Search results for: turbine mode
Magneto-Electric Behavior a Couple Aluminum / Steel Xc48
Authors: A. Mekroud, A. Khemis, M. S. Mecibah
Abstract:
The tribological behavior of a pin of paramagnetic material (aluminum), rolling on a rotating disk made of ferromagnetic material (steel XC48) in the presence of an externally applied alternating magnetic field, with the passage of electric current were studied. All tests were performed using a conventional tribometer pin- disk. Structural characterization of the surfaces in contact, oxides and wear debris, by X-ray diffraction (θ-2θ angle), showed the significant effect of magnetic field on the activation of the contact surface of the pin in no ferromagnetic material. The absence of the magnetic field causes a change of wear mode.Keywords: structural characterization of the surfaces, oxides and wear debris, X-ray diffraction
Procedia PDF Downloads 423Genetic Algorithm for Solving the Flexible Job-Shop Scheduling Problem
Authors: Guilherme Baldo Carlos
Abstract:
The flexible job-shop scheduling problem (FJSP) is an NP-hard combinatorial optimization problem, which can be applied to model several applications in a wide array of industries. This problem will have its importance increase due to the shift in the production mode that modern society is going through. The demands are increasing and for products personalized and customized. This work aims to apply a meta-heuristic called a genetic algorithm (GA) to solve this problem. A GA is a meta-heuristic inspired by the natural selection of Charles Darwin; it produces a population of individuals (solutions) and selects, mutates, and mates the individuals through generations in order to find a good solution for the problem. The results found indicate that the GA is suitable for FJSP solving.Keywords: genetic algorithm, evolutionary algorithm, scheduling, flexible job-shop scheduling
Procedia PDF Downloads 151Analysis of Performance-Emission Characteristics of a Single Cylinder Diesel Engine Fueled with Coconut Oil
Authors: Purna Singh, Vaibhav Tripathi, Vinayak Kalluri, Sumit Roy
Abstract:
The present experimental work was carried out to investigate performance and emission characteristics of single cylinder diesel engine operating under dual-fuel mode with coconut oil blended with diesel. Coconut oil is one of the edible oil which is abundant in tropical countries and has properties like diesel. To this end, performance and emission parameters of diesel-coconut oil blends were reported in the current study. The results were drawn at different load steps of engine operation with 10% and 20% of coconut oil linearly blended with diesel. From the results, it was evident that coconut oil can be successfully replaced up to 20% of diesel without hampering the performance-emission characteristics of the existing diesel engine.Keywords: coconut oil, alternative fuel, emissions, dual-fuel
Procedia PDF Downloads 202Instrumentation for Engine Start Cycle Characterization at Cold Weather High Altitude Condition
Authors: Amit Kumar Gupta, Rohit Vashistha, G. P. Ravishankar, Mahesh P. Padwale
Abstract:
A cold soaked gas turbine engine have known starting problems in high altitude and low temperature conditions. The high altitude results in lower ambient temperature, pressure, and density. Soaking at low temperature leads to higher oil viscosity, increasing the engine starter system torque requirement. Also, low temperature soaks results in a cold compressor rotor and casing. Since the thermal mass of rotor is higher than casing, casing expands faster, thereby, increasing the blade-casing tip clearance. The low pressure flow over the compressor blade coupled with the secondary flow through the compressor tip clearance during start result in stall inception. The present study discusses engine instrumentation required for capturing the stall inception event. The engine fan exit and combustion chamber were instrumented with dynamic pressure probes to capture the pressure characteristic and clamp-on current meter on primary igniter cable to capture ignition event during start cycle. The experiment was carried out at 10500 Ft. pressure altitude and -15°C ambient temperature. The high pressure compressor stall events were recorded during the starts.Keywords: compressor inlet, dynamic pressure probe, engine start cycle, flight test instrumentation
Procedia PDF Downloads 322Experimental Study of the Fan Electric Drive Based on a Two-Speed Motor in Dynamic Modes
Authors: Makhsud Bobojanov, Dauletbek Rismukhamedov, Furkat Tuychiev, Khusniddin Shamsutdionov
Abstract:
The article presents the results of experimental study of a two-speed asynchronous motor 4A80B6/4U3 with pole-changing winding on a fan drive VSUN 160x74-0.55-4 in static and dynamic modes. A prototype of a pole-changing Motor was made based on the results of the calculation and the performance and mechanical characteristics of the Motor were removed at the experimental stand, as well as useful capacities and other parameters from both poles were determined. In dynamic mode, the curves of changes of torque and current of the stator were removed by direct start, constant speed operation, by switching of speeds and stopping.Keywords: two speed motor, pole-changing motor, electric drive of fan, dynamic modes
