Comparative Histological, Immunohistochemical and Biochemical Study on the Effect of Vit. C, Vit. E, Gallic Acid and Silymarin on Carbon Tetrachloride Model of Liver Fibrosis in Rats
Authors: Safaa S. Hassan, Mohammed H. Elbakry, Safwat A. Mangoura, Zainab M. Omar
Abstract:
Background: Liver fibrosis is the main reason for increased mortality in chronic liver disease. It has no standard treatment. Antioxidants from a variety of sources are capable of slowing or preventing oxidation of other molecules. Aim: to evaluate the hepatoprotective effect of vit. C, vit. E and gallic acid in comparison to silymarin in the rat model of carbon tetrachloride induced liver fibrosis and their possible mechanisms of action. Material& Methods: A total number of 60 adult male albino rats 160-200gm were divided into six equal groups; received subcutaneous (s.c) injection for 8 weeks. Group I: as control. Group II: received 1.5 mL/kg of CCL4 .Group III: CCL4 and co- treatment with silymarin 100mg/kg p.o. daily. Group IV: CCL4 and co-treatment with vit. C 50mg/kg p.o. daily. Group V: CCL4 and co-treatment with vit. E 200mg/kg. p.o. Group VI: CCL4 and co-treatment with Gallic acid 100mg/kg. p.o. daily. Liver was processed for histological and immunohistochemical examination. Levels of AST, ALT, ALP, reduced GSH, MDA, SOD and hydroxyproline concentration were measured and evaluated statistically. Results: Light and electron microscopic examination of liver of group II exhibited foci of altered cells with dense nuclei and vacuolated, granular cytoplasm, mononuclear cell infiltration in portal areas, profuse collagen fiber deposits were found around portal tract, more intense staining α-SMA-positive cells occupied most of the liver fibrosis tissue, electron lucent areas in the cytoplasm of the hepatocytes, margination of nuclear chromatin. Treatment by any of the antioxidants variably reduced the hepatic structural changes induced by CCL4. Biochemical analysis showed that carbon tetrachloride significantly increased the levels of serum AST, ALT, ALP, hepatic malondialdehyde and hydroxyproline content. Moreover, it decreased the activities of superoxide dismutase and glutathione. Treatment with silymarin, gallic acid, vit. C and vit. E decreased significantly the AST, ALT, and ALP levels in plasma, MDA and hydroxyproline and increased the activities of SOD and glutathione in liver tissue. The effect of administration of CCl4 was improved with the used antioxidants in variable degrees. The most efficient antioxidant was silymarin followed by gallic acid and vit. C then vit. E. It is possibly due to their antioxidant effect, free radical scavenging properties and the reduction of oxidant dependent activation and proliferation of HSCs. Conclusion: So these antioxidants can be a promising drugs candidate for ameliorating liver fibrosis better than the use of the drugs and their side effects.Keywords: antioxidant, ccl4, gallic acid, liver fibrosis
Procedia PDF Downloads 2722641 Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis
Authors: Aida Kalantari, Boyang Ji, Tao Chen, Ivan Mijakovic
Abstract:
3-hydroxypropanoic acid (3-HP) is one of the most important biomass-derivable platform chemicals that can be converted into a number of industrially important compounds. There have been several attempts at production of 3-HP from renewable sources in cell factories, focusing mainly on Escherichia coli, Klebsiella pneumoniae, and Saccharomyces cerevisiae. Despite the significant progress made in this field, commercially exploitable large-scale production of 3-HP in microbial strains has still not been achieved. In this study, we investigated the potential of Bacillus subtilis to be used as a microbial platform for bioconversion of glycerol into 3-HP. Our recombinant B. subtilis strains overexpress the two-step heterologous pathway containing glycerol dehydratase and aldehyde dehydrogenase from various backgrounds. The recombinant strains harboring the codon-optimized synthetic pathway from K. pneumoniae produced low levels of 3-HP. Since the enzymes in the heterologous pathway are sensitive to oxygen, we had to perform our experiments in micro-aerobic conditions. Under these conditions, the cell produces lactate in order to regenerate NAD+, and we found the lactate production to be in competition with the production of 3-HP. Therefore, based on the in silico predictions, we knocked out the glycerol kinase (glpk), which in combination with growth on glucose, resulted in improving the 3-HP titer to 1 g/L and the removal of lactate. Cultivation of the same strain in an enriched medium improved the 3-HP titer up to 7.6 g/L. Our findings provide the first report of successful introduction of the biosynthetic pathway for conversion of glycerol into 3-HP in B. subtilis.Keywords: bacillus subtilis, glycerol, 3-hydroxypropanoic acid, metabolic engineering
Procedia PDF Downloads 2472640 Antioxidant Efficacy of Lovi (Flacourtia inermis) Peel Extract in Edible Oils during Storage
Authors: Sasini U. G. Nanayakkara, Nishala E. Wedamulla, W. A. J. P. Wijesinghe
Abstract:
