Search results for: dynamic pressure probe
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7823

Search results for: dynamic pressure probe

7823 Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall

Authors: Snehal R. Pathak, Sachin S. Munnoli

Abstract:

Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.

Keywords: earth pressure, earthquake, 2-DOF model, Plaxis, retaining walls, wall movement

Procedia PDF Downloads 502
7822 Instrumentation for Engine Start Cycle Characterization at Cold Weather High Altitude Condition

Authors: Amit Kumar Gupta, Rohit Vashistha, G. P. Ravishankar, Mahesh P. Padwale

Abstract:

A cold soaked gas turbine engine have known starting problems in high altitude and low temperature conditions. The high altitude results in lower ambient temperature, pressure, and density. Soaking at low temperature leads to higher oil viscosity, increasing the engine starter system torque requirement. Also, low temperature soaks results in a cold compressor rotor and casing. Since the thermal mass of rotor is higher than casing, casing expands faster, thereby, increasing the blade-casing tip clearance. The low pressure flow over the compressor blade coupled with the secondary flow through the compressor tip clearance during start result in stall inception. The present study discusses engine instrumentation required for capturing the stall inception event. The engine fan exit and combustion chamber were instrumented with dynamic pressure probes to capture the pressure characteristic and clamp-on current meter on primary igniter cable to capture ignition event during start cycle. The experiment was carried out at 10500 Ft. pressure altitude and -15°C ambient temperature. The high pressure compressor stall events were recorded during the starts.

Keywords: compressor inlet, dynamic pressure probe, engine start cycle, flight test instrumentation

Procedia PDF Downloads 284
7821 Enhanced Calibration Map for a Four-Hole Probe for Measuring High Flow Angles

Authors: Jafar Mortadha, Imran Qureshi

Abstract:

This research explains and compares the modern techniques used for measuring the flow angles of a flowing fluid with the traditional technique of using multi-hole pressure probes. In particular, the focus of the study is on four-hole probes, which offer great reliability and benefits in several applications where the use of modern measurement techniques is either inconvenient or impractical. Due to modern advancements in manufacturing, small multi-hole pressure probes can be made with high precision, which eliminates the need for calibrating every manufactured probe. This study aims to improve the range of calibration maps for a four-hole probe to allow high flow angles to be measured accurately. The research methodology comprises a literature review of the successful calibration definitions that have been implemented on five-hole probes. These definitions are then adapted and applied on a four-hole probe using a set of raw pressures data. A comparison of the different definitions will be carried out in Matlab and the results will be analyzed to determine the best calibration definition. Taking simplicity of implementation into account as well as the reliability of flow angles estimation, an adapted technique from a research paper written in 2002 offered the most promising outcome. Consequently, the method is seen as a good enhancement for four-hole probes and it can substitute for the existing calibration definitions that offer less accuracy.

Keywords: calibration definitions, calibration maps, flow measurement techniques, four-hole probes, multi-hole pressure probes

Procedia PDF Downloads 263
7820 Added Value of 3D Ultrasound Image Guided Hepatic Interventions by X Matrix Technology

Authors: Ahmed Abdel Sattar Khalil, Hazem Omar

Abstract:

Background: Image-guided hepatic interventions are integral to the management of infective and neoplastic liver lesions. Over the past decades, 2D ultrasound was used for guidance of hepatic interventions; with the recent advances in ultrasound technology, 3D ultrasound was used to guide hepatic interventions. The aim of this study was to illustrate the added value of 3D image guided hepatic interventions by x matrix technology. Patients and Methods: This prospective study was performed on 100 patients who were divided into two groups; group A included 50 patients who were managed by 2D ultrasonography probe guidance, and group B included 50 patients who were managed by 3D X matrix ultrasonography probe guidance. Thermal ablation was done for 70 patients, 40 RFA (20 by the 2D probe and 20 by the 3D x matrix probe), and 30 MWA (15 by the 2D probe and 15 by the 3D x matrix probe). Chemical ablation (PEI) was done on 20 patients (10 by the 2D probe and 10 by the 3D x matrix probe). Drainage of hepatic collections and biopsy from undiagnosed hepatic focal lesions was done on 10 patients (5 by the 2D probe and 5 by the 3D x matrix probe). Results: The efficacy of ultrasonography-guided hepatic interventions by 3D x matrix probe was higher than the 2D probe but not significantly higher, with a p-value of 0.705, 0.5428 for RFA, MWA respectively, 0.5312 for PEI, 0.2918 for drainage of hepatic collections and biopsy. The complications related to the use of the 3D X matrix probe were significantly lower than the 2D probe, with a p-value of 0.003. The timing of the procedure was shorter by the usage of 3D x matrix probe in comparison to the 2D probe with a p-value of 0.08,0.34 for RFA and PEI and significantly shorter for MWA, and drainage of hepatic collection, biopsy with a P-value of 0.02,0.001 respectively. Conclusions: 3D ultrasonography-guided hepatic interventions by  x matrix probe have better efficacy, less complication, and shorter time of procedure than the 2D ultrasonography-guided hepatic interventions.

