Search results for: porous metals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1897

Search results for: porous metals

727 Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method

Authors: S. A. A. Nabeela Nasreen, S. Sundarrajan, S. A. Syed Nizar, Seeram Ramakrishna

Abstract:

Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture.

Keywords: metal oxide, membrane, pervaporation, solvothermal, ZIF

Procedia PDF Downloads 197
726 Soil Rehabilitation Using Modified Diatomite: Assessing Chemical Properties, Enzymatic Reactions and Heavy Metal Immobilization

Authors: Maryam Samani. Ahmad Golchin. Hosseinali Alikkani. Ahmad Baybordi

Abstract:

Natural diatomite was modified by grinding and acid treatment to increase surface area and to decrease the impurities. Surface area and pore volume of the modified diatomite were 67.45 m² g-1 and 0.105 cm³ g-¹ respectively, and used to immobilize Pb, Zn and Cu in an urban soil. The modified diatomite was added to soil samples at the rates of 2.5, 5, 7.5 and 10% and the samples incubated for 60 days. The addition of modified diatomite increased SSA of the soil. The SSAs of soils with 2.5, 5.0, 7.5 and 10% modified diatomite were 20.82, 22.02, 23.21 and 24.41 m² g-¹ respectively. Increasing the SSAs of the soils by the application of modified diatomite reduced the DTPA extractable concentrations of heavy metals compared with un-amendment control. The concentration of Pb, Zn and Cu were reduced by 91.1%, 82% and 91.1% respectively. Modified diatomite reduced the concentration of Exchangeable and Carbonate bounded species of Pb, Zn and Cu, compared with the control. Also significantly increased the concentration of Fe Mn- OX (Fe-Mn Oxides) and OM (Organic Matter) bound and Res (Residual) fraction. Modified diatomite increased the urease, dehydrogenase and alkaline phosphatase activity by 52%, 57% and 56.6% respectively.

Keywords: modified diatomite, chemical specifications, specific surface area, enzyme activity, immobilization, heavy metal, soil remediation

Procedia PDF Downloads 64
725 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province

Authors: Kourosh Nazarian

Abstract:

Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.

Keywords: Stress, creep, faryab, surface runoff

Procedia PDF Downloads 180
724 3D Hybrid Multiphysics Lattice Boltzmann Model for Studying the Flow Behavior of Emulsions in Structured Rectangular Microchannels

Authors: Luma Al-Tamimi, Hassan Farhat, Wessam Hasan

Abstract:

A three-dimensional (3D) hybrid quasi-steady thermal lattice Boltzmann model is developed to couple the effects of surfactant, temperature, interfacial tension, and contact angle. This 3D model is an extended scheme of a previously introduced two-dimensional (2D) hybrid lattice Boltzmann model. The 3D model is used to study the combined multi-physics effects on emulsion systems flowing in rectangular microchannels with and without confinements, where the suspended phase is made of droplets, plugs, or a mixture of both. The simulation results show that emulsion systems with plugs as the suspended phase are more efficient than with droplets, whereas mixed systems that form large plugs through coalescence have even greater efficiency. The 3D contact angle model generates matching results to those of the 2D model, which were validated with experiments. Furthermore, the effects of various confinements on adhering single drop systems are investigated for delineating their influence on the power required for transporting the suspended phase through the channel. It is shown that the deeper the constriction is, the lower the system efficiency. Increasing the surfactant concentration or fluid temperature in a channel with confinement carries a substantial positive effect on oil droplet transportation.

Keywords: lattice Boltzmann method, thermal, contact angle, surfactants, high viscosity ratio, porous media

Procedia PDF Downloads 175
723 Removal of Heavy Metal Using Continous Mode

Authors: M. Abd elfattah, M. Ossman, Nahla A. Taha

Abstract:

The present work explored the use of Egyptian rice straw, an agricultural waste that leads to global warming problem through brown cloud, as a potential feedstock for the preparation of activated carbon by physical and chemical activation. The results of this study showed that it is feasible to prepare activated carbons with relatively high surface areas and pore volumes from the Egyptian rice straw by direct chemical and physical activation. The produced activated carbon from the two methods (AC1 and AC2) could be used as potential adsorbent for the removal of Fe(III) from aqueous solution contains heavy metals and polluted water. The adsorption of Fe(III) was depended on the pH of the solution. The optimal Fe(III) removal efficiency occurs at pH 5. Based on the results, the optimum contact time is 60 minutes and adsorbent dosage is 3 g/L. The adsorption breakthrough curves obtained at different bed depths indicated increase of breakthrough time with increase in bed depths. A rise in inlet Fe(III) concentration reduces the throughput volume before the packed bed gets saturated. AC1 showed higher affinity for Fe(III) as compared to Raw rice husk.

