Search results for: ethanol extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2491

Search results for: ethanol extraction

1321 Unsupervised Neural Architecture for Saliency Detection

Authors: Natalia Efremova, Sergey Tarasenko

Abstract:

We propose a novel neural network architecture for visual saliency detections, which utilizes neuro physiologically plausible mechanisms for extraction of salient regions. The model has been significantly inspired by recent findings from neuro physiology and aimed to simulate the bottom-up processes of human selective attention. Two types of features were analyzed: color and direction of maximum variance. The mechanism we employ for processing those features is PCA, implemented by means of normalized Hebbian learning and the waves of spikes. To evaluate performance of our model we have conducted psychological experiment. Comparison of simulation results with those of experiment indicates good performance of our model.

Keywords: neural network models, visual saliency detection, normalized Hebbian learning, Oja's rule, psychological experiment

Procedia PDF Downloads 354
1320 Analyzing Keyword Networks for the Identification of Correlated Research Topics

Authors: Thiago M. R. Dias, Patrícia M. Dias, Gray F. Moita

Abstract:

The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is  characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords.

Keywords: bibliometrics, data analysis, extraction and data integration, scientometrics

Procedia PDF Downloads 264
1319 Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites

Authors: Qasar Saleem

Abstract:

The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material.

Keywords: condensation, nanocomposites, oligomers, polylactic

Procedia PDF Downloads 213
1318 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.

Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement

Procedia PDF Downloads 128
1317 Plantlet Regeneration from Zygotic Embryos of Securidaca longepedunculata Fresen

Authors: Uche C. Okafor, Nwanneka M. Okpokwu, Felix Nwafor, Carl E. A. Okezie

Abstract:

Securidaca longepedunculata Fresen (Violet tree) belongs to the family Polygalaceae characterised by papillionaceous purplish flowers. This medicinally valued plant disappears at an alarming rate due to intensified anthropopressure particularly the unregulated manner of subterranean plant parts' collection from natural stands. Some indiscriminately harvested plants bear seeds containing both mature and immature zygotic embryos that are often discarded. Here, such seeds are collected for this experiment. Seeds were collected, washed, de-coated, and dipped in 70 % (v/v) ethanol for 30 s followed by rising in 5 % solution sodium hypochlorite, containing two drops of tween 20, for another 25 min. Mature zygotic embryos (MZEs) were excised from seeds and cultured in two basal media (MS and B5), three carbon sources (sucrose, glucose and fructose) at five concentrations (0-40 g/L) while immature zygotic embryos (iMZEs) were composed on similar basal media and carbon source supplemented with 0-2 mg/L Benzylaminopurine (BAP) and 0-2 mg/L Indole acetic acid (IAA). MZEs cultured on MS + 30g/L sucrose differed significantly from other treatments at p≤0.05 with maximum percent sprouting (85.24± 5.67 %) and shoot length (7.53±0.67 cm). MZEs culture had the maximum percent sprouting (85.24± 5.67 %) and shoot length (7.53±0.67 cm) in medium containing MS+ 30g L-1 sucrose. iMZEs on the other hand had maximum growth on MS + 40g/L sucrose supplemented with 1.5 mg/L IAA+ 1.0 mg/L BAP. This study is a geared towards creating an alternative path for the maximum production of plants in vitro, thereby, preventing the plants from disappearing.

Keywords: Gamborg's medium, Murashige and Skoog medium, Securidaca longepedunculata, zygotic embryos

Procedia PDF Downloads 161
1316 A Method for Quantifying Arsenolipids in Sea Water by HPLC-High Resolution Mass Spectrometry

Authors: Muslim Khan, Kenneth B. Jensen, Kevin A. Francesconi

Abstract:

Trace amounts (ca 1 µg/L, 13 nM) of arsenic are present in sea water mostly as the oxyanion arsenate. In contrast, arsenic is present in marine biota (animals and algae) at very high levels (up to100,000 µg/kg) a significant portion of which is present as lipid-soluble compounds collectively termed arsenolipids. The complex nature of sea water presents an analytical challenge to detect trace compounds and monitor their environmental path. We developed a simple method using liquid-liquid extraction combined with HPLC-High Resolution Mass Spectrometer capable of detecting trace of arsenolipids (99 % of the sample matrix while recovering > 80 % of the six target arsenolipids with limit of detection of 0.003 µg/L.)