Keywords: 3D, X matrix, 2D, ultrasonography, MWA, RFA, PEI, drainage of hepatic collections, biopsy

Procedia PDF Downloads 49
7819 Dynamic Foot Pressure Measurement System Using Optical Sensors

Authors: Tanapon Keatsamarn, Chuchart Pintavirooj

Abstract:

Foot pressure measurement provides necessary information for diagnosis diseases, foot insole design, disorder prevention and other application. In this paper, dynamic foot pressure measurement is presented for pressure measuring with high resolution and accuracy. The dynamic foot pressure measurement system consists of hardware and software system. The hardware system uses a transparent acrylic plate and uses steel as the base. The glossy white paper is placed on the top of the transparent acrylic plate and covering with a black acrylic on the system to block external light. Lighting from LED strip entering around the transparent acrylic plate. The optical sensors, the digital cameras, are underneath the acrylic plate facing upwards. They have connected with software system to process and record foot pressure video in avi file. Visual Studio 2017 is used for software system using OpenCV library.

Keywords: foot, foot pressure, image processing, optical sensors

Procedia PDF Downloads 219
7818 Nanofocusing of Surface Plasmon Polaritons by Partially Metal- Coated Dielectric Conical Probe: Optimal Asymmetric Distance

Authors: Ngo Thi Thu, Kazuo Tanaka, Masahiro Tanaka, Dao Ngoc Chien

Abstract:

Nanometric superfocusing of optical intensity near the tip of partially metal- coated dielectric conical probe of the convergent surface plasmon polariton wave is investigated by the volume integral equation method. It is possible to perform nanofocusing using this probe by using both linearly and radially polarized Gaussian beams as the incident waves. Strongly localized and enhanced optical near-fields can be created on the tip of this probe for the cases of both incident Gaussian beams. However the intensity distribution near the probe tip was found to be very sensitive to the shape of the probe tip.

Keywords: waveguide, surface plasmons, electromagnetic theory

Procedia PDF Downloads 445
7817 Influence of the Local External Pressure on Measured Parameters of Cutaneous Microcirculation

Authors: Irina Mizeva, Elena Potapova, Viktor Dremin, Mikhail Mezentsev, Valeri Shupletsov

Abstract:

The local tissue perfusion is regulated by the microvascular tone which is under the control of a number of physiological mechanisms. Laser Doppler flowmetry (LDF) together with wavelet analyses is the most commonly used technique to study the regulatory mechanisms of cutaneous microcirculation. External factors such as temperature, local pressure of the probe on the skin, etc. influence on the blood flow characteristics and are used as physiological tests to evaluate microvascular regulatory mechanisms. Local probe pressure influences on the microcirculation parameters measured by optical methods: diffuse reflectance spectroscopy, fluorescence spectroscopy, and LDF. Therefore, further study of probe pressure effects can be useful to improve the reliability of optical measurement. During pressure tests variation of the mean perfusion measured by means of LDF usually is estimated. An additional information concerning the physiological mechanisms of the vascular tone regulation system in response to local pressure can be obtained using spectral analyses of LDF samples. The aim of the present work was to develop protocol and algorithm of data processing appropriate for study physiological response to the local pressure test. Involving 6 subjects (20±2 years) and providing 5 measurements for every subject we estimated intersubject and-inter group variability of response of both averaged and oscillating parts of the LDF sample on external surface pressure. The final purpose of the work was to find special features which further can be used in wider clinic studies. The cutaneous perfusion measurements were carried out by LAKK-02 (SPE LAZMA Ltd., Russia), the skin loading was provided by the originally designed device which allows one to distribute the pressure around the LDF probe. The probe was installed on the dorsal part of the distal finger of the index figure. We collected measurements continuously for one hour and varied loading from 0 to 180mmHg stepwise with a step duration of 10 minutes. Further, we post-processed the samples using the wavelet transform and traced the energy of oscillations in five frequency bands over time. Weak loading leads to pressure-induced vasodilation, so one should take into account that the perfusion measured under pressure conditions will be overestimated. On the other hand, we revealed a decrease in endothelial associated fluctuations. Further loading (88 mmHg) induces amplification of pulsations in all frequency bands. We assume that such loading leads to a higher number of closed capillaries, higher input of arterioles in the LDF signal and as a consequence more vivid oscillations which mainly are formed in arterioles. External pressure higher than 144 mmHg leads to the decrease of oscillating components, after removing the loading very rapid restore of the tissue perfusion takes place. In this work, we have demonstrated that local skin loading influence on the microcirculation parameters measured by optic technique; this should be taken into account while developing portable electronic devices. The proposed protocol of local loading allows one to evaluate PIV as far as to trace dynamic of blood flow oscillations. This study was supported by the Russian Science Foundation under project N 18-15-00201.

Keywords: blood microcirculation, laser Doppler flowmetry, pressure-induced vasodilation, wavelet analyses blood

Procedia PDF Downloads 119
7816 Mechanical Response Investigation of Wafer Probing Test with Vertical Cobra Probe via the Experiment and Transient Dynamic Simulation

Authors: De-Shin Liu, Po-Chun Wen, Zhen-Wei Zhuang, Hsueh-Chih Liu, Pei-Chen Huang

Abstract:

Wafer probing tests play an important role in semiconductor manufacturing procedures in accordance with the yield and reliability requirement of the wafer after the backend-of-the-line process. Accordingly, the stable physical and electrical contact between the probe and the tested wafer during wafer probing is regarded as an essential issue in identifying the known good die. The probe card can be integrated with multiple probe needles, which are classified as vertical, cantilever and micro-electro-mechanical systems type probe selections. Among all potential probe types, the vertical probe has several advantages as compared with other probe types, including maintainability, high probe density and feasibility for high-speed wafer testing. In the present study, the mechanical response of the wafer probing test with the vertical cobra probe on 720 μm thick silicon (Si) substrate with a 1.4 μm thick aluminum (Al) pad is investigated by the experiment and transient dynamic simulation approach. Because the deformation mechanism of the vertical cobra probe is determined by both bending and buckling mechanisms, the stable correlation between contact forces and overdrive (OD) length must be carefully verified. Moreover, the decent OD length with corresponding contact force contributed to piercing the native oxide layer of the Al pad and preventing the probing test-induced damage on the interconnect system. Accordingly, the scratch depth of the Al pad under various OD lengths is estimated by the atomic force microscope (AFM) and simulation work. In the wafer probing test configuration, the contact phenomenon between the probe needle and the tested object introduced large deformation and twisting of mesh gridding, causing the subsequent numerical divergence issue. For this reason, the arbitrary Lagrangian-Eulerian method is utilized in the present simulation work to conquer the aforementioned issue. The analytic results revealed a slight difference when the OD is considered as 40 μm, and the simulated is almost identical to the measured scratch depths of the Al pad under higher OD lengths up to 70 μm. This phenomenon can be attributed to the unstable contact of the probe at low OD length with the scratch depth below 30% of Al pad thickness, and the contact status will be being stable when the scratch depth over 30% of pad thickness. The splash of the Al pad is observed by the AFM, and the splashed Al debris accumulates on a specific side; this phenomenon is successfully simulated in the transient dynamic simulation. Thus, the preferred testing OD lengths are found as 45 μm to 70 μm, and the corresponding scratch depths on the Al pad are represented as 31.4% and 47.1% of Al pad thickness, respectively. The investigation approach demonstrated in this study contributed to analyzing the mechanical response of wafer probing test configuration under large strain conditions and assessed the geometric designs and material selections of probe needles to meet the requirement of high resolution and high-speed wafer-level probing test for thinned wafer application.

Keywords: wafer probing test, vertical probe, probe mark, mechanical response, FEA simulation

Procedia PDF Downloads 23
7815 Appearance and Magnitude of Dynamic Pressure in Micro-Scale of Subsonic Airflow around Symmetric Objects

Authors: Shehret Tilvaldyev, Jorge Flores-Garay, Alfredo Villanueva, Erwin Martinez, Lazaro Rico

Abstract:

The efficiency of modern transportation is severely compromised by the prevalence of turbulent drag. The high level of turbulent skin-friction occurring, e.g., on the surface of an aircraft, automobiles or the carriage of a high-speed train, is responsible for excess fuel consumption and increased carbon emissions. The environmental, political, and economic pressure to improve fuel efficiency and reduce carbon emissions associated with transportation means that reducing turbulent skin-friction drag is a pressing engineering problem. The dynamic pressure of subsonic airflow around solid objects creates lift, but also induces drag force. This paper is presenting the results of laboratory experiments, investigating appearance and magnitude of dynamic pressure in micro scale of subsonic air flow around right cylinder and symmetrical airfoil.

Keywords: airflow, dynamic pressure, micro scale, symmetric object

Procedia PDF Downloads 352
7814 Behaviour of Polypropylene Fiber Reinforced Concrete under Dynamic Impact Loads

Authors: Masoud Abedini, Azrul A. Mutalib

Abstract:

A study of the used of additives which mixed with concrete in order to increase the strength and durability of concrete was examined to improve the quality of many aspects in the concrete. This paper presents a polypropylene (PP) fibre was added into concrete to study the dynamic response under impact load. References related to dynamic impact test for sample polypropylene fibre reinforced concrete (PPFRC) is very limited and there is no specific research and information related to this research. Therefore, the study on the dynamic impact of PPFRC using a Split Hopkinson Pressure Bar (SHPB) was done in this study. Provided samples for this study was composed of 1.0 kg/m³ PP fibres, 2.0 kg/m³ PP fibres and plain concrete as a control samples. This PP fibre contains twisted bundle non-fibrillating monofilament and fibrillating network fibres. Samples were prepared by cylindrical mould with three samples of each mix proportion, 28 days curing period and concrete grade 35 Mpa. These samples are then tested for dynamic impact by SHPB at 2 Mpa pressure under the strain rate of 10 s-1. Dynamic compressive strength results showed an increase of SC1 and SC2 samples than the control sample which is 13.22 % and 76.9 % respectively with the dynamic compressive strength of 74.5 MPa and 116.4 MPa compared to 65.8 MPa. Dynamic increased factor (DIF) shows that, sample SC2 gives higher value with 4.15 than others samples SC1 and SC3 that gives the value of 2.14 and 1.97 respectively.

Keywords: polypropylene fiber, Split Hopkinson Pressure Bar, impact load, dynamic compressive strength

Procedia PDF Downloads 521
7813 Calibration Methods of Direct and Indirect Reading Pressure Sensor and Uncertainty Determination

Authors: Sinem O. Aktan, Musa Y. Akkurt

Abstract:

Experimental pressure calibration methods can be classified into three areas: (1) measurements in liquid or gas systems, (2) measurements in static-solid media systems, and (3) measurements in dynamic shock systems. Fluid (liquid and gas) systems high accuracies can be obtainable and commonly used for the calibration method of a pressure sensor. Pressure calibrations can be performed for metrological traceability in two ways, which are on-site (field) and in the laboratory. Laboratory and on-site calibration procedures and the requirements of the DKD-R-6-1 and Euramet cg-17 guidelines will also be addressed. In this study, calibration methods of direct and indirect reading pressure sensor and measurement uncertainty contributions will be explained.