Keywords: rice straw, activated carbon, Fe(III), fixed bed column, pyrolysis

Procedia PDF Downloads 251
722 Surface Pressure Distributions for a Forebody Using Pressure Sensitive Paint

Authors: Yi-Xuan Huang, Kung-Ming Chung, Ping-Han Chung

Abstract:

Pressure sensitive paint (PSP), which relies on the oxygen quenching of a luminescent molecule, is an optical technique used in wind-tunnel models. A full-field pressure pattern with low aerodynamic interference can be obtained, and it is becoming an alternative to pressure measurements using pressure taps. In this study, a polymer-ceramic PSP was used, using toluene as a solvent. The porous particle and polymer were silica gel (SiO₂) and RTV-118 (3g:7g), respectively. The compound was sprayed onto the model surface using a spray gun. The absorption and emission spectra for Ru(dpp) as a luminophore were respectively 441-467 nm and 597 nm. A Revox SLG-55 light source with a short-pass filter (550 nm) and a 14-bit CCD camera with a long-pass (600 nm) filter were used to illuminate PSP and to capture images. This study determines surface pressure patterns for a forebody of an AGARD B model in a compressible flow. Since there is no experimental data for surface pressure distributions available, numerical simulation is conducted using ANSYS Fluent. The lift and drag coefficients are calculated and in comparison with the data in the open literature. The experiments were conducted using a transonic wind tunnel at the Aerospace Science and Research Center, National Cheng Kung University. The freestream Mach numbers were 0.83, and the angle of attack ranged from -4 to 8 degree. Deviation between PSP and numerical simulation is within 5%. However, the effect of the setup of the light source should be taken into account to address the relative error.

Keywords: pressure sensitive paint, forebody, surface pressure, compressible flow

Procedia PDF Downloads 128
721 Structure and Activity Research of Hydrocarbons Refining Catalysts Based on Wastes of Ferroalloy Production

Authors: Zhanat Shomanova, Ruslan Safarov, Yuri Nosenko, Zheneta Tashmuchambetova, Alima Zharmagambetova

Abstract:

An effective way of utilization of ferroalloy production wastes is preparing hydrocarbon refining catalysts from them. It is possible due to accordable transition metals containing in the wastes. In the work, we are presenting the results on elemental analysis of sludge samples from Aksu ferroalloy plant (Aksu, Kazakhstan), method of catalysts preparing, results of physical-chemical analysis of obtained catalysts (X-ray analysis, electron microscopy, the BET method etc.), results of using the catalysts in some hydrocarbons refining processes such as hydrocracking of rubber waste, cracking of gasoil, oxidation of cyclohexane. The main results of catalytic activity research are: a) In hydrocracking of rubber waste 64.9% of liquid products were fuel fractions; b) In cracking of gasoil conversion was 51% and selectivity by liquid products was 99%; c) In oxidation of cyclohexane the maximal product yield 87.9% and selectivity by cyclohexanol 93.0% were achieved.

Keywords: catalyst, cyclohexane oxidation, ferroalloy production waste, gasoil cracking

Procedia PDF Downloads 270
720 Investigation on 3D Printing of Calcium silicate Bioceramic Slurry for Bone Tissue Engineering

Authors: Amin Jabbari

Abstract:

The state of the art in major 3D printing technologies, such as powder-based and slurry based, has led researchers to investigate the ability to fabricate bone scaffolds for bone tissue engineering using biomaterials. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures that match their functional properties. Polymer matrix composites reinforced with particulate bioceramics, hydrogels reinforced with particulate bioceramics, polymers coated with bioceramics, and non-porous bioceramics are among the materials that can be investigated for bone scaffold printing. Furthermore, it was shown that the introduction of high-density micropores into the sparingly dissolvable CSiMg10 and dissolvable CSiMg4 shell layer inevitably leads to a nearly 30% reduction in compressive strength, but such micropores can easily influence the ion release behavior of the scaffolds. Also, biocompatibility tests such as cytotoxicity, hemocompatibility and genotoxicity were tested on printed parts. The printed part was tested in vitro, and after 24-26 h for cytotoxicity, and 4h for hemocompatibility test, the CSiMg4@CSiMg10-p scaffolds were found to have significantly higher osteogenic capability than the other scaffolds of implantation. Overall, these experimental studies demonstrate that 3D printed, additively-manufactured bioceramic calcium (Ca)-silicate scaffolds with appropriate pore dimensions are promising to guide new bone ingrowth.

Keywords: AM, 3D printed implants, bioceramic, tissue engineering

Procedia PDF Downloads 67
719 Micro-Arc Oxidation Titanium and Post Treatment by Cold Plasma and Graft Polymerization of Acrylic Acid for Biomedical Application

Authors: Shu-Chuan Liao, Chia-Ti Chang, Ko-Shao Chen

Abstract:

Titanium and its alloy are widely used in many fields such as dentistry or orthopaedics. Due to their high strength low elastic modulus that chemical inertness and bio inert. The micro-arc oxidation used to formation a micro porous ceramic oxide layer film on Titanium surface and also to improve the resistance corrosion. For improving the biocompatibility, micro-arc oxidation surfaces bio-inert need to introduce reactive group. We introduced boundary layer by used plasma enhanced chemical vapor deposition of hexamethyldisilazane (HMDS) and organic active layer by UV light graft reactive monomer acrylic acid (AAc) therefore we can immobilize Chondroitin sulphate on surface easily by crosslinking EDC/NHS. The surface properties and composition of the modified layer were measured by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and water contact angle. Water contact angle of the plasma-treated Ti surface decreases from 60° to 38°, which is an indication of hydrophilicity. The results of electrochemical polarization analysis showed that the sample plasma treated at micro-arc oxidation after plasma treatment has the best corrosion resistance. The result showed that we can immobilize chondroitin sulfate successful by a series of modification and MTT assay indicated the biocompatibility has been improved in this study.