Lovi (Flacourtia inermis) is an underutilized fruit crop grown in Sri Lanka with promising antioxidant properties; thus, exhibits the great potential to use as a natural antioxidant. With the concern of synthetic antioxidants, there is a growing trend towards the addition of a natural antioxidant to retard the rancidity of edible oils. Hence, in this backdrop, extract obtained from the peel of F. inermis fruit was used to retard the rancidity of selected edible oils. Free fatty acid (FFA) content and peroxide value (PV) of sunflower oil (SO) and virgin coconut oil (VCO) were measured at 3-day intervals for 21 days at 65 ± 5°C after addition of extract at 500, 1000, 2000 ppm levels and α-tocopherol at 500 ppm level was used as positive control. SO and VCO without added extract was used as the control. The extract was prepared with 70% ethanol using ultrasound-assisted extraction, and antioxidant efficacy and total phenolic content (TPC) of the extract were measured using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity and Folin-Ciocalteu method respectively. Antioxidant activity (IC50) and TPC of the extract were 227.14 ± 4.12 µgmL⁻¹ and 4.87 ± 0.01 mg GAE per gram, respectively. During the storage period, FFA content and PV of both oils were increased with time. However, SO showed comparatively high PV than that of VCO and thereby indicate the progression of lipid oxidation as PV is a good indicator of the extent of primary oxidative products formed in oils. The most effective extract concentration was 2000 ppm. After 21 days of storage, VCO (control) sample exhibited significantly (p < 0.05) high FFA (0.36%) and PV (1.93 meq kg⁻¹) than that of VCO with 1000 ppm (FFA: 0.35%; PV: 1.72 meq kg⁻¹) and 2000 ppm (FFA: 0.28%; PV: 1.19 meq kg-1) levels of extract. Thus, demonstrates the efficacy of lovi peel extract in retardation of lipid oxidation of edible oils during storage at higher concentrations of the extract addition. Moreover, FFA and PV of SO (FFA: 0.10%; PV: 12.38 meq kg⁻¹) and VCO (FFA: 0.28%; PV: 1.19 meq kg⁻¹) at 2000 ppm level of extract were significantly (p < 0.05) lower than that of positive control: SO with α-tocopherol (FFA: 0.22%, PV: 17.94 meq kg⁻¹) and VCO with α-tocopherol (FFA: 0.29%, PV: 1.39 meq kg⁻¹) after 21 days. Accordingly, lovi peel extract at 2000 ppm level was more effective than α-tocopherol in retardation of lipid oxidation of edible oils. In conclusion, lovi peel extract has strong antioxidant properties and can be used as a natural antioxidant to inhibit deteriorative oxidation of edible oils.Keywords: antioxidant, Flacourtia inermis, peroxide value, virgin coconut oil
Procedia PDF Downloads 1272639 Mitigating Acid Mine Drainage Pollution: A Case Study In the Witwatersrand Area of South Africa
Authors: Elkington Sibusiso Mnguni
Abstract:
In South Africa, mining has been a key economic sector since the discovery of gold in 1886 in the Witwatersrand region, where the city of Johannesburg is located. However, some mines have since been decommissioned, and the continuous pumping of acid mine drainage (AMD) also stopped causing the AMD to rise towards the ground surface. This posed a serious environmental risk to the groundwater resources and river systems in the region. This paper documents the development and extent of the environmental damage as well as the measures implemented by the government to alleviate such damage. The study will add to the body of knowledge on the subject of AMD treatment to prevent environmental degradation. The method used to gather and collate relevant data and information was the desktop study. The key findings include the social and environmental impact of the AMD, which include the pollution of water sources for domestic use leading to skin and other health problems and the loss of biodiversity in some areas. It was also found that the technical intervention of constructing a plant to pump and treat the AMD using the high-density sludge technology was the most effective short-term solution available while a long-term solution was being explored. Some successes and challenges experienced during the implementation of the project are also highlighted. The study will be a useful record of the current status of the AMD treatment interventions in the region.Keywords: acid mine drainage, groundwater resources, pollution, river systems, technical intervention, high density sludge
Procedia PDF Downloads 1862638 Experimental Measurements for the Effect of Dilution Procedure in Blood Esterases as Animals Biomarker for Exposure to Organophosphate Compounds
Authors: Kasim Sakran Abass
Abstract:
This main aim of this study was to confirm and extend our current knowledge about the effects of dilutions on esterases activities in the blood for birds with respect to protecting the enzyme from organophosphate inhibition. There were significantly higher esterases activities in dilution 1:10 in all blood samples from quail, duck, and chick compared to other dilutions (1:5, 1:15, 1:20, and 1:25). Furthermore, our results also pointed to the importance of estimating different dilutions effects prior to using in birds as biomarker tools of environmental exposure. Concentration–inhibition curves were determined for the inhibitor in the presence of dilutions 1:5, 1:10 plus 1:15 (to stimulate carboxylesterase). Point estimates (concentrations calculated to produce 20, 50, and 80% inhibition) were compared across conditions and served as a measure of esterase-mediated detoxification. Among the thiol esters (dilution 1:5) was observed to have the highest specificity constant (kcat/Km), and the Km and kcat values were 176 μM and 16,765 s−1, respectively for S-phenyl thioacetate ester, while detected in (dilution 1:15) the lowest specificity constant (kcat/Km), and the Km and kcat values were 943 μM and 1154 s−1, respectively for acetylthiocholine iodide ester.Keywords: esterase, animal, dilution, pesticides
Procedia PDF Downloads 5282637 Penetration Depth Study of Linear Siloxanes through Human Skin
Authors: K. Szymkowska, K. Mojsiewicz- Pieńkowska
Abstract:
Siloxanes are a common ingredients in medicinal products used on the skin, as well as cosmetics. It is widely believed that the silicones are not capable of overcoming the skin barrier. The aim of the study was to verify the possibility of penetration and permeation of linear siloxanes through human skin and determine depth penetration limit of these compounds. Based on the results it was found that human skin is not a barrier for linear siloxanes. PDMS 50 cSt was not identified in the dermis suggests that this molecular size of silicones (3780Da) is safe when it is used in the skin formulations.Keywords: linear siloxanes, methyl siloxanes, skin penetration, skin permeation
Procedia PDF Downloads 4012636 Impact of Glycation on Proteomics of Human Serum Albumin: Relevance to Diabetes Associated Pathologies
Authors: Alok Raghav, Jamal Ahmad
Abstract:
Background: Serum albumin glycation and advanced glycation end products (AGE) formation correlates in diabetes and its associated complications. Extensive modified human serum albumin is used to study the biochemical, electrochemical and functional properties in hyperglycemic environment with relevance to diabetes. We evaluate Spectroscopic, side chain modifications, amino acid analysis, biochemical and functional group properties in four glucose modified samples. Methods: A series four human serum albumin samples modified with glucose was characterized in terms of amino acid analysis, spectroscopic properties and side chain modifications. The diagnostic technique employed incorporates UV Spectroscopy, Fluorescence Spectroscopy, biochemical assays for side chain modifications, amino acid estimations, electrochemical and optical characterstic of glycated albumin. Conclusion: Glucose modified human serum albumin confers AGEs formation alters biochemical, electrochemical, optical, and functional property that depend on the reactivity of glucose and its concentration used for in-vitro glycation. A biochemical, electrochemical, optical, and functional characterization of modified albumin in-vitro produced AGE product that will be useful to interpret the complications and pathophysiological significance in diabetes.Keywords: human serum albumin, glycated albumin, adavanced glycation end products, associated pathologies
Procedia PDF Downloads 4012635 Binding Studies of Complexes of Anticancer Drugs with DNA and Enzymes Involved in DNA Replication Using Molecular Docking and Cell Culture Techniques
Authors: Fouzia Perveen, Rumana Qureshi
Abstract:
The presently studied twelve anticancer drugs are the cytotoxic agents which inhibit the replication of DNA and activity of enzymes involved in DNA replication namely topoisomerase-II, polymerase and helicase and have shown remarkable anticancer activity in clinical trials. In this study, we performed molecular docking studies of twelve antitumor drugs against DNA and DNA enzymes in the presence and absence of ascorbic acid (AA) and developed the quantitative structure-activity relationship (QSAR) model for anticancer activity screening. A number of electronic and steric descriptors were calculated using MOE software package. QSAR was established showing a correlation of binding strength with various physicochemical descriptors. Out of these twelve, eight cytotoxic drugs were tested on Non-Small Cell Lung Cancer cell lines (H-157 and H-1299) in the absence and presence of ascorbic acid and experimental IC50 values were calculated. From the docking studies, binding constants were calculated indicating the strength of drug-DNA and drug-enzyme complex formation and it was correlated to the IC50 values (both experimental and theoretical). These results can offer useful references for directing the molecular design of DNA enzyme inhibitor with improved anticancer activity.Keywords: ascorbic acid, binding constant, cytotoxic agents, cell culture, DNA, DNA enzymes, molecular docking
Procedia PDF Downloads 4272634 Enhancement and Characterization of Titanium Surfaces with Sandblasting and Acid Etching for Dental Implants
Authors: Busra Balli, Tuncay Dikici, Mustafa Toparli
Abstract:
Titanium and its alloys have been used extensively over the past 25 years as biomedical materials in orthopedic and dental applications because of their good mechanical properties, corrosion resistance, and biocompatibility. It is known that the surface properties of titanium implants can enhance the cellular response and play an important role in Osseo integration. The rate and quality of Osseo integration in titanium implants are related to their surface properties. The purpose of this investigation was to evaluate the effect of sandblasting and acid etching on surface morphology, roughness, the wettability of titanium. The surface properties will be characterized by scanning electron microscopy and contact angle and roughness measurements. The results show that surface morphology, roughness, and wettability were changed and enhanced by these treatments.Keywords: dental implant, etching, surface modifications, surface morphology, surface roughness
Procedia PDF Downloads 4912633 Effects of Lipoic Acid Supplementation on Activities of Cyclooxygenases and Levels of Prostaglandins E2 and F2 Alpha Metabolites in the Offspring of Rats with Streptozocin-Induced Diabetes
Authors: H. Y. Al-Matubsi, G. A. Oriquat, M. Abu-Samak, O. A. Al Hanbali, M. Salim
Abstract:
Background: Uncontrolled diabetes mellitus (DM) is an etiological factor for recurrent pregnancy loss and major congenital malformations in the offspring. Antioxidant therapy has been advocated to overcome the oxidant-antioxidant disequilibrium inherent in diabetes. The aims of this study were to evaluate the protective effect of lipoic acid (LA) on fetal outcome and to elucidate changes that may be involved in the mechanism(s) implicit diabetic fetopathy. Methods: Female rats were rendered hyperglycemic using streptozocin and then mated with normal male rat. Pregnant non-diabetic (group1; n=9; and group2; n=7) or pregnant diabetic (group 3; n=10; and group 4; n=8) rats were treated daily with either lipoic acid (LA) (30 mg/kg body weight; groups 2 and 4) or vehicle (groups 1 and 3) between gestational days 0 and 15. On day 15 of gestation, the rats were sacrificed, and the fetuses, placentas and membranes dissected out of the uterine horns. Following morphological examination, the fetuses, placentas and membranes were homogenized, and used to measure cyclooxygenases (COX) activities and metabolisms of prostaglandin (PG) E2 (PGEM) and PGF2 (PGFM) levels. Maternal liver and plasma total glutathione levels were also determined. Results: Supplementation of diabetic rats with LA was found to significantly (P<0.05) reduce resorption rates in diabetic rats and increased mean fetal weight compared to diabetic group. Treatment of diabetic rats with LA leads to a significant (P<0.05) increase in liver and plasma total glutathione, in comparison with diabetic rats. Decreased levels of PGEM and elevated levels of PGFM in the fetuses, placentas and membranes were characteristic of experimental diabetic gestation associated with malformation. LA treatment to diabetic mothers failed to normalize levels of PGEM to the non-diabetic control rats. However, the levels of PGEM in malformed fetuses from LA-treated diabetic mothers was significantly (P < 0.05) higher than those in malformed fetuses from diabetic rats. Conclusions: We conclude that LA can reduce congenital malformations in the offspring of diabetic rats at day 15 of gestation. However, LA treatment did not completely prevent the occurrence of malformations, other factors, such as arachidonic acid deficiency and altered prostaglandin metabolismmay be involved in the pathogenesis of diabetes-induced congenital malformations.Keywords: diabetes, lipoic acid, pregnancy, prostaglandins
Procedia PDF Downloads 2622632 Green Synthesis of Red-Fluorescent Gold Nanoclusters: Characterization and Application for Breast Cancer Detection
Authors: Agnė Mikalauskaitė, Renata Karpicz, Vitalijus Karabanovas, Arūnas Jagminas
Abstract:
The use of biocompatible precursors for the synthesis and stabilization of fluorescent gold nanoclusters (NCs) with strong red photoluminescence creates an important link between natural sciences and nanotechnology. Herein, we report the cost-effective synthesis of Au nanoclusters by templating and reduction of chloroauric acid with the cheap amino acid food supplements. This synthesis under the optimized conditions leads to the formation of biocompatible Au NCs having good stability and intense red photoluminescence, peaked at 680 to 705 nm, with a quantum yield (QY) of ≈7% and the average lifetime of up to several µs. The composition and luminescent properties of the obtained NCs were compared with ones formed via well-known bovine serum albumin reduction approach. Our findings implied that synthesized Au NCs tend to accumulate in more tumorigenic breast cancer cells (line MDA-MB-213) and after dialysis can be prospective for bio imagining.Keywords: gold nanoclusters, proteins, materials chemistry, red-photoluminescence, bioimaging
Procedia PDF Downloads 2782631 Magnetic Biomaterials for Removing Organic Pollutants from Wastewater
Authors: L. Obeid, A. Bee, D. Talbot, S. Abramson, M. Welschbillig
Abstract:
The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate and chitosane are extensively used as inexpensive, non-toxic and efficient biosorbents. Alginate is an anionic polysaccharide extracted from brown seaweeds. Chitosan is an amino-polysaccharide; this cationic polymer is obtained by deacetylation of chitin the major constituent of crustaceans. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate and chitosan beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet. In the present work, we have studied the adsorption affinity of magnetic alginate beads and magnetic chitosan beads (called magsorbents) for methyl orange (MO) (an anionic dye), methylene blue (MB) (a cationic dye) and p-nitrophenol (PNP) (a hydrophobic pollutant). The effect of different parameters (pH solution, contact time, pollutant initial concentration…) on the adsorption of pollutant on the magnetic beads was investigated. The adsorption of anionic and cationic pollutants is mainly due to electrostatic interactions. Consequently methyl orange is highly adsorbed by chitosan beads in acidic medium and methylene blue by alginate beads in basic medium. In the case of a hydrophobic pollutant, which is weakly adsorbed, we have shown that the adsorption is enhanced by adding a surfactant. Cetylpyridinium chloride (CPC), a cationic surfactant, was used to increase the adsorption of PNP by magnetic alginate beads. Adsorption of CPC by alginate beads occurs through two mechanisms: (i) electrostatic attractions between cationic head groups of CPC and negative carboxylate functions of alginate; (ii) interaction between the hydrocarbon chains of CPC. The hydrophobic pollutant is adsolubilized within the surface aggregated structures of surfactant. Figure c shows that PNP can reach up to 95% of adsorption in presence of CPC. At highest CPC concentrations, desorption occurs due to the formation of micelles in the solution. Our magsorbents appear to efficiently remove ionic and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants.Keywords: adsorption, alginate, chitosan, magsorbent, magnetic, organic pollutant
Procedia PDF Downloads 2572630 Carbon Nanomaterials from Agricultural Wastes for Adsorption of Organic Pollutions