Keywords: pressure metrology, pressure calibration, dead-weight tester, pressure uncertainty

Procedia PDF Downloads 116
7812 Effects of Injection Conditions on Flame Structures in Gas-Centered Swirl Coaxial Injector

Authors: Wooseok Song, Sunjung Park, Jongkwon Lee, Jaye Koo

Abstract:

The objective of this paper is to observe the effects of injection conditions on flame structures in gas-centered swirl coaxial injector. Gaseous oxygen and liquid kerosene were used as propellants. For different injection conditions, two types of injector, which only differ in the diameter of the tangential inlet, were used in this study. In addition, oxidizer injection pressure was varied to control the combustion chamber pressure in different types of injector. In order to analyze the combustion instability intensity, the dynamic pressure was measured in both the combustion chamber and propellants lines. With the increase in differential pressure between the propellant injection pressure and the combustion chamber pressure, the combustion instability intensity increased. In addition, the flame structure was recorded using a high-speed camera to detect CH* chemiluminescence intensity. With the change in the injection conditions in the gas-centered swirl coaxial injector, the flame structure changed.

Keywords: liquid rocket engine, flame structure, combustion instability, dynamic pressure

Procedia PDF Downloads 199
7811 Mind-Wandering and Attention: Evidence from Behavioral and Subjective Perspective

Authors: Riya Mishra, Trayambak Tiwari, Anju Lata Singh, I. L. Singh, Tara Singh

Abstract:

Decrement in vigilance task performance echoes impediment in effortful attention; here attention fluctuated in the realm of external and internal milieu of a person. To examine this fluctuation across time period, we employed two experiments of vigilance task with variation in thought probing rate, which was embedded in the task. The thought probe varies in terms of <2 minute per thought probe and <4 minute per thought probe during vigilance task. A 2x4 repeated measure factorial design was used. 15 individuals participated in this study with an age range of 20-26 years. It was found that thought probing rate has a negative trend with vigilance task performance whereas the subjective measures of mind-wandering have a positive relation with thought probe rate.

Keywords: criterion response, mental status, mind-wandering, thought probe, vigilance

Procedia PDF Downloads 387
7810 Quantification of the Erosion Effect on Small Caliber Guns: Experimental and Numerical Analysis

Authors: Dhouibi Mohamed, Stirbu Bogdan, Chabotier André, Pirlot Marc

Abstract:

Effects of erosion and wear on the performance of small caliber guns have been analyzed throughout numerical and experimental studies. Mainly, qualitative observations were performed. Correlations between the volume change of the chamber and the maximum pressure are limited. This paper focuses on the development of a numerical model to predict the maximum pressure evolution when the interior shape of the chamber changes in the different weapon’s life phases. To fulfill this goal, an experimental campaign, followed by a numerical simulation study, is carried out. Two test barrels, « 5.56x45mm NATO » and « 7.62x51mm NATO,» are considered. First, a Coordinate Measuring Machine (CMM) with a contact scanning probe is used to measure the interior profile of the barrels after each 300-shots cycle until their worn out. Simultaneously, the EPVAT (Electronic Pressure Velocity and Action Time) method with a special WEIBEL radar are used to measure: (i) the chamber pressure, (ii) the action time, (iii) and the bullet velocity in each barrel. Second, a numerical simulation study is carried out. Thus, a coupled interior ballistic model is developed using the dynamic finite element program LS-DYNA. In this work, two different models are elaborated: (i) coupled Eularien Lagrangian method using fluid-structure interaction (FSI) techniques and a coupled thermo-mechanical finite element using a lumped parameter model (LPM) as a subroutine. Those numerical models are validated and checked through three experimental results, such as (i) the muzzle velocity, (ii) the chamber pressure, and (iii) the surface morphology of fired projectiles. Results show a good agreement between experiments and numerical simulations. Next, a comparison between the two models is conducted. The projectile motions, the dynamic engraving resistances and the maximum pressures are compared and analyzed. Finally, using this obtained database, a statistical correlation between the muzzle velocity, the maximum pressure and the chamber volume is established.

Keywords: engraving process, finite element analysis, gun barrel erosion, interior ballistics, statistical correlation

Procedia PDF Downloads 172
7809 The Pitch Diameter of Pipe Taper Thread Measurement and Uncertainty Using Three-Wire Probe

Authors: J. Kloypayan, W. Pimpakan

Abstract:

The pipe taper thread measurement and uncertainty normally used the four-wire probe according to the JIS B 0262. Besides, according to the EA-10/10 standard, the pipe thread could be measured using the three-wire probe. This research proposed to use the three-wire probe measuring the pitch diameter of the pipe taper thread. The measuring accessory component was designed and made, then, assembled to one side of the ULM 828 CiM machine. Therefore, this machine could be used to measure and calibrate both the pipe thread and the pipe taper thread. The equations and the expanded uncertainty for pitch diameter measurement were formulated. After the experiment, the results showed that the pipe taper thread had the pitch diameter equal to 19.165 mm and the expanded uncertainty equal to 1.88µm. Then, the experiment results were compared to the results from the National Institute of Metrology Thailand. The equivalence ratio from the comparison showed that both results were related. Thus, the proposed method of using the three-wire probe measured the pitch diameter of the pipe taper thread was acceptable.