Keywords: MAO, plasma, graft polymerization, biomedical application

Procedia PDF Downloads 259
718 Role of Salicylic Acid in Alleviating Chromium Toxicity in Chickpea (Cicer Arietinum L.)

Authors: Ghulam Hassan Abbasi, Moazzam Jamil, Ghazala Akhtar, M.Anwar-ul-Haq

Abstract:

Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while salicylic acid (SA) is signaling and ubiquitous bioactive molecule that regulates cellular mechanism in plants under stress condition. Therefore, exogenous application of salicylic acid (SA) under chromium stress in two chickpea varieties were investigated in hydroponic experiment with five treatments comprising of control, 5 µM Cr + 5 mM SA, 5µM Cr + 10 mM SA, 10µM Cr + 5 mM SA, and 10µM Cr + 10 mM SA. Results revealed that treatments of plants with 10 mM SA application under both 5 µM Cr and 10 µM Cr stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, membrane stability index and relative water contents) relative to 5 mM SA application in both chickpea varieties. Results regarding Cr concentration showed that Cr was more retained in roots followed by shoots and maximum reduction in Cr uptake was observed at 10 mM SA application. Chickpea variety BRC-61 showed maximum growth and least concentration of Cr in root and shoot relative to BRC-390 variety.

Keywords: chromium, Chickpea, salicylic acid, growth

Procedia PDF Downloads 513
717 Effect of Vesicular Arbuscular mycorrhiza on Phytoremedial Potential and Physiological Changes in Solanum melongena Plants Grown under Heavy Metal Stress

Authors: Ritu Chaturvedi, Mayank Varun, M. S. Paul

Abstract:

Heavy metal contamination of soil is a growing area of concern since the soil is the matrix that supports flora and impacts humans directly. Phytoremediation of contaminated sites is gaining popularity due to its cost effectiveness and solar driven nature. Some hyperaccumulators have been identified for their potential. Metal-accumulating plants have various mechanisms to cope up with stress and one of them is increasing antioxidative capacity. The aim of this research is to assess the effect of Vesicular arbuscular mycorrhiza (VAM) application on the phytoremedial potential of Solanum melongena (Eggplant) and level of photosynthetic pigments along with antioxidative enzymes. Results showed that VAM application increased shoot length, root proliferation pattern of plants. The level of photosynthetic pigments, proline, SOD, CAT, APX altered significantly in response to heavy metal treatment. In conclusion, VAM increased the uptake of heavy metals which lead to the activation of the defense system in plants for scavenging free radicals.

Keywords: heavy metal, phytoextraction, phytostabilization, reactive oxygen species

Procedia PDF Downloads 276
716 Modeling of Gas Extraction from a Partially Gas-Saturated Porous Gas Hydrate Reservoir with Respect to Thermal Interactions with Surrounding Rocks

Authors: Angelina Chiglintseva, Vladislav Shagapov

Abstract:

We know from the geological data that quite sufficient gas reserves are concentrated in hydrates that occur on the Earth and on the ocean floor. Therefore, the development of these sources of energy and the storage of large reserves of gas hydrates is an acute global problem. An advanced technology for utilizing gas is to store it in a gas-hydrate state. Under natural conditions, storage facilities can be established, e.g., in underground reservoirs, where quite large volumes of gas can be conserved compared with reservoirs of pure gas. An analysis of the available experimental data of the kinetics and the mechanism of the gas-hydrate formation process shows the self-conservation effect that allows gas to be stored at negative temperatures and low values of pressures of up to several atmospheres. A theoretical model has been constructed for the gas-hydrate reservoir that represents a unique natural chemical reactor, and the principal possibility of the full extraction of gas from a hydrate due to the thermal reserves of the reservoirs themselves and the surrounding rocks has been analyzed. The influence exerted on the evolution of a gas hydrate reservoir by the reservoir thicknesses and the parameters that determine its initial state (a temperature, pressure, hydrate saturation) has been studied. It has been established that the shortest time of exploitation required by the reservoirs with a thickness of a few meters for the total hydrate decomposition is recorded in the cyclic regime when gas extraction alternated with the subsequent conservation of the gas hydrate deposit. The study was performed by a grant from the Russian Science Foundation (project No.15-11-20022).

Keywords: conservation, equilibrium state, gas hydrate reservoir, rocks

Procedia PDF Downloads 301
715 Intercultural Urbanism: Interpreting Cultural Inclusion in Traditional Precincts of Contemporary Cities: A Case of Mattancherry

Authors: Amrutha Jayan

Abstract:

The cities are attractors of the human population, offering opportunities for economic activities for different linguistic, cultural, and ethnic groups. The urban form and design of the city impact the life of these people. Social and cultural exclusions result in spatial segregation and gentrification. The spaces provided in cities must be inclusive for all these communities for them to feel part of the city and contribute to society. Intercultural urbanism is a theory and practice of city building, planning, and design of urban spaces and architectures that are cognizant of the social impact of the built environment. The postulate acknowledges cultural differences and opportunities for cultural exchange. Literature on intercultural urbanism, culture and space, spatial justice, and cultural inclusion are analyzed to identify parameters contributing to intercultural placemaking. A qualitative study on Mattancherry shows how the precinct has sustained throughout the years with different communities living together within a radius of 5 km, creating a diverse and vibrant environment. The research identifies the urban elements that contribute to intercultural interactions and maintain the synergy between these communities. The public spaces, porous edges, built-form, streets, and accessibility contribute to chance encounters and intercultural interactivity. The research seeks to find the factors that contribute to intercultural placemaking.