Authors: Magdalena Blachnio, Viktor Bogatyrov, Mariia Galaburda, Anna Derylo-Marczewska
Abstract:
Agricultural waste materials from traditional oil mill and after extraction of natural raw materials in supercritical conditions were used for the preparation of carbon nanomaterials (activated carbons) by two various methods. Chemical activation using acetic acid and physical activation with a gaseous agent (carbon dioxide) were chosen as mild and environmentally friendly ones. The effect of influential factors: type of raw material, temperature and activation agent on the porous structure characteristics of the materials was discussed by using N₂ adsorption/desorption isotherms at 77 K. Furthermore scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to examine the physicochemical properties of the obtained sorbents. Selection of a raw material and an optimization of the conditions of the synthesis process, allowed to obtain the cheap sorbents with a targeted distribution of pores enabling effective adsorption of the model organic pollutants carried out in the multicomponent systems. Adsorption behavior (capacity and rate) of the chosen activated carbons was estimated by utilizing Crystal violet (CV), 4-chlorophenoxyacetic acid (4-CPA), 2.4-dichlorophenoxyacetic acid (2.4-D) as the adsorbates. Both rate and adsorption capacity of the organics on the sorbents evidenced that the activated carbons could be effectively used in sewage treatment plants. The mechanisms of organics adsorption were studied and correlated with activated carbons properties.Keywords: activated carbon, adsorption equilibrium, adsorption kinetics, organics adsorption
Procedia PDF Downloads 1772629 In Vitro Assessment of True Digestibility and Rumen Parameters of Forage-Based Sheep Diet, Supplemented with Dietary Fossil Shell Flour
Authors: Olusegun O. Ikusika, Conference T. Mpendulo
Abstract:
The abundance of fossil shell flour (FSF) globally has increased interest in its use as a natural feed additive in livestock diets. Therefore, identifying its optimum inclusion levels in livestock production is essential for animal productivity. This study investigated the effects of various fossil shell flour (FSF) inclusion levels on in vitro digestibility, relative feed values, and rumen parameters of Dohne-Merino wethers. Twenty-four fistulated wethers with an average body weight of 20 ± 1•5 kg in a complete randomized design of four treatments having six wethers per treatment were used. They were fed a basal diet without fossil shell flour (control, 0%) or with the addition of 2% FSF (T2), 4% FSF(T3), and 6% FSF (T4) of diet DM for 35 days, excluding 14 days adaptation period. The results showed that increasing FSF levels had no effect on ruminal T0C or pH, but Ammonia-N increased (P<0.01) with increasing FSF. The total molar concentrations of volatile fatty acids (VFA) decreased (P<0.05) with increasing levels of FSF. Acetic: propionic ratio decreased except at the 4 % inclusion level. IVTDDM, IVTDNDF and IVTDADF decreased up till 4% FSF inclusion but tended to increase (P = 0.06) at 6% inclusion. Relative feed values of the diets tended to increase (P=0.07) by adding fossil shell flour. In conclusion, adding FSF to the diets of Dohne-Merino wether up to 6% FSF inclusion rates did not improve IVTDDM (In vitro true digestibility dry matter), IVTDNDF (In vitro true digestibility neutral detergent fiber), and IVTDADF (In vitro true digestibility acid detergent fiber). However, a small increment of rumen nitrogen with no adverse effects on the rumen parameters was observed. The relative feed value (RFV) moved the feed from good to premium when supplemented. Therefore, FSF supplementation could improve feed value and maintain a normal range of rumen parameters for the effective functionality of the rumen.Keywords: fossil shell flour, rumen parameters, in vitro digestibility, feed quality, dohne-merino sheep
Procedia PDF Downloads 1042628 Elaboration of Composites with Thermoplastic Matrix Polypropylene Charged by the Polyaniline Synthesized by the Self-Curling Method
Authors: Selma Saadia, Nacira Naar, Ahmed Benaboura
Abstract:
This work is dedicated to the elaboration of composites (PP/PANI) with Polypropylene (PP) as thermoplastic polymer and the polyaniline (PANI) as electric charge doped with sulfanilic acid (PANI-As). These realized formulations are intended for the antistatic domain. The used conductive polymer is synthesized by the method self-curling which proved the obtaining of the nanoparticles of PANI in regular morphological forms. The PANI and PP composites are fabricated into a film by a twin-screw extruding. Several methods of characterization are proposed: spectroscopic, thermal, and electric. The realized composites proved a pseudo-homogeneous aspect and the threshold percolation study, showed that the formulation with 7% of PANI presents a better formulation which can be used in the antistatic domain.Keywords: extruding, PANI, Polypropylene, sulfanilic acid, self-Curling
Procedia PDF Downloads 2442627 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method
Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary
Abstract:
Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method
Procedia PDF Downloads 4302626 Evaluation of Barium Sulfate and Its Surface Modification as Reinforcing Filler for Natural and Some Synthetic Rubbers
Authors: Mohamad Abdelfattah Ibrahim Elghrbawy
Abstract:
This work deals to evaluate barium sulfate (BS) before and after its surface modification as reinforcing filler for rubber. Barium sulfate was surface-modified using polymethacrylic acid (PMAA), the monolayer surface coverage of barium sulfate by polymethacrylic acid molecules occurred at 5.4x10-6 mol/g adsorbed amount. This amount was sufficient to reduce the sediment volume from 2.65 to 2.55 cm3/gm. Natural rubber (NR) was compounded with different concentrations of barium sulfate. The rheological characteristics of NR mixes were measured using a Monsanto Oscillating Disk Rheometer. The compounded NR was vulcanized at 142°C, and the physico-mechanical properties were tested according to the standard methods. The rheological data show that the minimum torque decreases while the maximum torque increases as the barium sulfate content increase. The physico-mechanical properties of NR vulcanizates were improved up to 50 phr/ barium sulfate loading. On the other hand, styrene–butadiene rubber (SBR) and nitrile–butadiene rubber (NBR) rubbers compounded with 50 phr/barium sulfate had good rheological and mechanical properties. Scanning electron microscope studies show surface homogeneity of rubber samples as a result of good dispersion of surface modified barium sulfate in the rubber matrix. The NR, SBR and NBR vulcanizates keep their values of mechanical properties after subjected to thermal oxidative aging at 90°C for 7 days.Keywords: barium sulfate, natural rubber (nr), nitrile–butadiene rubber (nbr), polymethacrylic acid (pmaa), styrene–butadiene rubber (sbr), surface modification
Procedia PDF Downloads 772625 The Efficacy of Salicylic Acid and Puccinia Triticina Isolates Priming Wheat Plant to Diuraphis Noxia Damage
Authors: Huzaifa Bilal
Abstract:
Russian wheat aphid (Diuraphis noxia, Kurdjumov) is considered an economically important wheat (Triticum aestivum L.) pest worldwide and in South Africa. The RWA damages wheat plants and reduces annual yields by more than 10%. Even though pest management by pesticides and resistance breeding is an attractive option, chemicals can cause harm to the environment. Furthermore, the evolution of resistance-breaking aphid biotypes has out-paced the release of resistant cultivars. An alternative strategy to reduce the impact of aphid damage on plants, such as priming, which sensitizes plants to respond effectively to subsequent attacks, is necessary. In this study, wheat plants at the seedling and flag leaf stages were primed by salicylic acid and isolate representative of two races of the leaf rust pathogen Puccinia triticina Eriks. (Pt), before RWA (South African RWA biotypes 1 and 4) infestation. Randomized complete block design experiments were conducted in the greenhouse to study plant-pest interaction in primed and non-primed plants. Analysis of induced aphid damage indicated salicylic acid differentially primed wheat cultivars for increased resistance to the RWASA biotypes. At the seedling stage, all cultivars were primed for enhanced resistance to RWASA1, while at the flag leaf stage, only PAN 3111, SST 356 and Makalote were primed for increased resistance. The Puccinia triticina efficaciously primed wheat cultivars for excellent resistance to RWASA1 at the seedling and flag leaf stages. However, Pt failed to enhance the four Lesotho cultivars' resistance to RWASA4 at the seedling stage and PAN 3118 at the flag leaf stage. The induced responses at the seedling and flag leaf stages were positively correlated in all the treatments. Primed plants induced high activity of antioxidant enzymes like peroxidase, ascorbate peroxidase and superoxide dismutase. High antioxidant activity indicates activation of resistant responses in primed plants (primed by salicylic acid and Puccina triticina). Isolates of avirulent Pt races can be a worthy priming agent for improved resistance to RWA infestation. Further confirmation of the priming effects needs to be evaluated at the field trials to investigate its application efficiency.Keywords: Russian wheat aphis, salicylic acid, puccina triticina, priming
Procedia PDF Downloads 2082624 Optical Characterization of Lead Sulphide Thin Films Grown by Chemical Bath Deposition
Authors: Ekpekpo Arthur
Abstract:
Thin films can either be conductive or dielectric (non-conductive). It is formed through atom/molecules state or formed after decomposing the materials into atomic/molecular scale by physical or chemical processes. In this study, thin films of Lead Sulphide were deposited on glass substrate prepared from lead acetate and thiourea solution using chemical bath deposition (CBD). The glass slides were subjected to the pretreatment by soaking them in a solution of 50% sulphuric acid and 50% nitric acid. Lead sulphide was deposited at different parameters such as deposition time and temperature. The optical properties of the thin films were determined from spectroscopy measurements of absorbance and reflectance. Optical studies show that the band gap of lead sulphide ranges between 0.41 eV to 300K.Keywords: lead sulphide, spectroscopy, absorbance, reflectance
Procedia PDF Downloads 4312623 Structure-Based Virtual Screening and in Silico Toxicity Test of Compounds against Mycobacterium tuberculosis 7,8-Diaminopelargonic Acid Aminotransferase (MtbBioA)
Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy
Abstract:
One of the major interferences in the Philippines’ tuberculosis control program is the widespread prevalence of Mtb strains that are resistant to known drugs, such as the MDR-TB (Multi Drug Resistant Tuberculosis) and XDR-TB (Extensively Drug Resistant Tuberculosis). Therefore, there is a pressing need to search for novel Mtb drug targets in order to be able to combat these drug resistant strains. The enzyme 7,8-diaminopelargonic acid aminotransferase enzyme, or more commonly known as BioA, is one such ideal target, as it is known that humans do not possess this enzyme. BioA primarily plays a key role in Mtb’s lipid biosynthesis pathway; more specifically in the synthesis of the enzyme cofactor biotin. In this study, structure-based pharmacophore screening, docking, and ADMET evaluation of compounds obtained from the DrugBank chemical database were performed against the MtbBioA enzyme. Results of the screening, docking, ADMET, and TOPKAT calculations revealed that out of the 6,516 compounds in the library, only 7 compounds indicated more favorable binding energies as compared to the enzyme’s known inhibitor, amiclenomycin (ACM), as well as good solubility and toxicity properties. Moreover, out of these 7 compounds, Molecule 6 exhibited the best solubility and toxicity properties. In the future, these lead compounds may then be subjected to bioactivity assays in vitro or in vivo for further evaluation of its therapeutic efficacy.Keywords: 7, 8-diaminopelargonic acid aminotransferase, BioA, pharmacophore, molecular docking, ADMET, TOPKAT
Procedia PDF Downloads 4582622 Fertilizer Value of Nitrogen Captured from Poultry Facilities Using Ammonia Scrubbers
Authors: Philip A. Moore Jr., Jerry Martin, Hong Li
Abstract:
Research has shown that over half of the nitrogen (N) excreted from broiler chickens is emitted to the atmosphere before the manure is removed from the barns, resulting in air and water pollution, as well as the loss of a valuable fertilizer resource. The objective of this study was to determine the fertilizer efficiency of N captured from the exhaust air from poultry houses using acid scrubbers. This research was conducted using 24 plots located on a Captina silt loam soil. There were six treatments: (1) unfertilized control, (2) aluminum sulfate (alum) scrubber solution, (3) potassium bisulfate scrubber solution, (4) sodium bisulfate scrubber solution, (5) sulfuric acid scrubber solution and (6) ammonium nitrate fertilizer dissolved in water. There were four replications per treatment in a randomized block design. The scrubber solutions were obtained from acid scrubbers attached to exhaust fans on commercial broiler houses. All N sources were applied at an application rate equivalent to 112 kg N ha⁻¹. Forage yields were measured five times throughout the growing season. Five months after the fertilizer sources were applied, a rainfall simulation study was conducted to determine the potential effects on phosphorus (P) runoff. Forage yields were significantly higher in plots fertilized with scrubber solutions from potassium bisulfate and sodium bisulfate than plots fertilized with scrubber solutions made from alum or sulfuric acid or ammonium nitrate, which were higher than the controls (7.61, 7.46, 6.87, 6.72, 6.45, and 5.12 Mg ha ⁻¹, respectively). Forage N uptake followed similar trends as yields. Phosphorus runoff and water soluble P was significantly lower in plots fertilized with the scrubber solutions made from aluminum sulfate. This study demonstrates that N captured using ammonia scrubbers is as good or possibly better than commercial ammonium nitrate fertilizer.Keywords: air quality, ammonia emissions, nitrogen fertilizer, poultry
Procedia PDF Downloads 2002621 Toxic Dyes Removal in Aqueous Solution Using Calcined and Uncalcined Anionic Clay Zn/Al+Fe
Authors: Bessaha Hassiba, Bouraada Mohamed
Abstract:
Layered double hydroxide with Zn/(Al+Fe) molar ratio of 3:1 was synthesized by co-precipitation method and their calcined product was obtained by heating treatment of ZAF-HT at 500°C. The calcined and uncalcined materials were used to remove weak acid dyes: indigo carmine (IC) and green bezanyl-F2B (F2B) in aqueous solution. The synthesized materials were characterized by XRD, SEM, FTIR and TG/DTA analysis confirming the formation of pure layered structure of ZAF-HT, the destruction of the original structure after calcination and the intercalation of the dyes molecules. Moreover, the interlayer distance increases from 7.645 Å in ZAF-HT to 19.102 Å after the dyes sorption. The dose of the adsorbents was chosen 0.5 g/l while the initial concentrations were 250 and 750 mg/l for indigo carmine and green bezanyl-F2B respectively. The sorption experiments were carried out at ambient temperature and without adjusting the initial solution pH (pHi = 6.10 for IC and pHi = 5.01 for F2B). In addition, the maximum adsorption capacities obtained by ZAF-HT and CZAF for both dyes followed the order: CZAF-F2B (1501.4 mg.g-1) > CZAF-IC (617.3 mg.g-1) > ZAF-HT-IC (41.4 mg.g-1) > ZAF-HT-F2B (28.9 mg.g-1). The removal of indigo carmine and green bezanyl-F2B by ZAF-HT was due to the anion exchange and/or the adsorption on the surface. By using the calcined material (CZAF), the removal of the dyes was based on a particular property, called ‘memory effect’. CZAF recover the pristine structure in the presence anionic molecules such as acid dyes where they occupy the interlayer space. The sorption process was spontaneous in nature and followed pseudo-second-order. The isotherms showed that the removal of IC and F2B by ZAF-HT and CZAF were consistent with Langmiur model.Keywords: acid dyes, adsorption, calcination, layered double hydroxides
Procedia PDF Downloads 2222620 Eggshell Waste Bioprocessing for Sustainable Acid Phosphatase Production and Minimizing Environmental Hazards
Authors: Soad Abubakr Abdelgalil, Gaber Attia Abo-Zaid, Mohamed Mohamed Yousri Kaddah
Abstract:
Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. The utilization of eggshell waste as a source of renewable energy has been a hot topic in recent years. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. Results: The most potent ACP-producing B. sonorensis strain ACP2 was identified as a local bacterial strain obtained from the effluent of paper and pulp industries on basis of molecular and morphological characterization. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L⁻¹ with ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h⁻¹. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suited and favored setting for improving the ACP and organic acids production simultaneously. Quantitative and qualitative analyses of produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of thermogravimetric analysis (TGA), differential scan calorimeter (DSC), scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshells particles. Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale.Keywords: chicken eggshells waste, bioremediation, statistical experimental design, batch fermentation
Procedia PDF Downloads 3762619 Production Process for Diesel Fuel Components Polyoxymethylene Dimethyl Ethers from Methanol and Formaldehyde Solution
Authors: Xiangjun Li, Huaiyuan Tian, Wujie Zhang, Dianhua Liu
Abstract:
Polyoxymethylene dimethyl ethers (PODEn) as clean diesel additive can improve the combustion efficiency and quality of diesel fuel and alleviate the problem of atmospheric pollution. Considering synthetic routes, PODE production from methanol and formaldehyde is regarded as the most economical and promising synthetic route. However, methanol used for synthesizing PODE can produce water, which causes the loss of active center of catalyst and hydrolysis of PODEn in the production process. Macroporous strong acidic cation exchange resin catalyst was prepared, which has comparative advantages over other common solid acid catalysts in terms of stability and catalytic efficiency for synthesizing PODE. Catalytic reactions were carried out under 353 K, 1 MPa and 3mL·gcat-1·h-1 in a fixed bed reactor. Methanol conversion and PODE3-6 selectivity reached 49.91% and 23.43%, respectively. Catalyst lifetime evaluation showed that resin catalyst retained its catalytic activity for 20 days without significant changes and catalytic activity of completely deactivated resin catalyst can basically return to previous level by simple acid regeneration. The acid exchange capacities of original and deactivated catalyst were 2.5191 and 0.0979 mmol·g-1, respectively, while regenerated catalyst reached 2.0430 mmol·g-1, indicating that the main reason for resin catalyst deactivation is that Brønsted acid sites of original resin catalyst were temporarily replaced by non-hydrogen ion cations. A separation process consisting of extraction and distillation for PODE3-6 product was designed for separation of water and unreacted formaldehyde from reactive mixture and purification of PODE3-6, respectively. The concentration of PODE3-6 in final product can reach up to 97%. These results indicate that the scale-up production of PODE3-6 from methanol and formaldehyde solution is feasible.Keywords: inactivation, polyoxymethylene dimethyl ethers, separation process, sulfonic cation exchange resin
Procedia PDF Downloads 1372618 Molecular Characterization of Ovine Herpesvirus 2 Strains Based on Selected Glycoprotein and Tegument Genes
Authors: Fulufhelo Amanda Doboro, Kgomotso Sebeko, Stephen Njiro, Moritz Van Vuuren
Abstract:
Ovine herpesvirus 2 (OvHV-2) genome obtained from the lymphopblastoid cell line of a BJ1035 cow was recently sequenced in the United States of America (USA). Information on the sequences of OvHV-2 genes obtained from South African strains from bovine or other African countries and molecular characterization of OvHV-2 is not documented. Present investigation provides information on the nucleotide and derived amino acid sequences and genetic diversity of Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes, of these genes from OvHV-2 strains circulating in South Africa. Gene-specific primers were designed and used for PCR of DNA extracted from 42 bovine blood samples that previously tested positive for OvHV-2. The expected PCR products of 495 bp, 253 bp, 890 bp and 1632 bp respectively for Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes were sequenced and multiple sequence analysis done on the selected regions of the sequenced PCR products. Two genotypes for ORF 27 and ORF 73 gene sequences, and three genotypes for Ov 7 and Ov 8 ex2 gene sequences were identified, and similar groupings for the derived amino acid sequences were obtained for each gene. Nucleotide and amino acid sequence variations that led to the identification of the different genotypes included SNPs, deletions and insertions. Sequence analysis of Ov 7 and ORF 27 genes revealed variations that distinguished between sequences from SA and reference OvHV-2 strains. The implication of geographic origin among SA sequences was difficult to evaluate because of random distribution of genotypes in the different provinces, for each gene. However, socio-economic factors such as migration of people with animals, or transportation of animals for agricultural or business use from one province to another are most likely to be responsible for this observation. The sequence variations observed in this study have no impact on the antibody binding activities of glycoproteins encoded by Ov 7, Ov 8 ex2 and ORF 27 genes, as determined by prediction of the presence of B cell epitopes using BepiPred 1.0. The findings of this study will be used for selection of gene candidates for the development of diagnostic assays and vaccine development as well.Keywords: amino acid, genetic diversity, genes, nucleotide
Procedia PDF Downloads 490