Search results for: Murashige and Skoog medium
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2725

Search results for: Murashige and Skoog medium

2725 Somatic Embryogenesis of Lachenalia viridiflora, a Critically Endangered Ornamental Geophyte with High Floricultural Potential

Authors: Vijay Kumar, Mack Moyo, Johannes Van Staden

Abstract:

Lachenalia viridiflora is a critically endangered bulbous plant with high potential on the international floriculture market. In the present study, an efficient protocol for in vitro plantlet regeneration through somatic embryogenesis was developed. Embryogenic callus was established on Murashige and Skoog (MS) basal medium supplemented with various concentrations and combinations of picloram and thidiazuron (TDZ). A high number of SEs (28.5 ± 1.49) with at different developmental stages of somatic embryos (SEs: globular embryos, torpedo and cotyledon embryo with bipolar characteristics) was obtained on Murashige and Skoog (MS) (Murashige and Skoog 1962) medium with 2.5 μM picloram, and 1.0 μM TDZ. Histological and scanning electron microscopic (SEM) analysis confirmed the presence of somatic embryos. Mature somatic embryos germinated and developed into plantlets after 6 weeks on half/full strength MS medium. High plant regeneration frequency (91.11 %) was achieved on full-strength MS medium supplemented with 5 μM phloroglucinol (PG). Well-developed healthy plantlets were successfully acclimatized in the greenhouse with a survival rate of 80%. The result of this study is beneficial in the mass propagation of high-quality Lachenalia viridiflora clonal plants for the commercial horticultural market and also provides a platform for future genetic transformation studies on the plant.

Keywords: horticultural plant, Lachenalia viridiflora, phloroglucinol, somatic embryogenesis, thidiazuron

Procedia PDF Downloads 584
2724 Comparative Growth Rates of Treculia africana Decne: Embryo in Varied Strengths of Murashige and Skoog Basal Medium

Authors: Okafor C. Uche, Agbo P. Ejiofor, Okezie C. Eziuche

Abstract:

This study provides a regeneration protocol for Treculia africana Decne (an endangered plant) through embryo culture. Mature zygotic embryos of T. africana were excised from the seeds aseptically and cultured on varied strengths (full, half and quarter) of Murashige and Skoog (MS) basal medium supplemented. All treatments experienced 100±0.00 percent sprouting except for half and quarter strengths. Plantlets in MS full strength had the highest fresh weight, leaf area, and longest shoot length when compared to other treatments. All explants in full, half, quarter strengths and control had the same number of leaves and sprout rate. Between the treatments, there was a significant difference (P>0.05) in their effect on the length of shoot and root, number of adventitious root, leaf area, and fresh weight. Full strength had the highest mean value in all the above-mentioned parameters and differed significantly (P>0.05) from others except in shoot length, number of adventitious roots, and root length where it did not differ (P<0.05) from half strength. The result of this study indicates that full strength MS basal medium offers a better option for the optimum growth for Treculia africana regeneration in vitro.

Keywords: medium strengths, Murashige and Skoog, Treculia africana, zygotic embryos

Procedia PDF Downloads 213
2723 Effect of Mannitol on in Vitro Conservation of Local and Exotic Taro-Genotypes (Colocasia Esculenta Var Esculenta)

Authors: Benjamin Bonsu Bruce, Marian Dorcas Quain David Appiah-Kubi, Gertrude Osei-Diko, Harrison Kwame Dapaah

Abstract:

Taro [Colocasia esculenta (L.) Schott] is a major staple food and remains a significant crop to many cultural and agricultural customs worldwide. In Ghana, taro is mostly propagated using vegetative material, which is conserved in field collection and recycled from their farms to establish new fields. However, this practice promotes the accumulation of systemic pathogens. Prior exposure to pests and subsequent expression of disease symptoms can also be a huge constraint to sustainable conservation and utilization of taro genetic resources. In vitro, slow growth is one of the most promising techniques to be utilized for conservation. The objective of this study was to find a medium-term in vitro conservation protocol for local and exotic taro genotypes. The medium-term conservation study was conducted using actively growing shoots obtained from in vitro cultures. Explants were cultured to full strength in complete Murashige and Skoog medium supplemented with Mannitol at different concentrations (0g/l, 20g/l, 25g/l, and 30g/l). Another medium that was tested as an additional treatment is the White’s medium. The highest number of shoots (6.33) and leaves (22.67) occurred on medium containing 20 and 25g/l mannitol in genotype SAO 006 as compared to other genotypes, whereas 30g/l mannitol was the best to restrict growth for the entire 6 months period in terms of shoot height (22.50cm). The study reveals that mannitol supplemented culture media could reduce the growth of Colocasia plantlets, especially in stem height. Culture growth following 6 months of conservation, showed that healthy shoot cultures of Taro were obtained after 6 months of storage in a medium containing 20gl⁻¹ and 25gl⁻¹ mannitol.