Keywords: intercultural urbanism, cultural inclusion, spatial justice, public space

Procedia PDF Downloads 221
714 Epoxidation of Cycloalkenes Using Bead Shape Ti-Al-Beta Zeolite

Authors: Zahra Asgar Pour

Abstract:

Two types of Ti-Al-containing zeolitic beads with an average diameter of 450 to 750 µm and hierarchical porosity were synthesized using a hard template method and tested as heterogeneous catalysts in the epoxidation of cycloalkenes (i.e. cyclohexene and cis-cyclooctene) with aqueous hydrogen peroxide (H₂O₂) or tert-butyl hydroperoxide(TBHP) as the oxidant agent. The first type of zeolitic beads was prepared by hydrothermal treatment of a primarygel (containing the Si, Ti, and Al precursors) in the presence of porous anion-exchange resin beads as the hard shaping template. After calcination, these beads (Ti-Al-Beta-HDT-B) consisted of both crystalline zeolite Beta and an amorphous silicate phase. The second type of zeolitic beads (Ti-Beta-PS-deAl-14.4-B) was obtained by post-synthesis dealumination of Al-containing zeolite Beta beads using 14.4 M HNO₃, followed by Ti grafting (3 wt% per gram of zeolite). The prepared materials were characterised by means of XRD, N2-physisorption, UV-vis, XRF, SEM, and TEM and tested as heterogeneous epoxidation catalysts. This post-synthetically prepared catalyst demonstrated higher activity (cyclohexene conversion of 22.7 % and epoxide selectivity of 33.5 %) after 5 h at60 °C, which emanates from the crystalline structure and higher degrees of hydrophobicity. In addition, the post-synthetically prepared beads were prone to partial Ti leaching in the presence of H₂O₂, whereas they showed to be resistant against Ti leaching using tert-butyl hydroperoxide as the oxidant agent.

Keywords: epoxidation, structured catalysts, hierarchical porosity, bead-shape catalysts

Procedia PDF Downloads 108
713 Study on Brick Aggregate Made Pervious Concrete at Zero Fine Level

Authors: Monjurul Hasan, Golam Kibria, Abdus Salam

Abstract:

Pervious concrete is a form of lightweight porous concrete, obtained by eliminating the fine aggregate from the normal concrete mix. The advantages of this type of concrete are lower density, lower cost due to lower cement content, lower thermal conductivity, relatively low drying shrinkage, no segregation and capillary movement of water. In this paper an investigation is made on the mechanical response of the pervious concrete at zero fine level (zero fine concrete) made with local brick aggregate. Effect of aggregate size variation on the strength, void ratio and permeability of the zero fine concrete is studied. Finally, a comparison is also presented between the stone aggregate made pervious concrete and brick aggregate made pervious concrete. In total 75 concrete cylinder were tested for compressive strength, 15 cylinder were tested for void ratio and 15 cylinder were tested for permeability test. Mix proportion (cement: Coarse aggregate) was kept fixed at 1:6 (by weights), where water cement ratio was valued 0.35 for preparing the sample specimens. The brick aggregate size varied among 25mm, 19mm, 12mm. It has been found that the compressive strength decreased with the increment of aggregate size but permeability increases and concrete made with 19mm maximum aggregate size yields the optimum value. No significant differences on the strength and permeability test are observed between the brick aggregate made zero fine concrete and stone aggregate made zero fine concrete.

Keywords: pervious concrete, brick aggregate concrete, zero fine concrete, permeability, porosity

Procedia PDF Downloads 558
712 Potential of Mineral Composition Reconstruction for Monitoring the Performance of an Iron Ore Concentration Plant

Authors: Maryam Sadeghi, Claude Bazin, Daniel Hodouin, Laura Perez Barnuevo

Abstract:

The performance of a separation process is usually evaluated using performance indices calculated from elemental assays readily available from the chemical analysis laboratory. However, the separation process performance is essentially related to the properties of the minerals that carry the elements and not those of the elements. Since elements or metals can be carried by valuable and gangue minerals in the ore and that each mineral responds differently to a mineral processing method, the use of only elemental assays could lead to erroneous or uncertain conclusions on the process performance. This paper discusses the advantages of using performance indices calculated from minerals content, such as minerals recovery, for process performance assessments. A method is presented that uses elemental assays to estimate the minerals content of the solids in various process streams. The method combines the stoichiometric composition of the minerals and constraints of mass conservation for the minerals through the concentration process to estimate the minerals content from elemental assays. The advantage of assessing a concentration process using mineral based performance indices is illustrated for an iron ore concentration circuit.