Procedia PDF Downloads 137A Mini Radar System for Low Altitude Targets Detection
Authors: Kangkang Wu, Kaizhi Wang, Zhijun Yuan
Abstract:
This paper deals with a mini radar system aimed at detecting small targets at the low latitude. The radar operates at Ku-band in the frequency modulated continuous wave (FMCW) mode with two receiving channels. The radar system has the characteristics of compactness, mobility, and low power consumption. This paper focuses on the implementation of the radar system, and the Block least mean square (Block LMS) algorithm is applied to minimize the fortuitous distortion. It is validated from a series of experiments that the track of the unmanned aerial vehicle (UAV) can be easily distinguished with the radar system.Keywords: unmanned aerial vehicle (UAV), interference, Block Least Mean Square (Block LMS) Algorithm, Frequency Modulated Continuous Wave (FMCW)
Procedia PDF Downloads 325Power MOSFET Models Including Quasi-Saturation Effect
Authors: Abdelghafour Galadi
Abstract:
In this paper, accurate power MOSFET models including quasi-saturation effect are presented. These models have no internal node voltages determined by the circuit simulator and use one JFET or one depletion mode MOSFET transistors controlled by an “effective” gate voltage taking into account the quasi-saturation effect. The proposed models achieve accurate simulation results with an average error percentage less than 9%, which is an improvement of 21 percentage points compared to the commonly used standard power MOSFET model. In addition, the models can be integrated in any available commercial circuit simulators by using their analytical equations. A description of the models will be provided along with the parameter extraction procedure.Keywords: power MOSFET, drift layer, quasi-saturation effect, SPICE model
Procedia PDF Downloads 199The Free Vibration Analysis of Honeycomb Sandwich Beam using 3D and Continuum Model
Authors: Gürkan Şakar, Fevzi Çakmak Bolat
Abstract:
In this study free vibration analysis of aluminum honeycomb sandwich structures were carried out experimentally and numerically. The natural frequencies and mode shapes of sandwich structures fabricated with different configurations for clamped-free boundary condition were determined. The effects of lower and upper face sheet thickness, the core material thickness, cell diameter, cell angle and foil thickness on the vibration characteristics were examined. The numerical studies were performed with ANSYS package. While the sandwich structures were modeled in ANSYS the continuum model was used. Later, the numerical results were compared with the experimental findings.Keywords: sandwich structure, free vibration, numeric analysis, 3D model, continuum model
Procedia PDF Downloads 420Control of Chaotic Behaviour in Parallel-Connected DC-DC Buck-Boost Converters
Authors: Ammar Nimer Natsheh
Abstract:
Chaos control is used to design a controller that is able to eliminate the chaotic behaviour of nonlinear dynamic systems that experience such phenomena. The paper describes the control of the bifurcation behaviour of a parallel-connected DC-DC buck-boost converter used to provide an interface between energy storage batteries and photovoltaic (PV) arrays as renewable energy sources. The paper presents a delayed feedback control scheme in a module converter comprises two identical buck-boost circuits and operates in the continuous-current conduction mode (CCM). MATLAB/SIMULINK simulation results show the effectiveness and robustness of the scheme.Keywords: chaos, bifurcation, DC-DC Buck-Boost Converter, Delayed Feedback Control
Procedia PDF Downloads 443Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications
Authors: Andrés Gomez-Casseres, Rubén Contreras
Abstract:
In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.Keywords: average current control, boost converter, electrical tuning, energy harvesting
Procedia PDF Downloads 766Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy
Authors: Dimitrios Bakavos, Dimitrios Tsivoulas, Chaowalit Limmaneevichitr
Abstract:
Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product.Keywords: ageing, casting, mechanical strength, precipitates
Procedia PDF Downloads 500Optimization Techniques of Doubly-Fed Induction Generator Controller Design for Reliability Enhancement of Wind Energy Conversion Systems
Authors: Om Prakash Bharti, Aanchal Verma, R. K. Saket
Abstract:
The Doubly-Fed Induction Generator (DFIG) is suggested for Wind Energy Conversion System (WECS) to extract wind power. DFIG is preferably employed due to its robustness towards variable wind and rotor speed. DFIG has the adaptable property because the system parameters are smoothly dealt with, including real power, reactive power, DC-link voltage, and the transient and dynamic responses, which are needed to analyze constantly. The analysis becomes more prominent during any unusual condition in the electrical power system. Hence, the study and improvement in the system parameters and transient response performance of DFIG are required to be accomplished using some controlling techniques. For fulfilling the task, the present work implements and compares the optimization methods for the design of the DFIG controller for WECS. The bio-inspired optimization techniques are applied to get the optimal controller design parameters for DFIG-based WECS. The optimized DFIG controllers are then used to retrieve the transient response performance of the six-order DFIG model with a step input. The results using MATLAB/Simulink show the betterment of the Firefly algorithm (FFA) over other control techniques when compared with the other controller design methods.Keywords: doubly-fed induction generator, wind turbine, wind energy conversion system, induction generator, transfer function, proportional, integral, derivatives