Keywords: complete murashige, skoog medium, culture conditions, mannitol, slow growth conservation

Procedia PDF Downloads 119
2722 Optimization of Sucrose Concentration, PH Level and Inoculum Size for Callus Proliferation and Anti-bacterial Potential of Stevia Rebaudiana Bertoni

Authors: Inayat Ur Rahman Arshad

Abstract:

Stevia rebaudiana B. is a shrubby perennial herb of Asteraceae family that possesses the unique ability of accumulative non caloric sweet Steviol Glycosides (SGs). The purpose of the study is to optimize sugar concentration, pH level and inoculum size for inducing the callus with optimum growth and efficient antibacterial potential. Three different experiments were conducted in which Callus explant from three-months-old already established callus of Stevia reabudiana of four different sizes were inoculated on Murashige and Skoog (MS) basal medium supplemented with five different sucrose concentration and pH adjusted at four different levels. Maximum callus induction 100, 87.5 and 85.33% was resulted in the medium supplemented with 30g/l sucrose, pH maintained at 5.5 and inoculated with 1.25g inoculum respectively. Similarly, the highest fresh weight 65.00, 75.50 and 50.53g/l were noted in medium fortified with 40g/l sucrose, inoculated 1.25g inoculum and 6.0 pH level respectively. However, the callus developed in medium containing 50g/l sucrose found highly antibacterial potent with 27.3 and 26.5mm inhibition zone against P. vulgaris and B. subtilize respectively. Similarly, the callus grown on medium inoculated with 1.00g inoculum resulted in maximum antibacterial potential against S. aureus and P. vulgaris with 25 and 23.72mm inhibition zones respectively. However, in the case of pH levels the medium maintained at 6.5pH showed maximum antibacterial activity against P. vulgaris, B.subtilis and E.coli with 27.9, 25 and 23.72mm respectively. The ethyl acetate extract of Stevia callus and leaves did not show antibacterial potential against Xanthomonas campestris and Clavebactor michiganensis. In the entire experiment the standard antibacterial agent Streptomycin showed the highest inhibition zones from the rest of the callus extract, however the pure DMSO (Dimethyl Sulfoxide) caused no inhibitory zone against any bacteria. From these findings it is concluded that among various levels sucrose at the rate of 40g L-1, pH 6.0 and inoculums 0.75g was found best for most of the growth and quality attributes including fresh weight, dry weight and antibacterial activities and therefore can be recommended for callus proliferation and antibacterial potential of Stevia rebaudiana

Keywords: Steviol Glycosides, Skoog, Murashige, Clavebactor michiganensis

Procedia PDF Downloads 51
2721 An Efficient and Low Cost Protocol for Rapid and Mass in vitro Propagation of Hyssopus officinalis L.

Authors: Ira V. Stancheva, Ely G. Zayova, Maria P. Geneva, Marieta G. Hristozkova, Lyudmila I. Dimitrova, Maria I. Petrova

Abstract:

The study describes a highly efficient and low-cost protocol for rapid and mass in vitro propagation of medicinal and aromatic plant species (Hyssopus officinalis L., Lamiaceae). Hyssop is an important aromatic herb used for its medicinal values because of its antioxidant, anti-inflammatory and antimicrobial properties. The protocol for large-scale multiplication of this aromatic plant was developed using young stem tips explants. The explants were sterilized with 0.04% mercuric chloride (HgCl₂) solution for 20 minutes and washing three times with sterile distilled water in 15 minutes. The cultural media was full and half strength Murashige and Skoog medium containing indole-3-butyric acid. Full and ½ Murashige and Skoog media without auxin were used as controls. For each variant 20 glass tubes with two plants were used. In each tube two tip and nodal explants were inoculated. Maximum shoot and root number were obtained on ½ Murashige and Skoog medium supplemented with 0.1 mg L-1 indole-3-butyric acid at the same time after four weeks of culture. The number of shoots per explant and shoot height were considered. The data on rooting percentage, the number of roots per plant and root length were collected after the same cultural period. The highest percentage of survival 85% for this medicinal plant was recorded in mixture of soil, sand and perlite (2:1:1 v/v/v). This mixture was most suitable for acclimatization of all propagated plants. Ex vitro acclimatization was carried out at 24±1 °C and 70% relative humidity under 16 h illuminations (50 μmol m⁻²s⁻¹). After adaptation period, the all plants were transferred to the field. The plants flowered within three months after transplantation. Phenotypic variations in the acclimatized plants were not observed. An average of 90% of the acclimatized plants survived after transferring into the field. All the in vitro propagated plants displayed normal development under the field conditions. Developed in vitro techniques could provide a promising alternative tool for large-scale propagation that increases the number of homologous plants for field cultivation. Acknowledgments: This study was conducted with financial support from National Science Fund at the Bulgarian Ministry of Education and Science, Project DN06/7 17.12.16.

Keywords: Hyssopus officinalis L., in vitro culture, micro propagation, acclimatization

Procedia PDF Downloads 273
2720 In vitro Plant Regeneration of Gonystylus Bancanus (Miq) Kurz. Through Direct Organogenesis

Authors: Grippin Akeng, Suresh Kumar Muniandy, Nor Aini Ab Shukor

Abstract:

Plant regeneration was achieved from shoot tip and nodal segment of Gonystylus bancanus (Miq) Kurz. cultured in Murashige and Skoog’s medium supplemented with various concentrations of 6-benzylaminopurine (BAP). The most optimum concentration of BAP for shoot initiation is 10.0 mgl⁻¹ with approximately 10% of shoot tip and 15% of nodal segment produced single shoot after 28 and 15 days of culture incubation respectively. Rooting was achieved when shoots were transferred into MS medium supplemented with 5.0 mgl⁻¹ Naphthalene acetic acid (NAA). Synthesizing results developed through this research can be a starting point for the upscalling and optimization process in future.

Keywords: gonystylus bancanus, organogenesis, shoot initiation, shoot tip

Procedia PDF Downloads 205
2719 In vitro Culture of Stem Node Segments of Maerua crassifolia

Authors: Abobaker Abrahem M. Saad, Asma Abudasalam

Abstract:

The stem node segments were cultured on Murashige and Skoog (MS) medium. In the case of using MS+ Zeatin (1 mg/l), small shoot buds were formed directly in 70% of explants after 15 days, their length range between 0.1 to 0.3 cm after two weeks and reached 0.3 cm in length and three shoots in numbers after 4 weeks. When those small shoots were sub cultured on the same medium, they increased in length, number and reached 0.4 cm with 4 shoots, 0.4 cm with 5 shoots after six, eight and ten weeks respectively. In the case of using MS free hormones, MS+IAA (0.2mg/l) +BA (0.5mg/l), MS + kin(0.5mg/l), MS + kin (3mg/l) and MS +NAA (3mg/l) +BA (1mg/l), no sign of responses were noticed and only change in color in some cases. Different types of parenchyma cells and many layers of thick wall sclerenchyma cells were observed on MS+BA (1mg/l).

Keywords: Maerua, stem node, shoots, buds, In vitro

Procedia PDF Downloads 272
2718 In vitro Culture of Flowers of Maerua crassiflia

Authors: Abobkar Abrahem Mohamed Saad, Asma Abud Alsalam

Abstract:

Closed flowers of Maerua crassifolia were cultured on Murashige and Skoog medium supplemented with benzyl amino purine BA (1.0 mg/l). The colour of flowers changed from green to pale brown after one week. They opened after two weeks. The anthers became clear which was observed after 3 weeks. Calluses are induced from sepals after one month. 19 anthers were observed with average length of 1.9 cm. The amount of calluses increased after 40 days. These calluses were fragmented and subcultured on MS+ 2-4D (1.0 mg/l) in order to increase growth.