Keywords: arsenolipids, sea water, HPLC-high resolution mass spectrometry

Procedia PDF Downloads 378
1315 Solar Photocatalytic Hydrogen Production from Glycerol Reforming Using Ternary Cu/TiO2/Graphene

Authors: Tumelo W. P. Seadira, Thabang Ntho, Cornelius M. Masuku, Michael S. Scurrell

Abstract:

A ternary Cu/TiO2/rGO photocatalysts was prepared using solvothermal method. Firstly, pure anatase TiO2 hollow spheres were prepared with titanium butoxide, ethanol, ammonium sulphate, and urea via hydrothermal method; and Cu nanoparticles were subsequently loaded on the surface of the hollow spheres by wet impregnation. During the solvothermal process, the deposition and well dispersion of Cu-TiO2 hollow spheres composites onto the graphene oxide surface, as well as the reduction of graphene oxide to graphene were achieved. The morphological and structural properties of the prepared samples were characterized by Brunauer-Emmett-Tellet (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and UV-vis DRS, and photoelectrochemical. The activities of the prepared catalysts were tested for hydrogen production via simultaneous photocatalytic water-splitting and glycerol reforming under visible light irradiation. The excellent photocatalytic activity of the Cu-TiO2-hollow-spheres/rGO catalyst was attributed the rGO which acts as both storage and transferor of electrons generated at the Cu and TiO2 heterojunction, thus increasing the electron-hole pairs separation. This paper reports the preparation of photocatalyst which is highly active by coupling reduced graphene oxide with nano-structured TiO2 with high surface area that can efficiently harvest the visible light for effective water-splitting and glycerol photocatalytic reforming in order to achieve efficient hydrogen evolution.

Keywords: glycerol reforming, hydrogen evolution, graphene oxide, Cu/TiO2-hollow-spheres/rGO

Procedia PDF Downloads 161
1314 Analysis of Nonlinear and Non-Stationary Signal to Extract the Features Using Hilbert Huang Transform

Authors: A. N. Paithane, D. S. Bormane, S. D. Shirbahadurkar

Abstract:

It has been seen that emotion recognition is an important research topic in the field of Human and computer interface. A novel technique for Feature Extraction (FE) has been presented here, further a new method has been used for human emotion recognition which is based on HHT method. This method is feasible for analyzing the nonlinear and non-stationary signals. Each signal has been decomposed into the IMF using the EMD. These functions are used to extract the features using fission and fusion process. The decomposition technique which we adopt is a new technique for adaptively decomposing signals. In this perspective, we have reported here potential usefulness of EMD based techniques.We evaluated the algorithm on Augsburg University Database; the manually annotated database.

Keywords: intrinsic mode function (IMF), Hilbert-Huang transform (HHT), empirical mode decomposition (EMD), emotion detection, electrocardiogram (ECG)

Procedia PDF Downloads 586
1313 Automatic Moment-Based Texture Segmentation

Authors: Tudor Barbu

Abstract:

An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.

Keywords: image segmentation, moment-based, texture analysis, automatic classification, validation indexes

Procedia PDF Downloads 420
1312 A Proposed Approach for Emotion Lexicon Enrichment

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Document Analysis is an important research field that aims to gather the information by analyzing the data in documents. As one of the important targets for many fields is to understand what people actually want, sentimental analysis field has been one of the vital fields that are tightly related to the document analysis. This research focuses on analyzing text documents to classify each document according to its opinion. The aim of this research is to detect the emotions from text documents based on enriching the lexicon with adapting their content based on semantic patterns extraction. The proposed approach has been presented, and different experiments are applied by different perspectives to reveal the positive impact of the proposed approach on the classification results.