Procedia PDF Downloads 97Deformulation and Comparative Analysis of Apparently Similar Polymers Using Multiple Modes of Pyrolysis-Gc/Ms
Authors: Athena Nguyen, Rojin Belganeh
Abstract:
Detecting and identifying differences in like polymer materials are key factors in deformulation, comparative analysis as well as reverse engineering. Pyrolysis-GC/MS is an easy solid sample introduction technique which expands the application areas of gas chromatography and mass spectrometry. The Micro-furnace pyrolyzer is directly interfaced with the GC injector preventing any potential of cold spot, carryover, and cross contamination. This presentation demonstrates the study of two similar polymers by performing different mode of operations in the same system: Evolve gas analysis (EGA), Flash pyrolysis, Thermal desorption analysis, and Heart-cutting analysis. Unknown polymer materials and their chemical compositions are identified.Keywords: gas chromatography/mass spectrometry, pyrolysis, pyrolyzer, thermal desorption-GC/MS
Procedia PDF Downloads 269Gaussian Operations with a Single Trapped Ion
Authors: Bruna G. M. Araújo, Pedro M. M. Q. Cruz
Abstract:
In this letter, we review the literature of the major concepts that govern Gaussian quantum information. As we work with quantum information and computation with continuous variables, Gaussian states are needed to better describe these systems. Analyzing a single ion locked in a Paul trap we use the interaction picture to obtain a toolbox of Gaussian operations with the ion-laser interaction Hamiltionian. This is achieved exciting the ion through the combination of two lasers of distinct frequencies corresponding to different sidebands of the external degrees of freedom. First we study the case of a trap with 1 mode and then the case with 2 modes. In this way, we achieve different continuous variables gates just by changing the external degrees of freedom of the trap and combining the Hamiltonians of blue and red sidebands.Keywords: Paul trap, ion-laser interaction, Gaussian operations
Procedia PDF Downloads 691Teacher’s Self-Efficacy and Self-Perception of Teaching Professional Competences
Authors: V. Biasi, A. M. Ciraci, G. Domenici, N. Patrizi
Abstract:
We present two studies centered on the teacher’s perception of self-efficacy and professional competences. The first study aims to evaluate the levels of self-efficacy as attitude in 200 teachers of primary and secondary schools. Teacher self-efficacy is related to many educational outcomes: such as teachers’ persistence, enthusiasm, commitment and instructional behavior. High level of teacher self-efficacy beliefs enhance student motivation and pupil’s learning level. On this theoretical and empirical basis we are planning a second study oriented to assess teacher self-perception of competences that are linked to teacher self-efficacy. With the CDVR Questionnaire, 287 teachers graduated in Education Sciences in e-learning mode, showed an increase in their self-perception of didactic-evaluation and relational competences and an increased confidence also in their own professionalism.Keywords: teacher competence, teacher self-efficacy, selfperception, self-report evaluation
Procedia PDF Downloads 527Theoretical Performance of a Sustainable Clean Energy On-Site Generation Device to Convert Consumers into Producers and Its Possible Impact on Electrical National Grids
Authors: Eudes Vera
Abstract:
In this paper, a theoretical evaluation is carried out of the performance of a forthcoming fuel-less clean energy generation device, the Air Motor. The underlying physical principles that support this technology are succinctly described. Examples of the machine and theoretical values of input and output powers are also given. In addition, its main features like portability, on-site energy generation and delivery, miniaturization of generation plants, efficiency, and scaling down of the whole electric infrastructure are discussed. The main component of the Air Motor, the Thermal Air Turbine, generates useful power by converting in mechanical energy part of the thermal energy contained in a fan-produced airflow while leaving intact its kinetic energy. Due to this fact an air motor can contain a long succession of identical air turbines and the total power generated out of a single airflow can be very large, as well as its mechanical efficiency. It is found using the corresponding formulae that the mechanical efficiency of this device can be much greater than 100%, while its thermal efficiency is always less than 100%. On account of its multiple advantages, the Air Motor seems to be the perfect device to convert energy consumers into energy producers worldwide. If so, it would appear that current national electrical grids would no longer be necessary, because it does not seem practical or economical to bring the energy from far-away distances while it can be generated and consumed locally at the consumer’s premises using just the thermal energy contained in the ambient air.Keywords: electrical grid, clean energy, renewable energy, in situ generation and delivery, generation efficiency