Keywords: data reconciliation, iron ore concentration, mineral composition, process performance assessment

Procedia PDF Downloads 220
711 Application of Synthetic Monomers Grafted Xanthan Gum for Rhodamine B Removal in Aqueous Solution

Authors: T. Moremedi, L. Katata-Seru, S. Sardar, A. Bandyopadhyay, E. Makhado, M. Joseph Hato

Abstract:

The rapid industrialisation and population growth have led to a steady fall in freshwater supplies worldwide. As a result, water systems are affected by modern methods upon use due to secondary contamination. The application of novel adsorbents derived from natural polymer holds a great promise in addressing challenges in water treatment. In this study, the UV irradiation technique was used to prepare acrylamide (AAm) monomer, and acrylic acid (AA) monomer grafted xanthan gum (XG) copolymer. Furthermore, the factors affecting rhodamine B (RhB) adsorption from aqueous media, such as pH, dosage, concentration, and time were also investigated. The FTIR results confirmed the formation of graft copolymer by the strong vibrational bands at 1709 cm-1 and 1612 cm-1 for AA and AAm, respectively. Additionally, more irregular, porous and wrinkled surface observed from SEM of XG-g-AAm/AA indicated copolymerization interaction of monomers. The optimum conditions for removing RhB dye with a maximum adsorption capacity of 313 mg/g at 25 0C from aqueous solution were pH approximately 5, initial dye concentration = 200 ppm, adsorbent dose = 30 mg. Also, the detailed investigation of the isothermal and adsorption kinetics of RhB from aqueous solution showed that the adsorption of the dye followed a Freundlich model (R2 = 0.96333) and pseudo-second-order kinetics. The results further indicated that this absorbent based on XG had the universality to remove dye through the mechanism of chemical adsorption. The outstanding adsorption potential of the grafted copolymer could be used to remove cationic dyes from aqueous solution as a low-cost product.

Keywords: xanthan gum, adsorbents, rhodamine B, Freundlich

Procedia PDF Downloads 129
710 Antibacterial Activity of Noble Metal Functionalized Magnetic Core-Zeolitic Shell Nanostructures

Authors: Mohsen Padervand

Abstract:

Functionalized magnetic core-zeolitic shell nanostructures were prepared by the hydrothermal and coprecipitation methods. The products were characterized by Vibrating Sample Magnetometer (VSM), X-ray powder diffraction (XRD), Fourier Transform Infrared spectra (FTIR), nitrogen adsorption-desorption isotherms (BET) and Transmission Electron Microscopy (TEM). The growth of mordenite nanoparticles on the surface of silica coated nickel ferrite nanoparticles at the presence of organic templates was well approved. The antibacterial activity of prepared samples was investigated by the inactivation of E.coli as a gram negative bacterium. A new mechanism was proposed to inactivate the bacterium over the prepared samples. Minimum Inhibitory Concentration (MIC) and reuse ability were studied too. TEM images of the destroyed microorganism after the treatment time were applied to illustrate the inactivation mechanism. The interaction of the noble metals with organic components on the surface of nanostructures studied theoretically and the results were used to interpret the experimental results.

Keywords: nickel ferrite nanoparticles, magnetic core-zeolitic shell, antibacterial activity, E. coli

Procedia PDF Downloads 331
709 Nano-Structured Hydrophobic Silica Membrane for Gas Separation

Authors: Sajid Shah, Yoshimitsu Uemura, Katsuki Kusakabe

Abstract:

Sol-gel derived hydrophobic silica membranes with pore sizes less than 1 nm are quite attractive for gas separation in a wide range of temperatures. A nano-structured hydrophobic membrane was prepared by sol-gel technique on a porous α–Al₂O₃ tubular support with yttria stabilized zirconia (YSZ) as an intermediate layer. Bistriethoxysilylethane (BTESE) derived sol was modified by adding phenyltriethoxysilylethane (PhTES) as an organic template. Six times dip coated modified silica membrane having a thickness of about 782 nm was characterized by field emission scanning electron microscopy. Thermogravimetric analysis, together along contact angle and Fourier transform infrared spectroscopy, showed that hydrophobic properties were improved by increasing the PhTES content. The contact angle of water droplet increased from 37° for pure to 111.5° for the modified membrane. The permeance of single gas H₂ was higher than H₂:CO₂ ratio of 75:25 binary feed mixtures. However, the permeance of H₂ for 60:40 H₂:CO₂ was found lower than single and binary mixture 75:25 H₂:CO₂. The binary selectivity values for 75:25 H₂:CO₂ were 24.75, 44, and 57, respectively. Selectivity had an inverse relation with PhTES content. Hydrophobicity properties were improved by increasing PhTES content in the silica matrix. The system exhibits proper three layers adhesion or integration, and smoothness. Membrane system suitable in steam environment and high-temperature separation. It was concluded that the hydrophobic silica membrane is highly promising for the separation of H₂/CO₂ mixture from various H₂-containing process streams.

Keywords: gas separation, hydrophobic properties, silica membrane, sol–gel method

Procedia PDF Downloads 123
708 Use of Slab Method, Throwing and Press Mold in Making Ceramic Holders for Offices

Authors: E. P. Doku-Asare, A. Essuman

Abstract:

The materials used for the production of holders are mainly metals and plastic, and these materials are difficult and expensive to process; therefore, the need to explore other materials such as clay for the production of holders. Clay is a viable material for the production of holders due to its plastic nature. Using ceramic materials as a medium for the production of holders does not only serve its purpose but also economically cheaper since the material is mined in Ghana. The study also examines the aesthetic nature of the holders due to the properties found in the material used. Six holders were chosen and were made in a manner that would not take a lot of space. They are Pin holders, Paper holders, Penholders, Paperweight and Umbrella holders. The production technique employed in the execution of this project were the slab method, throwing, and press mold. Results indicated that ceramic holders are durable and long-lasting and can serve the purpose of metallic and plastic holders. The study also found that clay holders are durable due to the fact that clay is from a natural source which ensures permanence and resistance to stress. It is recommended that press molds be used in the production of holders. Clay holders last longer due to the useful properties of clay including very high hardness and strength.