Keywords: document analysis, sentimental analysis, emotion detection, WEKA tool, NRC lexicon

Procedia PDF Downloads 446
1311 Electro-Winning of Dilute Solution of Copper Metal from Sepon Mine, Lao PDR

Authors: S. Vasailor, C. Rattanakawin

Abstract:

Electro-winning of copper metal from dilute sulfate solution (13.7 g/L) was performed in a lab electrolytic cell with stainless-steel cathode and lead-alloy anode. The effects of various parameters including cell voltage, electro-winning temperature and time were studied in order to acquire an appropriate current efficiency of copper deposition. The highest efficiency is about 95% obtaining from electro-winning condition of 3V, 55°C and 3,600 s correspondingly. The cathode copper with 95.5% Cu analyzed using atomic absorption spectrometry can be obtained from this single-winning condition. In order to increase the copper grade, solvent extraction should be used to increase the sulfate concentration, say 50 g/L, prior to winning the cathode copper effectively.

Keywords: copper metal, current efficiency, dilute sulfate solution, electro-winning

Procedia PDF Downloads 142
1310 Carbon Aerogel Spheres from Resorcinol/Phenol and Formaldehyde for CO₂ Adsorption

Authors: Jessica Carolina Hernandez Galeano, Juan Carlos Moreno Pirajan, Liliana Giraldo

Abstract:

Carbon gels are materials whose structure and porous texture can be designed and controlled on a nanoscale. Among their characteristics it is found their low density, large surface area and high degree of porosity. These materials are produced by a sol-gel polymerization of organic monomers using basic or acid catalysts, followed by drying and controlled carbonization. In this work, the synthesis and characterization of carbon aerogels from resorcinol, phenol and formaldehyde in ethanol is described. The aim of this study is obtaining different carbonaceous materials in the form of spheres using the Stöber method to perform a further evaluation of CO₂ adsorption of each material. In general, the synthesis consisted of a sol-gel polymerization process that generates a cluster (cross-linked organic monomers) from the precursors in the presence of NH₃ as a catalyst. This cluster was subjected to specific conditions of gelling and curing (30°C for 24 hours and 100°C for 24 hours, respectively) and CO₂ supercritical drying. Finally, the dry material was subjected to a process of carbonization or pyrolysis, in N₂ atmosphere at 350°C (1° C / min) for 2 h and 600°C (1°C / min) for 4 hours, to obtain porous solids that retain the structure initially desired. For this work, both the concentrations of the precursors and the proportion of ammonia in the medium where modify to describe the effect of the use of phenol and the amount of catalyst in the resulting material. Carbon aerogels were characterized by Scanning Electron Microscope (SEM), N₂ isotherms, infrared spectroscopy (IR) and X-ray Powder Diffraction (XRD) showing the obtention of carbon spheres in the nanometric scale with BET areas around 500 m2g-1.

Keywords: carbon aerogels, carbon spheres, CO₂ adsorption, Stöber method

Procedia PDF Downloads 142
1309 Analysis of Business Intelligence Tools in Healthcare

Authors: Avishkar Gawade, Omkar Bansode, Ketan Bhambure, Bhargav Deore

Abstract:

In recent year wide range of business intelligence technology have been applied to different area in order to support decision making process BI enables extraction of knowledge from data store. BI tools usually used in public health field for financial and administrative purposes.BI uses a dashboard in presentation stage to deliver information to information to end users.In this paper,we intend to analyze some open source BI tools on the market and their applicability in the clinical sphere taking into consideration the general characteristics of the clinical environment.A pervasive BI platform was developed using a real case in order to prove the tool viability.Analysis of various BI Tools in done with the help of several parameters such as data security,data integration,data quality reporting and anlaytics,performance,scalability and cost effectivesness.

Keywords: CDSS, EHR, business intelliegence, tools

Procedia PDF Downloads 143
1308 Conditions of the Anaerobic Digestion of Biomass

Authors: N. Boontian

Abstract:

Biological conversion of biomass to methane has received increasing attention in recent years. Grasses have been explored for their potential anaerobic digestion to methane. In this review, extensive literature data have been tabulated and classified. The influences of several parameters on the potential of these feedstocks to produce methane are presented. Lignocellulosic biomass represents a mostly unused source for biogas and ethanol production. Many factors, including lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have used to improve the digestibility of the lignocellulosic biomass. Each pretreatment has its own effects on cellulose, hemicellulose and lignin, the three main components of lignocellulosic biomass. Solid-state anaerobic digestion (SS-AD) generally occurs at solid concentrations higher than 15%. In contrast, liquid anaerobic digestion (AD) handles feedstocks with solid concentrations between 0.5% and 15%. Animal manure, sewage sludge, and food waste are generally treated by liquid AD, while organic fractions of municipal solid waste (OFMSW) and lignocellulosic biomass such as crop residues and energy crops can be processed through SS-AD. An increase in operating temperature can improve both the biogas yield and the production efficiency, other practices such as using AD digestate or leachate as an inoculant or decreasing the solid content may increase biogas yield but have negative impact on production efficiency. Focus is placed on substrate pretreatment in anaerobic digestion (AD) as a means of increasing biogas yields using today’s diversified substrate sources.