Keywords: pipe taper thread, three-wire probe, measure and calibration, the universal length measuring machine

Procedia PDF Downloads 372
7808 Development of Ultrasounf Probe Holder for Automatic Scanning Asymmetric Reflector

Authors: Nabilah Ibrahim, Hafiz Mohd Zaini, Wan Fatin Liyana Mutalib

Abstract:

Ultrasound equipment or machine is capable to scan in two dimensional (2D) areas. However there are some limitations occur during scanning an object. The problem will occur when scanning process that involving the asymmetric object. In this project, the ultrasound probe holder for asymmetric reflector scanning in 3D image is proposed to make easier for scanning the phantom or object that has asymmetric shape. Initially, the constructed asymmetric phantom that construct will be used in 2D scanning. Next, the asymmetric phantom will be interfaced by the movement of ultrasound probe holder using the Arduino software. After that, the performance of the ultrasound probe holder will be evaluated by using the various asymmetric reflector or phantom in constructing a 3D image

Keywords: ultrasound 3D images, axial and lateral resolution, asymmetric reflector, Arduino software

Procedia PDF Downloads 529
7807 The Pressure Distribution on the Rectangular and Trapezoidal Storage Tanks' Perimeters Due to Liquid Sloshing Impact

Authors: Hassan Saghi, Gholam Reza Askarzadeh Garmroud, Seyyed Ali Reza Emamian

Abstract:

Sloshing phenomenon is a complicated free surface flow problem that increases the dynamic pressure on the sidewalls and the bottom of the storage tanks. When the storage tanks are partially filled, it is essential to be able to evaluate the fluid dynamic loads on the tank’s perimeter. In this paper, a numerical code was developed to determine the pressure distribution on the rectangular and trapezoidal storage tanks’ perimeters due to liquid sloshing impact. Assuming the fluid to be inviscid, the Laplace equation and the nonlinear free surface boundary conditions are solved using coupled BEM-FEM. The code performance for sloshing modeling is validated against available data. Finally, this code is used for partially filled rectangular and trapezoidal storage tanks and the pressure distribution on the tanks’ perimeters due to liquid sloshing impact is estimated. The results show that the maximum pressure on the perimeter of the rectangular and trapezoidal storage tanks was decreased along the sidewalls from the top to the bottom. Furthermore, the period of the pressure distribution is different for different points on the tank’s perimeter and it is bigger in the trapezoidal tanks compared to the rectangular ones.

Keywords: pressure distribution, liquid sloshing impact, sway motion, trapezoidal storage tank, coupled BEM-FEM

Procedia PDF Downloads 511
7806 Investigating the Dynamic Plantar Pressure Distribution in Individuals with Multiple Sclerosis

Authors: Hilal Keklicek, Baris Cetin, Yeliz Salci, Ayla Fil, Umut Altinkaynak, Kadriye Armutlu

Abstract:

Objectives and Goals: Spasticity is a common symptom characterized with a velocity dependent increase in tonic stretch reflexes (muscle tone) in patient with multiple sclerosis (MS). Hypertonic muscles affect the normal plantigrade contact by disturbing accommodation of foot to the ground while walking. It is important to know the differences between healthy and neurologic foot features for management of spasticity related deformities and/or determination of rehabilitation purposes and contents. This study was planned with the aim of investigating the dynamic plantar pressure distribution in individuals with MS and determining the differences between healthy individuals (HI). Methods: Fifty-five individuals with MS (108 foot with spasticity according to Modified Ashworth Scale) and 20 HI (40 foot) were the participants of the study. The dynamic pedobarograph was utilized for evaluation of dynamic loading parameters. Participants were informed to walk at their self-selected speed for seven times to eliminate learning effect. The parameters were divided into 2 categories including; maximum loading pressure (N/cm2) and time of maximum pressure (ms) were collected from heal medial, heal lateral, mid foot, heads of first, second, third, fourth and fifth metatarsal bones. Results: There were differences between the groups in maximum loading pressure of heal medial (p < .001), heal lateral (p < .001), midfoot (p=.041) and 5th metatarsal areas (p=.036). Also, there were differences between the groups the time of maximum pressure of all metatarsal areas, midfoot, heal medial and heal lateral (p < .001) in favor of HI. Conclusions: The study provided basic data about foot pressure distribution in individuals with MS. Results of the study primarily showed that spasticity of lower extremity muscle disrupted the posteromedial foot loading. Secondarily, according to the study result, spasticity lead to inappropriate timing during load transfer from hind foot to forefoot.

Keywords: multiple sclerosis, plantar pressure distribution, gait, norm values

Procedia PDF Downloads 292
7805 Photophysics and Rotational Relaxation Dynamics of 6-Methoxyquinoline Fluorophore in Cationic Alkyltrimethylammonium Bromide Micelles

Authors: Tej Varma Y, Debi D. Pant

Abstract:

Photophysics and rotational dynamics of the fluorescent probe, 6-methoxyquinoline (6MQ) with cationic surfactant, alkyltrimethylammonium bromide (nTAB) micelle solutions have been investigated (n = 12, 14 and 16). Absorption and emission peaks of the dye have been observed to shift at concentrations around critical micellar concentration (cmc) of nTAB compared to that of bulk solutions suggesting probe is in a lower polar environment. The probe senses changes in polarity (ET (30)) brought about by variation of surfactant chain length concentration and is invariably solubilized in the aqueous interface or palisade layer. The order of change in polarity observed was DTAB > CTAB > TTAB. The binding constant study shows that the probe binds strongest with TTAB (is of the order TTAB > CTAB > DTAB) due to deeper penetration into the micelle. The anisotropy decay for the probe in all the nTAB micelles studied have been rationalized based on a two-step model consisting of fast-restricted rotation of the probe and slow lateral diffusion of the probe in the micelle that is coupled to the overall rotation of the micelle. Fluorescence lifetime measurements of probe in the cationic micelles demonstrate the close proximity of the 6MQ to the Br - counterions. The fluorescence lifetimes of TTAB and DTAB are much shorter than in CTAB. These results indicate that 6MQ resides to a substantial degree in the head group region of the micelles. All the changes observed in the steady state fluorescence, microenvironment, fluorescence lifetimes, fluorescence anisotropy, and other calculations are in agreement with each other suggesting binding of the cationic surfactant with the neutral dye molecule.