Keywords: in vitro, Maerua, flowers, culture

Procedia PDF Downloads 343
2717 Multiple Shoot Induction and Plant Regeneration of Kepuh (Sterculia foetida L.) Tissue Culture

Authors: Titin Handayani, Endang Yuniastuti

Abstract:

Kepuh (Sterculia foetida L.) is a potential plant contain mainly oil seeds that can be used as a source of alternative bioenergy and medicine. The main problem of kepuh cultivation is the limited supply of seed plants. Seeds development were very easy, but to produce fruit have to wait for approximately 5 years. The objective of this research was to obtain kepuh plants through direct in vitro regeneration. Hypocotyls and shoot tips explants were excised from sterile germinated seedlings and placed on shoot induction medium containing basal salts of Murashige and Skoog (MS) and various concentrations of plant growth regulators. The results showed that shoots induction from the apical and axillary buds on MS medium + 1.5 and 2 mg/L BAP and 0.5 and 1 mg/L IAA was growth very slowly. Increasing of BAP concentrations was increased shoot formation. The first subcultures were increased the rate of shoots growth on MS medium supplemented with 2 mg/L BAP and 0.5 mg/L IAA. The second of shoots subculture on MS medium + 1.5 to 2 mg/L BAP + 0.5 mg/L IAA was increased the number of shoots up to 4.8 in average. The best medium of shoots elongation were MS + 1 mgL-1 kinetin + 5 mg/L GA3. The highest percentage of roots (65%) occurred on MS medium with 5 mg/L IBA which average number of roots was 3.1. High percentages of survival and plants of normal appearance were obtained after five weeks of acclimatization.

Keywords: Kepuh, Sterculia foetida L, shoot multiplication, rooting, acclimatization, bioenergy, medicine

Procedia PDF Downloads 247
2716 In vitro Clonal Multiplication and Acclimatization of Large Cardamom (Amomum subulatum Roxb.)

Authors: Krishna Poudel, Tahar Katuwal, Sujan Karki

Abstract:

A rapid propagation and acclimatization method of large cardamom was optimized in this study. Sprouted rhizome buds were collected. The excised rhizome bud explants were cultured on semi solid culture media. The explants were cultured on Murashige and Skoog’s (MS) medium supplemented with different concentration and combinations of BAP (6-Benzyl-amino-purine) and IBA (Indole-3-butyric acid) for shoot and root induction. Explants cultured on MS basal medium supplemented with 1.0 mg/l BAP + 0.5 gm/l IBA showed the highest rate of shoot multiplication. In vitro shoots were rooted on to the half-strength MS basal media supplemented with 0.5 mg/l IBA. Rooted shoots were transplanted in the screen house for hardening process. These hardened plants were subsequently shifted into the netted nursery for further multiplication process.

Keywords: concentration, explants, hardening, rhizome

Procedia PDF Downloads 200
2715 Anatomy Study of Seeds of Calligonium comosum in Vitro

Authors: Abobkar Saad, Qasmia Abdalla, Fatma Emhemed

Abstract:

Eighty-four of Calligonum comosum were cultured on Murashige and Skoog medium on every combination supplemented with different concentrations of IAA, BA, Zeatin, and GA3. When 84 seeds were inoculated on MS free hormones, different types of cells contain dense cytoplasm were observed ater 23 days and long thick wall cells arranged in layers. In case of using MS +BA(0.5mg/L), different types and shapes of parenchyma cells contain dense cytoplasm were detected after four weeks. In the case of using MS + BA(1mg/L) + GA3 (3mg/L), thick wall parenchyma cells contain dense cytoplasm after 19 days, but many layers of parenchyma cells contain dense cytoplasm after 28 days. When MS +kin(0.5mg/L) a thick cells wall as Sclereids were observed after 29 days. No any response were observed on Zeatin (0.5, 1 mg/L).

Keywords: anatomy, Calligonum comosum, in vitro, aeeds

Procedia PDF Downloads 378
2714 Plantlet Regeneration from Zygotic Embryos of Securidaca longepedunculata Fresen

Authors: Uche C. Okafor, Nwanneka M. Okpokwu, Felix Nwafor, Carl E. A. Okezie

Abstract:

Securidaca longepedunculata Fresen (Violet tree) belongs to the family Polygalaceae characterised by papillionaceous purplish flowers. This medicinally valued plant disappears at an alarming rate due to intensified anthropopressure particularly the unregulated manner of subterranean plant parts' collection from natural stands. Some indiscriminately harvested plants bear seeds containing both mature and immature zygotic embryos that are often discarded. Here, such seeds are collected for this experiment. Seeds were collected, washed, de-coated, and dipped in 70 % (v/v) ethanol for 30 s followed by rising in 5 % solution sodium hypochlorite, containing two drops of tween 20, for another 25 min. Mature zygotic embryos (MZEs) were excised from seeds and cultured in two basal media (MS and B5), three carbon sources (sucrose, glucose and fructose) at five concentrations (0-40 g/L) while immature zygotic embryos (iMZEs) were composed on similar basal media and carbon source supplemented with 0-2 mg/L Benzylaminopurine (BAP) and 0-2 mg/L Indole acetic acid (IAA). MZEs cultured on MS + 30g/L sucrose differed significantly from other treatments at p≤0.05 with maximum percent sprouting (85.24± 5.67 %) and shoot length (7.53±0.67 cm). MZEs culture had the maximum percent sprouting (85.24± 5.67 %) and shoot length (7.53±0.67 cm) in medium containing MS+ 30g L-1 sucrose. iMZEs on the other hand had maximum growth on MS + 40g/L sucrose supplemented with 1.5 mg/L IAA+ 1.0 mg/L BAP. This study is a geared towards creating an alternative path for the maximum production of plants in vitro, thereby, preventing the plants from disappearing.

Keywords: Gamborg's medium, Murashige and Skoog medium, Securidaca longepedunculata, zygotic embryos

Procedia PDF Downloads 116
2713 In Vitro Morphogenic Response of the Alginate Encapsulated Nodal Segment and Antioxidative Enzymes Analysis during Acclimatization of Cassia Angustifolia Vahl

Authors: Iram Siddique

Abstract:

Synthetic seed technology is an alternative to traditional micropropagation for production and delivery of cloned plantlets. Synthetic seeds were produced by encapsulating nodal segments of C. angustifolia in calcium alginate gel. 3% (w/v) sodium alginate and 100 mM CaCl2. 2H2O were found most suitable for encapsulation of nodal segments. Synthetic seeds cultured on half strength Murashige and Skoog (MS) medium supplemented with thidiazuron (5.0 µM) + indole -3- acetic acid (1.0 µM) produced maximum number of shoots (10.9 ± 0.78) after 8 weeks of culture exhibiting (78%) in vitro conversion response. Encapsulated nodal segments demonstrated successful regeneration after different period (1-6 weeks) of cold storage at 4 °C. The synthetic seeds stored at 4 °C for a period of 4 weeks resulted in maximum conversion frequency (93%) after 8 weeks when placed back to regeneration medium. The isolated shoots when cultured on half strength MS medium supplemented with 1.0 µM indole -3- butyric acid (IBA), produced healthy roots and plantlets with well developed shoot and roots were successfully hardened off in plastic pots containing sterile soilrite inside the growth chamber and gradually transferred to greenhouse where they grew well with 85% survival rate. Changes in the content of photosynthetic pigments, net photosynthetic rate (PN), superoxide dismutase (SOD) and catalase (CAT) activity in C. angustifolia indicated the adaptation of micropropagated plants to ex vitro conditions.

Keywords: biochemical studies, nodal segments, rooting, synthetic seeds, thidiazuron

Procedia PDF Downloads 326
2712 Optimization of Sucrose Concentration, pH Level and Inoculum Size for Callus Proliferation and Anti-Bacterial Potential of Stevia rebaudiana Bertoni

Authors: Inayat Ur Rahman Arshad

Abstract:

Background: Stevia rebaudiana B. is a shrubby perennial herb of Asteraceae family that possesses the unique ability of accumulative non-caloric sweet steviol glycosides (SGs). Purpose: The purpose of the study is to optimize sugar concentration, pH level, and inoculum size for inducing the callus with optimum growth and efficient antibacterial potential. Method: Three different experiments were conducted in which Callus explant from three-months-old already established callus of Stevia reabudiana of four different sizes was inoculated on Murashige and Skoog (MS) basal medium supplemented with five different sucrose concentration and pH adjusted at four different levels. Results: Maximum callus induction 100, 87.5, and 85.33% resulted in the medium supplemented with 30 g/l sucrose, pH maintained at 5.5, and inoculated with 1.25g inoculum, respectively. Similarly, the highest fresh weights 65.00, 75.50, and 50.53 g/l were noted in a medium fortified with 40 g/l sucrose, inoculated 1.25g inoculum, and 6.0 pH level, respectively. However, the callus developed in a medium containing 50 g/l sucrose was found to be highly antibacterial potent with 27.3 and 26.5 mm inhibition zone against P. vulgaris and B. subtilis, respectively. Similarly, the callus grown on a medium inoculated with 1.00 g inoculum resulted in maximum antibacterial potential against S. aureus and P. vulgaris with 25 and 23.72 mm inhibition zone, respectively. However, in the case of pH levels, the medium maintained at 6.5 pH showed maximum antibacterial activity against P. vulgaris, B.subtilis, and E.coli with 27.9, 25, and 23.72 mm, respectively. The ethyl acetate extract of Stevia callus and leaves did not show antibacterial potential against Xanthomonas campestris and Clavebactor michiganensis. In the entire experiment, the standard antibacterial agent Streptomycin showed the highest inhibition zones among the rest of the callus extract; however, the pure dimethyl sulfoxide (DMSO) caused no inhibitory zone against any bacteria. Conclusion: From these findings, it is concluded that among various levels, sucrose @ 40 g L⁻¹, pH 6.0, and inoculums at 0.75 g were found best for most of the growth and quality attributes, including fresh weight, dry weight, and antibacterial activities and therefore can be recommended for callus proliferation and antibacterial potential of Stevia rebaudiana.