Procedia PDF Downloads 181Optimal Energy Management and Environmental Index Optimization of a Microgrid Operating by Renewable and Sustainable Generation Systems
Authors: Nabil Mezhoud
Abstract:
The economic operation of electric energy generating systems is one of the predominant problems in energy systems. Due to the need for better reliability, high energy quality, lower losses, lower cost and a clean environment, the application of renewable and sustainable energy sources, such as wind energy, solar energy, etc., in recent years has become more widespread. In this work, one of a bio-inspired meta-heuristic algorithm inspired by the flashing behavior of fireflies at night called the Firefly Algorithm (FFA) is applied to solve the Optimal Energy Management (OEM) and the environmental index (EI) problems of a micro-grid (MG) operating by Renewable and Sustainable Generation Systems (RSGS). Our main goal is to minimize the nonlinear objective function of an electrical microgrid, taking into account equality and inequality constraints. The FFA approach was examined and tested on a standard MG system composed of different types of RSGS, such as wind turbines (WT), photovoltaic systems (PV), and non-renewable energy, such as fuel cells (FC), micro turbine (MT), diesel generator (DEG) and loads with energy storage systems (ESS). The results are promising and show the effectiveness and robustness of the proposed approach to solve the OEM and the EI problems. The results of the proposed method have been compared and validated with those known references published recently.Keywords: renewable energy sources, energy management, distributed generator, micro-grids, firefly algorithm
Procedia PDF Downloads 82Strategies and Difficulties to Integrate Renewable Energy into Recreational Open Spaces
Abstract:
Recreational spaces designed or build for refreshment of the users through natural riches and/or activities. Those places contribute to the quality of city life by providing relaxation point for citizens and maintaining the environmental equilibrium. The elements which constitute the recreational areas also promote long-term environmental and social sustainability of cities. Preservation and creation of the recreation open spaces are important for water and air quality, natural habitat and also social communication. On this point, it is also a good area for promoting the renewable energy sources through comprehension of the sustainable development which is possible only with using nature and technic together. Energy production is mainly technical issue, and architectural design of these elements to the site always ignores or avoid. The main problems for integration of renewable energy sources are the system suitability, security, durability, and resiliency. In this paper, one of the city recreational open spaces in Konya, Turkey was evaluated for integration of possible renewable energy sources. It shows that the solar energy potential is high and PV integration is the best option. On the other hand wind, energy power and area is not suitable for wind turbine, so wind belts were decided to integrate on the design. According to recreational activities, the chosen elements was designed for site application, and their performance was calculated. According to possible installation on the furniture, there is 50 MWh/a electricity production capacity.Keywords: energy, integrated design, recreational space, renewables
Procedia PDF Downloads 1593D Steady and Transient Centrifugal Pump Flow within Ansys CFX and OpenFOAM
Authors: Clement Leroy, Guillaume Boitel
Abstract:
This paper presents a comparative benchmarking review of a steady and transient three-dimensional (3D) flow computations in centrifugal pump using commercial (AnsysCFX) and open source (OpenFOAM) computational fluid dynamics (CFD) software. In centrifugal rotor-dynamic pump, the fluid enters in the impeller along to the rotating axis to be accelerated in order to increase the pressure, flowing radially outward into another stage, vaned diffuser or volute casing, from where it finally exits into a downstream pipe. Simulations are carried out at the best efficiency point (BEP) and part load, for single-phase flow with several turbulence models. The results are compared with overall performance report from experimental data. The use of CFD technology in industry is still limited by the high computational costs, and even more by the high cost of commercial CFD software and high-performance computing (HPC) licenses. The main objectives of the present study are to define OpenFOAM methodology for high-quality 3D steady and transient turbomachinery CFD simulation to conduct a thorough time-accurate performance analysis. On the other hand a detailed comparisons between computational methods, features on latest Ansys release 18 and OpenFOAM is investigated to assess the accuracy and industrial applications of those solvers. Finally an automated connected workflow (IoT) for turbine blade applications is presented.Keywords: benchmarking, CFX, internet of things, openFOAM, time-accurate, turbomachinery