Keywords: ceramics, interior design, Ghana, production technique

Procedia PDF Downloads 166
707 Assessment of Proximate Composition and Heavy Metal in Vigna unguculata (White Beans) Sold in Kazaure Market, Jigawa State, Nigeria

Authors: Abdu Umar Adamu, Saidu Akun Abdullahi, Al-Hassan Muhammed, Hamisu Abdu

Abstract:

Leguminous plants such as beans have been considered as a source of protein in this present work. The proximate analysis on beans (Vigna unguiculata) were determined in order to identify the nutritional content as well as presence of some heavy metals accumulation in washed and unwashed beans (white Beans) sold in Kazaure market Jigawa State Nigeria. On the average comparative analysis, the result has indicated that, the Vigna unguiculata had protein content of 61.1%, fibre 4.5%, ash 10.4%, moisture 5%, carbohydrate 15.8% and total lipid 4.9%, therefore it could be suggested that beans has enough nutritional content that helps the people health. The heavy metal analysis of unwashed white beans showed that Fe (17.37 ± 6.71)mg/kg had the highest concentration followed by Zn (6.41 ± 3.09), Cu (5.69 ± 2.42), Cd (0.46 ± 0.65) and Pb (0.57 ± 0.94)mg/kg , while the washed beans shows that Zn (0.11 ± 0.17), Fe (0.01 ± 0.006), Cd (0.02 ± 0.01), Cu (0.03 ± 0.021), Pb (0.01 ± 0.006)mg/kg. The washed white beans are safe for consumption and also the concentration of heavy metal are negligible and of nontoxic effect to human health.

Keywords: white beans, protein, proximate composition, heavy metal

Procedia PDF Downloads 433
706 Effect of Silicon in Mitigating Cadmium Toxicity in Maize

Authors: Ghulam Hasan Abbasi, Moazzam Jamil, M. Anwar-Ul-Haq

Abstract:

Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while Silicon (Si) is one of the most ubiquitous macroelements, performing an essential function in healing plants in response to environmental stresses. A hydroponic experiment was conducted to investigate the role of exogenous application of silicon under cadmium stress in six different maize hybrids with five treatments comprising of control, 7.5 µM Cd + 5 mM Si, 7.5 µM Cd + 10 mM Si, 15 µM Cd + 5 mM Si and 15 µM Cd + 10 mM Si. Results revealed that treatments of plants with 10mM Si application under both 7.5µM Cd and 15 µM Cd stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, leaf area and relative water contents) and antioxidant enzymes (POD and CAT) relative to 5 mM Si application in all maize hybrids. Results regarding Cd concentrations showed that Cd was more retained in roots followed by shoots and then leaves and maximum reduction in Cd uptake was observed at 10mM Si application. Maize hybrid 6525 showed maximum growth and least concentration of Cd whereas maize hybrid 1543 showed the minimum growth and maximum Cd concentration among all maize hybrids.

Keywords: antioxidant, cadmium, maize, silicon

Procedia PDF Downloads 520
705 Effects of Pharmaceutical Drugs on Fish (koi) Behaviour and Muscle Function

Authors: Gayathri Vijayakumar, Preethi Baskaran

Abstract:

The effluents that are let down by the industries mix with the water bodies and drastically affect the aquatic life, which leads to pollution and bio magnifications. Effluents mostly contain chemicals, heavy metals etc., and cause toxicity to the environment. The pharmaceutical industries too contribute. The by-products and other unwanted waste are discharged without any treatment; these causes DNA damage and affect behavior of aquatic life. The study was conducted on koi carp (Cyprinus carpio) the ornamental variety of common carp. A two week long study was conducted on them using common anti-depressant drug (Diazepam) in various concentrations. These drugs are known to cause behavioral damage and organ malfunctions (muscle twitch). The histopathological study conducted showed permanent muscle twitching and lesions in the fish samples studied. The sociability was also affected in the span of 14 days. Higher concentrations of this drug showed severe damage in the muscle structures. Thus, this drug can cause adverse effects on marine ecosystem and eventually cause bio magnification of drug by running through the food chain.

Keywords: pollution, toxicity, bio-magnifications, koi carp, muscle twitch, diazepam, histopathology

Procedia PDF Downloads 100
704 Investigation of Internal Gettering at Low Temperatures of Metallic Elements in HEM Wafers mc-Si for Photovoltaic Solar Cells

Authors: Abdelghani Boucheham, Djoudi Bouhafs, Nabil Khelifati, Baya Palahouane

Abstract:

The main aim of this study is to investigate the low temperature internal gettering of manganese and chromium transition metals content in p-type multicrystalline silicon grown by Heat Exchanger Method (HEM). The minority carrier lifetime variation, the transition metal elements behavior, the sheet resistivity and the interstitial oxygen concentration after different temperatures annealing under N2 ambient were investigated using quasi-steady state photoconductance technique (QSSPC), secondary ion mass spectroscopy (SIMS), four-probe measurement and Fourier transform infrared spectrometer (FTIR), respectively. The obtained results indicate in the temperature range of 300°C to 700°C that the effective lifetime increases and reaches its maximum values of 28 μs at 500 °C and decreasing to 6 μs at 700 °C. This amelioration is due probably to metallic impurities internal gettering in the extended defects and in the oxygen precipitates as observed on SIMS profiles and the FTIR spectra. From 300 °C to 500 °C the sheet resistivity values rest unchanged at 30 Ohm/sq and rises significantly to reach 45 Ohm/sq for T> 500 °C.