Keywords: photophysics, chain length, ntaB, micelles

Procedia PDF Downloads 601
7804 Gas Flow, Time, Distance Dynamic Modelling

Authors: A. Abdul-Ameer

Abstract:

The equations governing the distance, pressure- volume flow relationships for the pipeline transportation of gaseous mixtures, are considered. A derivation based on differential calculus, for an element of this system model, is addressed. Solutions, yielding the input- output response following pressure changes, are reviewed. The technical problems associated with these analytical results are identified. Procedures resolving these difficulties providing thereby an attractive, simple, analysis route are outlined. Computed responses, validating thereby calculated predictions, are presented.

Keywords: pressure, distance, flow, dissipation, models

Procedia PDF Downloads 445
7803 Modular Probe for Basic Monitoring of Water and Air Quality

Authors: Andrés Calvillo Téllez, Marianne Martínez Zanzarric, José Cruz Núñez Pérez

Abstract:

A modular system that performs basic monitoring of both water and air quality is presented. Monitoring is essential for environmental, aquaculture, and agricultural disciplines, where this type of instrumentation is necessary for data collection. The system uses low-cost components, which allows readings close to those with high-cost probes. The probe collects readings such as the coordinates of the geographical position, as well as the time it records the target parameters of the monitored. The modules or subsystems that make up the probe are the global positioning (GPS), which shows the altitude, latitude, and longitude data of the point where the reading will be recorded, a real-time clock stage, the date marking the time, the module SD memory continuously stores data, data acquisition system, central processing unit, and energy. The system acquires parameters to measure water quality, conductivity, pressure, and temperature, and for air, three types of ammonia, dioxide, and carbon monoxide gases were censored. The information obtained allowed us to identify the schedule of modification of the parameters and the identification of the ideal conditions for the growth of microorganisms in the water.

Keywords: calibration, conductivity, datalogger, monitoring, real time clock, water quality

Procedia PDF Downloads 73
7802 Wind Load Reduction Effect of Exterior Porous Skin on Facade Performance

Authors: Ying-Chang Yu, Yuan-Lung Lo

Abstract:

Building envelope design is one of the most popular design fields of architectural profession in nowadays. The main design trend of such system is to highlight the designer's aesthetic intention from the outlook of building project. Due to the trend of current façade design, the building envelope contains more and more layers of components, such as double skin façade, photovoltaic panels, solar control system, or even ornamental components. These exterior components are designed for various functional purposes. Most researchers focus on how these exterior elements should be structurally sound secured. However, not many researchers consider these elements would help to improve the performance of façade system. When the exterior elements are deployed in large scale, it creates an additional layer outside of original façade system and acts like a porous interface which would interfere with the aerodynamic of façade surface in micro-scale. A standard façade performance consists with 'water penetration, air infiltration rate, operation force, and component deflection ratio', and these key performances are majorly driven by the 'Design Wind Load' coded in local regulation. A design wind load is usually determined by the maximum wind pressure which occurs on the surface due to the geometry or location of building in extreme conditions. This research was designed to identify the air damping phenomenon of micro turbulence caused by porous exterior layer leading to surface wind load reduction for improvement of façade system performance. A series of wind tunnel test on dynamic pressure sensor array covered by various scale of porous exterior skin was conducted to verify the effect of wind pressure reduction. The testing specimens were designed to simulate the typical building with two-meter extension offsetting from building surface. Multiple porous exterior skins were prepared to replicate various opening ratio of surface which may cause different level of damping effect. This research adopted 'Pitot static tube', 'Thermal anemometers', and 'Hot film probe' to collect the data of surface dynamic pressure behind porous skin. Turbulence and distributed resistance are the two main factors of aerodynamic which would reduce the actual wind pressure. From initiative observation, the reading of surface wind pressure was effectively reduced behind porous media. In such case, an actual building envelope system may be benefited by porous skin from the reduction of surface wind pressure, which may improve the performance of envelope system consequently.

Keywords: multi-layer facade, porous media, facade performance, turbulence and distributed resistance, wind tunnel test

Procedia PDF Downloads 187
7801 Combination of Plantar Pressure and Star Excursion Balance Test for Evaluation of Dynamic Posture Control on High-Heeled Shoes

Authors: Yan Zhang, Jan Awrejcewicz, Lin Fu

Abstract:

High-heeled shoes force the foot into plantar flexion position resulting in foot arch rising and disturbance of the articular congruence between the talus and tibiofibular mortice, all of which may increase the challenge of balance maintenance. Plantar pressure distribution of the stance limb during the star excursion balance test (SEBT) contributes to the understanding of potential sources of reaching excursions in SEBT. The purpose of this study is to evaluate the dynamic posture control while wearing high-heeled shoes using SEBT in a combination of plantar pressure measurement. Twenty healthy young females were recruited. Shoes of three heel heights were used: flat (0.8 cm), low (4.0 cm), high (6.6 cm). The testing grid of SEBT consists of three lines extending out at 120° from each other, which were defined as anterior, posteromedial, and posterolateral directions. Participants were instructed to stand on their dominant limb with the heel in the middle of the testing grid and hands on hips and to reach the non-stance limb as far as possible towards each direction. The distal portion of the reaching limb lightly touched the ground without shifting weight. Then returned the reaching limb to the beginning position. The excursion distances were normalized to leg length. The insole plantar measurement system was used to record peak pressure, contact area, and pressure-time integral of the stance limb. Results showed that normalized excursion distance decreased significantly as heel height increased. The changes of plantar pressure in SEBT as heel height increased were more obvious in the medial forefoot (MF), medial midfoot (MM), rearfoot areas. At MF, the peak pressure and pressure-time integral of low and high shoes increased significantly compared with that of flat shoes, while the contact area decreased significantly as heel height increased. At MM, peak pressure, contact area, and pressure-time integral of high and low shoes were significantly lower than that of flat shoes. To reduce posture instability, the stance limb plantar loading shifted to medial forefoot. Knowledge of this study identified dynamic posture control deficits while wearing high-heeled shoes and the critical role of the medial forefoot in dynamic balance maintenance.

Keywords: dynamic posture control, high-heeled shoes, plantar pressure, star excursion balance test.

Procedia PDF Downloads 105
7800 Calculation of Orbital Elements for Sending Interplanetary Probes

Authors: Jorge Lus Nisperuza Toledo, Juan Pablo Rubio Ospina, Daniel Santiago Umana, Hector Alejandro Alvarez

Abstract:

This work develops and implements computational codes to calculate the optimal launch trajectories for sending a probe from the earth to different planets of the Solar system, making use of trajectories of the Hohmann and No-Hohmann type and gravitational assistance in intermediate steps. Specifically, the orbital elements, the graphs and the dynamic simulations of the trajectories for sending a probe from the Earth towards the planets Mercury, Venus, Mars, Jupiter, and Saturn are obtained. A detailed study was made of the state vectors of the position and orbital velocity of the considered planets in order to determine the optimal trajectories of the probe. For this purpose, computer codes were developed and implemented to obtain the orbital elements of the Mariner 10 (Mercury), Magellan (Venus), Mars Global Surveyor (Mars) and Voyager 1 (Jupiter and Saturn) missions, as an exercise in corroborating the algorithms. This exercise gives validity to computational codes, allowing to find the orbital elements and the simulations of trajectories of three future interplanetary missions with specific launch windows.

Keywords: gravitational assistance, Hohmann’s trajectories, interplanetary mission, orbital elements

Procedia PDF Downloads 147
7799 An Experimental Study of Dynamic Compressive Strength of Bushveld Complex Brittle Rocks under Impact Loadingsa Chemicals and Fibre Corporation, Changhua Branch

Authors: A. Mudau, T. R. Stacey, R. A. Govender

Abstract:

This paper reports for the first time the findings on the dynamic compressive strength data of Bushveld Complex brittle rock materials. These rocks were subjected to both quasi-static and impact loading tests to help understand their behaviour both under quasi-static and dynamic loading conditions. Unlike quasi-static tests, characterization of dynamic behaviour of materials is challenging, in particularly brittle rock materials. The split Hopkinson pressure bar (SHPB) results reported for anorthosite and norite showed relatively low values for dynamic compressive strength compared to the quasi-static uniaxial compressive strength data. It was noticed that the dynamic stress conditions were not fully attained during testing, as well as constant strain rate.

Keywords: Bushveld Complex, dynamic comperession, rock brittleness, stress equilibrium

Procedia PDF Downloads 455
7798 Measuring Oxygen Transfer Coefficients in Multiphase Bioprocesses: The Challenges and the Solution

Authors: Peter G. Hollis, Kim G. Clarke

Abstract:

Accurate quantification of the overall volumetric oxygen transfer coefficient (KLa) is ubiquitously measured in bioprocesses by analysing the response of dissolved oxygen (DO) to a step change in the oxygen partial pressure in the sparge gas using a DO probe. Typically, the response lag (τ) of the probe has been ignored in the calculation of KLa when τ is less than the reciprocal KLa, failing which a constant τ has invariably been assumed. These conventions have now been reassessed in the context of multiphase bioprocesses, such as a hydrocarbon-based system. Here, significant variation of τ in response to changes in process conditions has been documented. Experiments were conducted in a 5 L baffled stirred tank bioreactor (New Brunswick) in a simulated hydrocarbon-based bioprocess comprising a C14-20 alkane-aqueous dispersion with suspended non-viable Saccharomyces cerevisiae solids. DO was measured with a polarographic DO probe fitted with a Teflon membrane (Mettler Toledo). The DO concentration response to a step change in the sparge gas oxygen partial pressure was recorded, from which KLa was calculated using a first order model (without incorporation of τ) and a second order model (incorporating τ). τ was determined as the time taken to reach 63.2% of the saturation DO after the probe was transferred from a nitrogen saturated vessel to an oxygen saturated bioreactor and is represented as the inverse of the probe constant (KP). The relative effects of the process parameters on KP were quantified using a central composite design with factor levels typical of hydrocarbon bioprocesses, namely 1-10 g/L yeast, 2-20 vol% alkane and 450-1000 rpm. A response surface was fitted to the empirical data, while ANOVA was used to determine the significance of the effects with a 95% confidence interval. KP varied with changes in the system parameters with the impact of solid loading statistically significant at the 95% confidence level. Increased solid loading reduced KP consistently, an effect which was magnified at high alkane concentrations, with a minimum KP of 0.024 s-1 observed at the highest solids loading of 10 g/L. This KP was 2.8 fold lower that the maximum of 0.0661 s-1 recorded at 1 g/L solids, demonstrating a substantial increase in τ from 15.1 s to 41.6 s as a result of differing process conditions. Importantly, exclusion of KP in the calculation of KLa was shown to under-predict KLa for all process conditions, with an error up to 50% at the highest KLa values. Accurate quantification of KLa, and therefore KP, has far-reaching impact on industrial bioprocesses to ensure these systems are not transport limited during scale-up and operation. This study has shown the incorporation of τ to be essential to ensure KLa measurement accuracy in multiphase bioprocesses. Moreover, since τ has been conclusively shown to vary significantly with process conditions, it has also been shown that it is essential for τ to be determined individually for each set of process conditions.