Procedia PDF Downloads 207Non-Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor
Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday
Abstract:
This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors were simulated to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6, and 1 and for air mass flow rates of 14 m/s, 28 m/s, and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.Keywords: aerodynamic, computational fluid dynamics, propulsion, trapped vortex combustor
Procedia PDF Downloads 92Numerical Study of Fire Propagation in Confined and Open Area
Authors: Hadj Miloua, Abbes Azzi
Abstract:
The objective of the present paper is to understand, predict and modeled the fire behavior in confined and open area in different conditions and diverse fuels such as liquid pool fire and the vegetative materials. The distinctive problems are a ventilated road tunnel used for urban transport, by the characterization installations of ventilation and his influence in the mode of smoke dispersion and the flame shape. A general investigation is relatively traditional, based on the modeling and simulation the scenario of the pool fire interacted with wind ventilation by the use of numerical software fire dynamic simulator FDS ver.5 to simulate the fire in ventilated tunnel. The second simulation by WFDS.5 is Wildland fire which is always occurs in forest and rangeland fire environments and will thus have an impact on people, property and resources.Keywords: fire, road tunnel, simulation, vegetation, wildland
Procedia PDF Downloads 519Developing Fuzzy Logic Model for Reliability Estimation: Case Study
Authors: Soroor K. H. Al-Khafaji, Manal Mohammad Abed
Abstract:
The research aim of this paper is to evaluate the reliability of a complex engineering system and to design a fuzzy model for the reliability estimation. The designed model has been applied on Vegetable Oil Purification System (neutralization system) to help the specialist user based on the concept of FMEA (Failure Mode and Effect Analysis) to estimate the reliability of the repairable system at the vegetable oil industry. The fuzzy model has been used to predict the system reliability for a future time period, depending on a historical database for the two past years. The model can help to specify the system malfunctions and to predict its reliability during a future period in more accurate and reasonable results compared with the results obtained by the traditional method of reliability estimation.Keywords: fuzzy logic, reliability, repairable systems, FMEA
Procedia PDF Downloads 618Comparative Studies of Distributed and Aggregated Energy Storage Configurations in Direct Current Microgrids
Authors: Frimpong Kyeremeh, Albert Y. Appiah, Ben B. K. Ayawli
Abstract:
Energy storage system (ESS) is an essential part of a microgrid (MG) because of its immense benefits to the economics and the stability of MG. For a direct current (DC) MG (DCMG) in which the generating units are mostly variable renewable energy generators, DC bus voltage fluctuation is inevitable; hence ESS is vital in managing the mismatch between load demand and generation. Besides, to accrue the maximum benefits of ESS in the microgrid, there is the need for proper sizing and location of the ESSs. In this paper, a performance comparison is made between two configurations of ESS; distributed battery energy storage system (D-BESS) and an aggregated (centralized) battery energy storage system (A-BESS), on the basis of stability and operational cost for a DCMG. The configuration consists of four households with rooftop PV panels and a wind turbine. The objective is to evaluate and analyze the technical efficiencies, cost effectiveness as well as controllability of each configuration. The MG is first modelled with MATLAB Simulink then, a mathematical model is used to determine the optimal size of the BESS that minimizes the total operational cost of the MG. The performance of the two configurations would be tested with simulations. The two configurations are expected to reduce DC bus voltage fluctuations, but in the cases of voltage stability and optimal cost, the best configuration performance will be determined at the end of the research. The work is in progress, and the result would help MG designers and operators to make the best decision on the use of BESS for DCMG configurations.Keywords: aggregated energy storage system, DC bus voltage, DC microgrid, distributed battery energy storage, stability
Procedia PDF Downloads 161Signal On-Off Ratio and Output Frequency Analysis of Semiconductor Electron-Interference Device
Authors: Tomotaka Aoki, Isao Tomita
Abstract:
We examined the on-off ratio and frequency components of output signals from an electron-interference device made of GaAs/AlₓGa₁₋ₓAs by solving the time-dependent Schrödinger's equation on conducting electrons in the channel waveguide of the device. For electron-wave modulation, a periodic voltage of frequency f was applied to the channel. Furthermore, we examined the voltage-amplitude dependence of the signals in time and frequency domains and found that large applied voltage deformed the output-signal waveform and created additional side modes (frequencies) near the modulation frequency f and that there was a trade-off between on-off ratio and side-mode creation.Keywords: electrical conduction, electron interference, frequency spectrum, on-off ratio
Procedia PDF Downloads 125Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator
Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi
Abstract:
With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.Keywords: offshore wind generator, PMSM, PSO optimization, design optimization
Procedia PDF Downloads 159Comparing the Effect of Virtual Reality and Sound on Landscape Perception
Authors: Mark Lindquist
Abstract:
This paper presents preliminary results of exploratory empirical research investigating the effect of viewing 3D landscape visualizations in virtual reality compared to a computer monitor, and how sound impacts perception. Five landscape types were paired with three sound conditions (no sound, generic sound, realistic sound). Perceived realism, preference, recreational value, and biodiversity were evaluated in a controlled laboratory environment. Results indicate that sound has a larger perceptual impact than display mode regardless of sound source across all perceptual measures. The results are considered to assess how sound can impact landscape preference and spatiotemporal understanding. The paper concludes with a discussion of the impact on designers, planners, and the public and targets future research endeavors in this area.Keywords: landscape experience, perception, soundscape, virtual reality
Procedia PDF Downloads 173Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets
Authors: K. R. Sultana, K. Pope, Y. S. Muzychka
Abstract:
In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.Keywords: droplets, CFD, thermos-physical properties, solidification
Procedia PDF Downloads 247The Design of PFM Mode DC-DC Converter with DT-CMOS Switch
Authors: Jae-Chang Kwak, Yong-Seo Koo
Abstract:
The high efficiency power management IC (PMIC) with switching device is presented in this paper. PMIC is controlled with PFM control method in order to have high power efficiency at high current level. Dynamic Threshold voltage CMOS (DT-CMOS) with low on-resistance is designed to decrease conduction loss. The threshold voltage of DT-CMOS drops as the gate voltage increase, resulting in a much higher current handling capability than standard MOSFET. PFM control circuits consist of a generator, AND gate and comparator. The generator is made to have 1.2MHz oscillation voltage. The DC-DC converter based on PFM control circuit and low on-resistance switching device is presented in this paper.Keywords: DT-CMOS, PMIC, PFM, DC-DC converter
Procedia PDF Downloads 453Vibrations of Springboards: Mode Shape and Time Domain Analysis
Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich
Abstract:
Diving is an important Olympic sport. In this sport, the effective performance of the athlete is related to his capability to interact correctly with the springboard. In fact, the elevation of the jump and the correctness of the dive are influenced by the vibrations of the board. In this paper, the vibrations of the springboard will be analyzed by means of typical tools for vibration analysis: Firstly, a modal analysis will be done on two different models of the springboard, then, these two model and another one will be analyzed with a time analysis, done integrating the equations of motion od deformable bodies. All these analyses will be compared with experimental data measured on a real springboard by means of a 6-axis accelerometer; these measurements are aimed to assess the models proposed. The acquired data will be analyzed both in frequency domain and in time domain.Keywords: springboard analysis, modal analysis, time domain analysis, vibrations
Procedia PDF Downloads 462The Effect of Dark energy on Amplitude of Gravitational Waves
Authors: Jafar Khodagholizadeh
Abstract:
In this talk, we study the tensor mode equation of perturbation in the presence of nonzero $-\Lambda$ as dark energy, whose dynamic nature depends on the Hubble parameter $ H$ and/or its time derivative. Dark energy, according to the total vacuum contribution, has little effect during the radiation-dominated era, but it reduces the squared amplitude of gravitational waves (GWs) up to $60\%$ for the wavelengths that enter the horizon during the matter-dominated era. Moreover, the observations bound on dark energy models, such as running vacuum model (RVM), generalized running vacuum model (GRVM), and generalized running vacuum subcase (GRVS), are effective in reducing the GWs’ amplitude. Although this effect is less for the wavelengths that enter the horizon at later times, this reduction is stable and permanent.Keywords: gravitational waves, dark energy, GW's amplitude, all stage universe
Procedia PDF Downloads 159