Keywords: mc-Si, low temperature annealing, internal gettering, minority carrier lifetime, interstitial oxygen, resistivity

Procedia PDF Downloads 308
703 The Effect of Solid Wastes Disposal at Amokpala Dump Site in Orumba North Local Government Area, Anambra State

Authors: Nwanneka Mmonwuba

Abstract:

Solid waste disposal to the environment was investigated by analyzing the quality characteristics of waste, air quality, and heavy metal concentration in the soil. The characteristics of waste were analyzed by enumerating the number of houses, hostels, hotels, markets, schools, and industries with the type of waste being discharged or deposited into the dump site. The percentage of waste was estimated with organic ranking first for both wet and dry seasons, 54% and 44%, respectively. The ambient air quality was analyzed using the crown gas monitor analyzer. The analysis showed that the mean concentration of NO₂, SO₂, and Co is 0.74, 0.37, and 47.35 ppm for the wet season and 0.47, 0.35, and 37.65 ppm for the dry season, respectively, and do not conform with the USEPA standard. The chemical analysis of the groundwater sample indicates alkalinity ranging from 7.38 to 9.11. the heavy metals concentration in the soil of cadmium, iron, copper, calcium, and potassium with 0.053, 0.722, 0227, 21.3, and 9.019, respectively, obtained from 0.3 m at the subsurface failed to conform to the NRC (2013) standard. Iron consent in the soil can be corrected using ascorbic acid and soda ash. The permanent reduction of effects is to try relocating people who live very close to the dumpsite, or the dumpsite should be sited elsewhere and replaced with a sanitary landfill.

Keywords: solid waste, groundwater, disposal, dumpsite

Procedia PDF Downloads 51
702 Geochemical Evaluation of Metal Content and Fluorescent Characterization of Dissolved Organic Matter in Lake Sediments

Authors: Fani Sakellariadou, Danae Antivachis

Abstract:

Purpose of this paper is to evaluate the environmental status of a coastal Mediterranean lake, named Koumoundourou, located in the northeastern coast of Elefsis Bay, in the western region of Attiki in Greece, 15 km far from Athens. It is preserved from ancient times having an important archaeological interest. Koumoundourou lake is also considered as a valuable wetland accommodating an abundant flora and fauna, with a variety of bird species including a few world’s threatened ones. Furthermore, it is a heavily modified lake, affected by various anthropogenic pollutant sources which provide industrial, urban and agricultural contaminants. The adjacent oil refineries and the military depot are the major pollution providers furnishing with crude oil spills and leaks. Moreover, the lake accepts a quantity of groundwater leachates from the major landfill of Athens. The environmental status of the lake results from the intensive land uses combined with the permeable lithology of the surrounding area and the existence of karstic springs which discharge calcareous mountains. Sediment samples were collected along the shoreline of the lake using a Van Veen grab stainless steel sampler. They were studied for the determination of the total metal content and the metal fractionation in geochemical phases as well as the characterization of the dissolved organic matter (DOM). These constituents have a significant role in the ecological consideration of the lake. Metals may be responsible for harmful environmental impacts. The metal partitioning offers comprehensive information for the origin, mode of occurrence, biological and physicochemical availability, mobilization and transport of metals. Moreover, DOM has a multifunctional importance interacting with inorganic and organic contaminants leading to biogeochemical and ecological effects. The samples were digested using microwave heating with a suitable laboratory microwave unit. For the total metal content, the samples were treated with a mixture of strong acids. Then, a sequential extraction procedure was applied for the removal of exchangeable, carbonate hosted, reducible, organic/sulphides and residual fractions. Metal content was determined by an ICP-MS (Perkin Elmer, ICP MASS Spectrophotometer NexION 350D). Furthermore, the DOM was removed via a gentle extraction procedure and then it was characterized by fluorescence spectroscopy using a Perkin-Elmer LS 55 luminescence spectrophotometer equipped with the WinLab 4.00.02 software for data processing (Agilent, Cary Eclipse Fluorescence). Mono dimensional emission, excitation, synchronous-scan excitation and total luminescence spectra were recorded for the classification of chromophoric units present in the aqueous extracts. Total metal concentrations were determined and compared with those of the Elefsis gulf sediments. Element partitioning showed the anthropogenic sources and the contaminant bioavailability. All fluorescence spectra, as well as humification indices, were evaluated in detail to find out the nature and origin of DOM. All the results were compared and interpreted to evaluate the environmental quality of Koumoundourou lake and the need for environmental management and protection.