Keywords: effect of process conditions, measuring oxygen transfer coefficients, multiphase bioprocesses, oxygen probe response lag

Procedia PDF Downloads 240
7797 Computational Fluid Dynamic Investigation into the Relationship between Pressure and Velocity Distributions within a Microfluidic Feedback Oscillator

Authors: Zara L. Sheady

Abstract:

Fluidic oscillators are being utilised in an increasing number of applications in a wide variety of areas; these include on-board vehicle cleaning systems, flow separation control on aircraft and in fluidic circuitry. With this increased use, there is a further understanding required for the mechanics of the fluidics of the fluidic oscillator and why they work in the manner that they do. ANSYS CFX has been utilized to visualise the pressure and velocity within a microfluidic feedback oscillator. The images demonstrate how the pressure vortices build within the oscillator at the points where the velocity is diverted from linear motion through the oscillator. With an enhanced understanding of the pressure and velocity distributions within a fluidic oscillator, it will enable users of microfluidics to more greatly tailor fluidic nozzles to their specification.

Keywords: ANSYS CFX, control, fluidic oscillators, mechanics, pressure, relationship, velocity

Procedia PDF Downloads 310
7796 Estimation of Pressure Profile and Boundary Layer Characteristics over NACA 4412 Airfoil

Authors: Anwar Ul Haque, Waqar Asrar, Erwin Sulaeman, Jaffar S. M. Ali

Abstract:

Pressure distribution data of the standard airfoils is usually used for the calibration purposes in subsonic wind tunnels. Results of such experiments are quite old and obtained by using the model in the spanwise direction. In this manuscript, pressure distribution over NACA 4412 airfoil model was presented by placing the 3D model in the lateral direction. The model is made of metal with pressure ports distributed longitudinally as well as in the lateral direction. The pressure model was attached to the floor of the tunnel with the help of the base plate to give the specified angle of attack to the model. Before the start of the experiments, the pressure tubes of the respective ports of the 128 ports pressure scanner are checked for leakage, and the losses due to the length of the pipes were also incorporated in the results for the specified pressure range. Growth rate maps of the boundary layer thickness were also plotted. It was found that with the increase in the velocity, the dynamic pressure distribution was also increased for the alpha seep. Plots of pressure distribution so obtained were overlapped with those obtained by using XFLR software, a low fidelity tool. It was found that at moderate and high angles of attack, the distribution of the pressure coefficients obtained from the experiments is high when compared with the XFLR ® results obtained along with the span of the wing. This under-prediction by XFLR ® is more obvious on the windward than on the leeward side.

Keywords: subsonic flow, boundary layer, wind tunnel, pressure testing

Procedia PDF Downloads 294
7795 The Correlation of Physical Activity and Plantar Pressure in Young Adults

Authors: Lovro Štefan

Abstract:

Background: The main purpose of the present study was to explore the correlations between physical activity and peak plantar pressure in dynamic mode. Methods: Participants were one hundred forty-six first-year university students (30.8% girls). Plantar pressure generated under each region of the foot (forefoot, midfoot, and heel) was measured by using Zebris dynamometric platform (Isny, Germany). The level of physical activity (PA) was calculated with the International Physical Activity questionnaire (IPAQ - short form). Results: In boys, forefoot peak plantar pressure was correlated with moderate PA (MPA; r=-0.21), vigorous PA (VPA; r=-0.18), and moderate-to-vigorous PA (MVPA; r=-0.28). No significant correlations with other foot regions (p>0.05) were observed. In girls, forefoot peak plantar pressure was correlated with MPA (r =-0.30), VPA (r=-0.39) and MVPA (r=-0.38). Also, heel peak pressure was significantly correlated with MPA (r=-0.33), while no significant correlations with VPA (r=0.05) and MVPA (r=-0.15) were observed. Conclusion: This study shows that different intensities of PA were mostly correlated with forefoot peak plantar pressure in both boys and girls. Therefore, strategies that reduce plantar pressure through a more active lifestyle should be implemented within the education system.

Keywords: pedobarography, youth, exercise, associations

Procedia PDF Downloads 72
7794 A DNA-Based Nano-biosensor for the Rapid Detection of the Dengue Virus in Mosquito

Authors: Lilia M. Fernando, Matthew K. Vasher, Evangelyn C. Alocilja

Abstract:

This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as the concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe–DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/ul.

Keywords: dengue, magnetic nanoparticles, mosquito, nanobiosensor

Procedia PDF Downloads 327