Keywords: Stevia rebaudiana, Steviol Glycosides, callus, Xanthomonas campestris

Procedia PDF Downloads 45
2711 The Influence of Colloidal Metal Nanoparticles on Growth and Proliferation of in Vitro Cultures of Potato

Authors: Przewodowski Włodzimierz, Przewodowska Agnieszka, Sekrecka Danuta, Michałowska Dorota

Abstract:

Colloidal metal nanoparticles are widely applied in various areas and have great potential in different biotechnological applications. Their particular properties associated with both the antiseptic, antioxidant and anti aging properties as well as ability to penetrate most of the biological barriers, synergy in the absorption of nutrients and nontoxic to plants. The properties make them potentially useful in the fast and safe production of healthy, certified starting material in the production of plants exposed to many pathogenic microorganisms causing serious diseases, significantly affecting yield and causing the economic losses. In this case it is crucial to provide appropriate conditions for the production, storage and distribution of the plant material. Therefore, the aim of the proposed research was to develop and identify the influence of four colloidal metal nanoparticles on growth and proliferation of in vitro cultures of potato (Solanum tuberosum) - one of the most economically important strategic crops in the world. The research on different varieties of potato was performed by placing the explants of the in vitro cultures on sterile Murashige and Skoog (MS) type medium. The influence of the nanocolloids was evaluated using the MS medium impregnated with the examinated nanoparticles. The vigour of growth and the rate of proliferation was examinated for 6-8 weeks with both night/day-length and temperature over the ranges 8/16 h and 20–22 °C respectively. The results of our preliminary work confirmed high usefulness of the nanocolloids in the safe production of the examinated in vitro cultures.

Keywords: colloidal metal nanoparticles, in vitro cultures, potato, propagation

Procedia PDF Downloads 303
2710 Influence of Organic Supplements on Shoot Multiplication Efficiency of Phaius tankervilleae var. alba

Authors: T. Punjansing, M. Nakkuntod, S. Homchan, P. Inthima, A. Kongbangkerd

Abstract:

The influence of organic supplements on growth and multiplication efficiency of Phaius tankervilleae var. alba seedlings was investigated. 12 week-old seedlings were cultured on half-strength semi-solid Murashige and Skoog (MS) medium supplemented with 30 g/L sucrose, 8 g/L agar and various concentrations of coconut water (0, 50, 100, 150 and 200 mL/L) combined with potato extract (0, 25 and 50 g/L) and the pH was adjusted to 5.8 prior to autoclaving. The cultures were then kept under constant photoperiod (16 h light: 8 h dark) at 25 ± 2 °C for 12 weeks. The highest number of shoots (3.0 shoots/explant) was obtained when cultured on the medium added with 50 ml/L coconut water and 50 g/L potato extract whereas the highest number of leaves (5.9 leaves/explant) and roots (6.1 roots/explant) could receive on the medium supplemented with 150 ml/L coconut water and 50 g/L potato extract. with 150 ml/L coconut water and 50 g/L potato extract. Additionally, plantlets of P. tankervilleae var. alba were transferred to grow into seven different substrates i.e. soil, sand, coconut husk chip, soil-sand mix (1: 1), soil-coconut husk chip mix (1: 1), sand-coconut husk chip mix (1: 1) and soil-sand-coconut husk chip mix (1: 1: 1) for four weeks. The results found that acclimatized plants showed 100% of survivals when sand, coconut husk chip and sand-coconut husk chip mix are used as substrates. The number of leaves induced by sand-coconut husk chip mix was significantly higher than that planted in other substrates (P > 0.05). Meanwhile, no significant difference in new shoot formation among these substrates was observed (P < 0.05). This precursory developing protocol was likely to be applied for more large scale of plant production as well as conservation of germplasm of this orchid species.