Keywords: anthropogenic contaminant, dissolved organic matter, lake, metal, pollution

Procedia PDF Downloads 158
701 Rising Velocity of a Non-Newtonian Liquids in Capillary Tubes

Authors: Reza Sabbagh, Linda Hasanovich, Aleksey Baldygin, David S. Nobes, Prashant R. Waghmare

Abstract:

The capillary filling process is significantly important to study for numerous applications such as the under filling of the material in electronic packaging or liquid hydrocarbons seepage through porous structure. The approximation of the fluid being Newtonian, i.e., linear relationship between the shear stress and deformation rate cannot be justified in cases where the extent of non-Newtonian behavior of liquid governs the surface driven transport, i.e., capillarity action. In this study, the capillary action of a non-Newtonian fluid is not only analyzed, but also the modified generalized theoretical analysis for the capillary transport is proposed. The commonly observed three regimes: surface forces dominant (travelling air-liquid interface), developing flow (viscous force dominant), and developed regimes (interfacial, inertial and viscous forces are comparable) are identified. The velocity field along each regime is quantified with Newtonian and non-Newtonian fluid in square shaped vertically oriented channel. Theoretical understanding of capillary imbibition process, particularly in the case of Newtonian fluids, is relied on the simplified assumption of a fully developed velocity profile which has been revisited for developing a modified theory for the capillary transport of non-Newtonian fluids. Furthermore, the development of the velocity profile from the entrance regime to the developed regime, for different power law fluids, is also investigated theoretically and experimentally.

Keywords: capillary, non-Newtonian flow, shadowgraphy, rising velocity

Procedia PDF Downloads 206
700 The Reducing Agent of Glycerol for the Reduction of Metal Oxides under Microwave Heating

Authors: Kianoosh Shojae

Abstract:

In recent years, the environmental challenges due to the excessive use of fossil fuels have led to heightened greenhouse gas production. In response, biodiesel has emerged as a cleaner alternative, offering reduced pollutant emissions compared to traditional fuels. The large-scale production of biodiesel, involving ester exchange of animal fats or vegetable oils, results in a surplus of crude glycerin. With environmental regulations on the rise and an increasing demand for biodiesel, glycerin production has seen a significant upswing. This paper focuses on the economic significance of glycerin through its pyrolysis as a raw material, particularly in the synthesis of metals. As industries pivoted towards cleaner fuels, glycerin, as a byproduct of biodiesel production, is poised to remain a cost-effective and surplus product. In this work, for evaluating the possible performance of using the gaseous products from the pyrolysis reaction of glycerol, we concerned the glycerin pyrolysis reactions, emphasizing the catalytic role of activated carbon, various reaction pathways and the impact of carrier gas flow rate on hydrogen production, providing valuable insights into the evolving landscape of sustainable fuel alternatives.

Keywords: biodiesel, glycerin pyrolysis, activated carbon catalysis, syngas

Procedia PDF Downloads 54
699 Carbon Nanomaterials from Agricultural Wastes for Adsorption of Organic Pollutions

Authors: Magdalena Blachnio, Viktor Bogatyrov, Mariia Galaburda, Anna Derylo-Marczewska

Abstract:

Agricultural waste materials from traditional oil mill and after extraction of natural raw materials in supercritical conditions were used for the preparation of carbon nanomaterials (activated carbons) by two various methods. Chemical activation using acetic acid and physical activation with a gaseous agent (carbon dioxide) were chosen as mild and environmentally friendly ones. The effect of influential factors: type of raw material, temperature and activation agent on the porous structure characteristics of the materials was discussed by using N₂ adsorption/desorption isotherms at 77 K. Furthermore scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to examine the physicochemical properties of the obtained sorbents. Selection of a raw material and an optimization of the conditions of the synthesis process, allowed to obtain the cheap sorbents with a targeted distribution of pores enabling effective adsorption of the model organic pollutants carried out in the multicomponent systems. Adsorption behavior (capacity and rate) of the chosen activated carbons was estimated by utilizing Crystal violet (CV), 4-chlorophenoxyacetic acid (4-CPA), 2.4-dichlorophenoxyacetic acid (2.4-D) as the adsorbates. Both rate and adsorption capacity of the organics on the sorbents evidenced that the activated carbons could be effectively used in sewage treatment plants. The mechanisms of organics adsorption were studied and correlated with activated carbons properties.

Keywords: activated carbon, adsorption equilibrium, adsorption kinetics, organics adsorption

Procedia PDF Downloads 179
698 Modeling and Simulation of Textile Effluent Treatment Using Ultrafiltration Membrane Technology

Authors: Samia Rabet, Rachida Chemini, Gerhard Schäfer, Farid Aiouache

Abstract:

The textile industry generates large quantities of wastewater, which poses significant environmental problems due to its complex composition and high levels of pollutants loaded principally with heavy metals, large amounts of COD, and dye. Separation treatment methods are often known for their effectiveness in removing contaminants whereas membrane separation techniques are a promising process for the treatment of textile effluent due to their versatility, efficiency, and low energy requirements. This study focuses on the modeling and simulation of membrane separation technologies with a cross-flow filtration process for textile effluent treatment. It aims to explore the application of mathematical models and computational simulations using ASPEN Plus Software in the prediction of a complex and real effluent separation. The results demonstrate the effectiveness of modeling and simulation techniques in predicting pollutant removal efficiencies with a global deviation percentage of 1.83% between experimental and simulated results; membrane fouling behavior, and overall process performance (hydraulic resistance, membrane porosity) were also estimated and indicating that the membrane losses 10% of its efficiency after 40 min of working.

Keywords: membrane separation, ultrafiltration, textile effluent, modeling, simulation

Procedia PDF Downloads 60