Keywords: anaerobic digestion, lignocellulosic biomass, methane production, optimization, pretreatment

Procedia PDF Downloads 381
1307 Concentrations and History of Heavy Metals in Sediment Cores: Geochemistry and Geochronology Using 210Pb

Authors: F. Fernandes, C. Poleto

Abstract:

This paper aims at assessing the concentrations of heavy metals and the isotopic composition of lead 210Pb in different fractions of sediment produced in the watershed that makes up the Mãe d'água dam and thus characterizing the distribution of metals along the sedimentary column and inferencing in the urbanization of the same process. Sample collection was carried out in June 2014; eight sediment cores were sampled in the lake of the dam. For extraction of the sediments core, a core sampler “Piston Core” was used. The trace metal concentrations were determined by conventional atomic absorption spectrophotometric methods. The samples were subjected to radiochemical analysis of 210Po. 210Pb activity was obtained by measuring 210Po activity. The chronology was calculated using the constant rate of supply (CRS). 210Pb is used to estimate the sedimentation rate.

Keywords: ²¹⁰Pb dating method, heavy metal, lakes urban, pollution history

Procedia PDF Downloads 303
1306 Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications

Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi

Abstract:

China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping.

Keywords: GF-2 images, feature extraction-rectification, nearest neighbour object based classification, segmentation algorithms, neural network classification, multilayer perceptron

Procedia PDF Downloads 393
1305 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes

Authors: Zineb Nougrara

Abstract:

In this paper, we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We, therefore, have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.

Keywords: satellite image, road network, nodes, image analysis and processing

Procedia PDF Downloads 276
1304 Automatic Segmentation of the Clean Speech Signal

Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze

Abstract:

Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The multi-scale product is based on making the product of the speech wavelet transform coefficients at three successive dyadic scales. We have evaluated our method on the Keele database. Experimental results show the effectiveness of our method presenting a good performance. It shows that the two simple features can find word boundaries, and extracted the segments of the clean speech.

Keywords: multiscale product, spectral centroid, speech segmentation, zero crossings rate

Procedia PDF Downloads 501
1303 Different Biological and Chemical Parameters that Influence the Polyphenols from Some Medicinal Plants in Western Algeria

Authors: Mustapha Mahmoud, Fouzia Toumi Benali, Mohamed Benyahia, Sofiane Bouazza

Abstract:

This work focuses on the influences of biological and chemical parameters on the phenolic compounds such as flavonoids and tannins in different medicinal plants in western Algeria (Papaver rhoeas, Daphnegnidium, Lavandula multifida, Lavandula dentata, Lavandula stoicha, ...). Thus we look the difference between species of the same genus, difference between the different organs of the same species, the influence of environment all temperature influences, time, percentage of solvent on the extraction. Quantification of the phenolic compounds was performed by spectrophotometric method then treated with statistics tools such as variance analysis, multivariant analyzes, response surface methodology). The results show that the polyphenols are influenced by the parameters mentioned.

Keywords: polyphenols, influences, medicinal plants, west Algeria

Procedia PDF Downloads 299
1302 The Leaching Kinetics of Zinc from Industrial Zinc Slag Waste

Authors: Hilary Rutto

Abstract:

The investigation was aimed at determining the extent at which the zinc will be extracted from secondary sources generated from galvanising process using dilute sulphuric acid under controlled laboratory conditions of temperature, solid-liquid ratio, and agitation rate. The leaching experiment was conducted for a period of 2 hours and to total zinc extracted calculated in relation to the amount of zinc dissolved at a unit time in comparison to the initial zinc content of the zinc ash. Sulphuric acid was found to be an effective leaching agent with an overall extraction of 91.1% when concentration is at 2M, and solid/liquid ratio kept at 1g/200mL leaching solution and temperature set at 65ᵒC while slurry agitation is at 450rpm. The leaching mechanism of zinc ash with sulphuric acid was conformed well to the shrinking core model.

Keywords: leaching, kinetics, shrinking core model, zinc slag

Procedia PDF Downloads 160
1301 Aesthetic Analysis and Socio-Cultural Significance of Eku Idowo and Anipo Masquerades of the Anetuno (Ebira Chao)

Authors: Lamidi Lawal Aduozava

Abstract:

Masquerade tradition is an indigenous culture of the Anetuno an extraction of the Ebira referred to as Ebira chao. This paper seeks to make aesthetic analysis of the masquerades in terms of their costumes and socio-cultural significance. To this end, the study examined and documented the functions and roles of Anipo and Idowo masquerades in terms of therapeutic, economic, prophetic and divination, entertainment, and funeral functions to the owner community(Eziobe group of families) in Igarra, Edo State of Nigeria, West Africa. For the purpose of data collection, focus group discussion, participatory, visual and observatory methods of data collection were used. All the data collected were aesthetically, descriptively and historically analyzed.

Keywords: Aesthetics, , Costume, , Masquerades, , Significance.

Procedia PDF Downloads 168
1300 Risk Factors for Maternal and Neonatal Morbidities Associated with Operative Vaginal Deliveries

Authors: Maria Reichenber Arcilla

Abstract:

Objective: To determine the risk factors for maternal and neonatal complications associated with operative vaginal deliveries. Methods: A retrospective chart review of 435 patients who underwent operative vaginal deliveries was done. Patient profiles – age, parity, AOG, duration of labor – and outcomes – birthweight, maternal and neonatal complications - were tabulated and multivariable analysis and logistic regression were performed using SPSS® Statistics Base. Results and Conclusion: There was no significant difference in the incidence of maternal and neonatal complications between those that underwent vacuum and forceps extraction. Among the variables analysed, parity and duration of labor reached statistical significance. The odds of maternal complications were 3 times higher among nulliparous patients. Neonatal complications were seen in those whose labor lasted more than 9 hours.

Keywords: operative vaginal deliveries, maternal, neonatal, morbidity

Procedia PDF Downloads 409
1299 Physico-Chemical, GC-MS Analysis and Cold Saponification of Onion (Allium cepa L) Seed Oil

Authors: A. A Warra, S. Fatima

Abstract:

The experimental investigation revealed that the hexane extract of onion seed oil has acid value, iodine value, peroxide value, saponification value, relative density and refractive index of 0.03±0.01 mgKOH/g, 129.80±0.21 gI2/100g, 3.00± 0.00 meq H2O2 203.00±0.71 mgKOH/g, 0.82±0.01and 1.44±0.00 respectively. The percentage yield was 50.28±0.01%. The colour of the oil was light green. We restricted our GC-MS spectra interpretation to compounds identification, particularly fatty acids and they are identified as palmitic acid, linolelaidic acid, oleic acid, stearic acid, behenic acid, linolenic acid and eicosatetraenoic acid. The pH , foam ability (cm³), total fatty matter, total alkali and percentage chloride of the onion oil soap were 11.03± 0.02, 75.13±0.15 (cm³), 36.66 ± 0.02 %, 0.92 ± 0.02% and 0.53 ± 0.15 % respectively. The texture was soft and the colour was lighter green. The results indicated that the hexane extract of the onion seed oil has potential for cosmetic industries.

Keywords: onion seeds, soxhlet extraction, physicochemical, GC-MS, cold saponification

Procedia PDF Downloads 323
1298 Prospects in Development of Ecofriendly Biopesticides in Management of Postharvest Fungal Deterioration of Cassava (Manihot esculenta Crantz)

Authors: Anderson Chidi Amadioha, Promise Chidi Kenkwo, A. A. Markson

Abstract:

Cassava (Manihot esculenta Crantz) is an important food and cash crop that provide cheap source of carbohydrate for food, feed and raw material for industries hence a commodity for feature economic development of developing countries. Despite the importance, its production potentials is undermined by disease agents that greatly reduce yield and render it unfit for human consumption and industrial use. Pathogenicity tests on fungal isolates from infected cassava revealed Aspergillus flavus, Rhizopus stolonifer, Aspergillus niger, and Trichodderma viride as rot-causing organisms. Water and ethanol extracts of Piper guineense, Ocimum graticimum, Cassia alata, and Tagetes erecta at 50% concentration significantly inhibited the radial growth of the pathogens in vitro and their development and spread in vivo. Low cassava rot incidence and severity was recorded when the extracts were applied before than after spray inoculating with spore suspension (1x105 spores/ml of distilled water) of the pathogenic organisms. The plant materials are readily available, and their extracts are biodegradable and cost effective. The fungitoxic potentials of extracts of these plant materials could be exploited as potent biopesticides in the management of postharvest fungal deterioration of cassava especially in developing countries where synthetic fungicides are not only scarce but also expensive for resource poor farmers who produce over 95% of the food consumed.

Keywords: cassava, biopesticides, in vitro, in vivo, pathogens, plant extracts

Procedia PDF Downloads 184
1297 Kinetics Analysis of Lignocellulose Hydrolysis and Glucose Consumption Using Aspergillus niger in Solid State

Authors: Akida Mulyaningtyas, Wahyudi Budi Sediawan

Abstract:

One decisive stage in bioethanol production from plant biomass is the hydrolysis of lignocellulosic materials into simple sugars such as glucose. The produced glucose is then fermented into ethanol. This stage is popularly done in biological method by using cellulase that is produced by certain fungi. As it is known, glucose is the main source of nutrition for most microorganisms. Therefore, cutting cellulose into glucose is actually an attempt of microorganism to provide nutrition for itself. So far, this phenomenon has received less attention while it is necessary to identify the quantity of sugar consumed by the microorganism. In this study, we examined the phenomenon of sugar consumption by microorganism on lignocellulosic hydrolysis. We used oil palm empty fruit bunch (OPEFB) as the source of lignocellulose and Aspergillus niger as cellulase-producing fungus. In Indonesia, OPEFB is plantation waste that is difficult to decompose in nature and causes environmental problems. First, OPEFB was pretreated with 1% of NaOH at 170 oC to destroy lignin that hindered A.niger from accessing cellulose. The hydrolysis was performed by growing A.niger on pretreated OPEFB in solid state to minimize the possibility of contamination. The produced glucose was measured every 24 hours for 9 days. We analyzed the kinetics of both reactions, i.e., hydrolysis and glucose consumption, simultaneously. The constants for both reactions were assumed to follow the Monod equation. The results showed that the reaction constant of glucose consumption (μC) was higher than of cellulose hydrolysis (μH), i.e., 11.8 g/L and 0.62 g/L for glucose consumption and hydrolysis respectively. However, in general, the reaction rate of hydrolysis is greater than of glucose consumption since the cellulose concentration as substrate in hydrolysis is much higher than glucose as substrate in the consumption reaction.

Keywords: Aspergillus niger, bioethanol, hydrolysis, kinetics

Procedia PDF Downloads 173
1296 Heterogeneous Artifacts Construction for Software Evolution Control

Authors: Mounir Zekkaoui, Abdelhadi Fennan

Abstract:

The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.

Keywords: heterogeneous software artifacts, software evolution control, unified approach, meta model, software architecture

Procedia PDF Downloads 449
1295 Bio Ethanol Production From the Co-Mixture of Jatropha Carcus L. Kernel Cake and Rice Straw

Authors: Felix U. Asoiro, Daniel I. Eleazar, Peter O. Offor

Abstract:

As a result of increasing energy demands, research in bioethanol has increased in recent years all through the world, in abide to partially or totally replace renewable energy supplies. The first and third generation feedstocks used for biofuel production have fundamental drawbacks. Waste rice straw and cake from second generation feedstock like Jatropha curcas l. kernel (JC) is seen as non-food feedstock and promising candidates for the industrial production of bioethanol. In this study, JC and rice husk (RH) wastes were characterized for proximate composition. Bioethanol was produced from the residual polysaccharides present in rice husk (RH) and Jatropha seed cake by sequential hydrolytic and fermentative processes at varying mixing proportions (50 g JC/50 g RH, 100 g JC/10 g RH, 100 g JC/20 g RH, 100 g JC/50 g RH, 100 g JC/100 g RH, 100 g JC/200 g RH and 200 g JC/100 g RH) and particle sizes (0.25, 0.5 and 1.00 mm). Mixing proportions and particle size significantly affected both bioethanol yield and some bioethanol properties. Bioethanol yield (%) increased with an increase in particle size. The highest bioethanol (8.67%) was produced at a mixing proportion of 100 g JC/50g RH at 0.25 mm particle size. The bioethanol had the lowest values of specific gravity and density of 1.25 and 0.92 g cm-3 and the highest values of 1.57 and 0.97 g cm-3 respectively. The highest values of viscosity (4.64 cSt) were obtained with 200 g JC/100 g RH, at 1.00 mm particle size. The maximum flash point and cloud point values were 139.9 oC and 23.7oC (100 g JC/200 g RH) at 1 mm and 0.5 mm particle sizes respectively. The maximum pour point value recorded was 3.85oC (100 g JC/50 g RH) at 1 mm particle size. The paper concludes that bioethanol can be recovered from JC and RH wastes. JC and RH blending proportions as well as particle sizes are important factors in bioethanol production.

Keywords: bioethanol, hydrolysis, Jatropha curcas l. kernel, rice husk, fermentation, proximate composition

Procedia PDF Downloads 102
1294 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video

Authors: Nidhal K. Azawi, John M. Gauch

Abstract:

Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.

Keywords: colonoscopy classification, feature extraction, image alignment, machine learning

Procedia PDF Downloads 256
1293 Audio Information Retrieval in Mobile Environment with Fast Audio Classifier

Authors: Bruno T. Gomes, José A. Menezes, Giordano Cabral

Abstract:

With the popularity of smartphones, mobile apps emerge to meet the diverse needs, however the resources at the disposal are limited, either by the hardware, due to the low computing power, or the software, that does not have the same robustness of desktop environment. For example, in automatic audio classification (AC) tasks, musical information retrieval (MIR) subarea, is required a fast processing and a good success rate. However the mobile platform has limited computing power and the best AC tools are only available for desktop. To solve these problems the fast classifier suits, to mobile environments, the most widespread MIR technologies, seeking a balance in terms of speed and robustness. At the end we found that it is possible to enjoy the best of MIR for mobile environments. This paper presents the results obtained and the difficulties encountered.

Keywords: audio classification, audio extraction, environment mobile, musical information retrieval

Procedia PDF Downloads 548
1292 Enhancing Solar Fuel Production by CO₂ Photoreduction Using Transition Metal Oxide Catalysts in Reactors Prepared by Additive Manufacturing

Authors: Renata De Toledo Cintra, Bruno Ramos, Douglas Gouvêa

Abstract:

There is a huge global concern due to the emission of greenhouse gases, consequent environmental problems, and the increase in the average temperature of the planet, caused mainly by fossil fuels, petroleum derivatives represent a big part. One of the main greenhouse gases, in terms of volume, is CO₂. Recovering a part of this product through chemical reactions that use sunlight as an energy source and even producing renewable fuel (such as ethane, methane, ethanol, among others) is a great opportunity. The process of artificial photosynthesis, through the conversion of CO₂ and H₂O into organic products and oxygen using a metallic oxide catalyst, and incidence of sunlight, is one of the promising solutions. Therefore, this research is of great relevance. To this reaction take place efficiently, an optimized reactor was developed through simulation and prior analysis so that the geometry of the internal channel is an efficient route and allows the reaction to happen, in a controlled and optimized way, in flow continuously and offering the least possible resistance. The design of this reactor prototype can be made in different materials, such as polymers, ceramics and metals, and made through different processes, such as additive manufacturing (3D printer), CNC, among others. To carry out the photocatalysis in the reactors, different types of catalysts will be used, such as ZnO deposited by spray pyrolysis in the lighting window, probably modified ZnO, TiO₂ and modified TiO₂, among others, aiming to increase the production of organic molecules, with the lowest possible energy.

Keywords: artificial photosynthesis, CO₂ reduction, photocatalysis, photoreactor design, 3D printed reactors, solar fuels

Procedia PDF Downloads 91