Keywords: organic supplements, acclimatization, Phaius tankervilleae var. alba, orchid

Procedia PDF Downloads 182
2709 Callus Induction, In-Vitro Plant Regeneration and Acclimatization of Lycium barbarum L. (Goji)

Authors: Rosna Mat Taha, Sakinah Abdullah, Sadegh Mohajer, Asmah Awal

Abstract:

Lycium barbarum L. (Goji) belongs to Solanaceae family and native to some areas of China. Ethnobotanical studies have shown that this plant has been consumed by the Chinese since ancient times. It has been used as medicine in providing excellent effects on cardiovascular system and cholesterol level, besides contains high antioxidant and antidiabetic properties. In the present study, some tissue culture work has been carried out to induce callus, in vitro regeneration from various explants of Goji and also some acclimatization protocols were followed to transfer the regenerated plants to soil. The main aims being to establish high efficient regeneration system for mass production and commercialization for future uses, since the growth of this species is very limited in Malaysia. The optimum hormonal regime and the most suitable and responsive explants were identified. It was found that leaves and stems gave good responses. Murashige and Skoog’s (MS) medium supplemented with 2.0 mg/L NAA and 0.5 mg/L BAP was the best for callus induction and MS media fortified with 1.0 mg/L NAA and 1.0 mg/L BAP was optimum for in vitro regeneration. The survival rates of plantlets after acclimatization was 63±1.5 % on black soil and 50±1.3 % on mixed soil (combination of black and red soil at a ratio of 2 to 1), respectively.

Keywords: callus, acclimatization, in vitro culture, regeneration

Procedia PDF Downloads 412
2708 Plant Cell Culture to Produce Valuable Natural Products

Authors: Jehad Dumireih, Malak Dmirieh, Michael Wink

Abstract:

The present work is aimed to use plant cell suspension cultures of Crataegus monogyna for biosynthesis of valuable natural products by using quercetin as an inexpensive precursor. Suspension cell cultures of C. monogyna were established by using Murashige and Skoog medium (MS) supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid and 1 mg/L kinetin. Cells were harvested from the cultures and extracted by using methanol and ethyl acetate; then the extracts were used for the identification of isoquercetin by HPLC and by mass spectrometry. The incubation of the cells with 0.24 mM quercetin for one week resulted in an 16 fold increase of isoquercetin biosynthesis; the growth rate of the cells increased by 20%. Moreover, the biosynthesis of isoquercetin was enhanced by 40% when we divided the added quercetin into three portions each one with concentration 0.12 mM supplied at 3 days intervals. In addition, we didn’t find any positive effects of adding different concentrations the precursors phenylalanine (0.2 mM) and galactose to the cell cultures. In conclusion, the efficiency of the biotransformation of quercetin into isoquercetin depended on the concentration quercetin, its incubation time and the way of its administration. The results of the present work suggest that the biotechnological methods such as cell suspension cultures could be successfully used to obtain highly valuable natural product starting from inexpensive compound.

Keywords: biosynthesis, biotransformation, Crataegus, isoquercetin

Procedia PDF Downloads 454
2707 Reintroduction and in vitro Propagation of Declapeis arayalpathra: A Critically Endangered Plant of Western Ghats, India

Authors: Zishan Ahmad, Anwar Shahzad

Abstract:

The present studies describe a protocol for high frequency in vitro propagation through nodal segments and shoot tips in D. arayalpathra, a critically endangered medicinal liana of the Western Ghats, India. Nodal segments were more responsive than shoot tips in terms of shoot multiplication. Murashige and Skoog’s (MS) basal medium supplemented with 2.5 µM 6-benzyladenine (BA) was optimum for shoot induction through both the explants. Among different combinations of plant growth regulator (PGRs) and growth additive screened, MS medium supplemented with BA (2.5 µM) + indole-3-acetic acid (IAA) (0.25 µM) + adenine sulphate (ADS) (10.0 µM) induced a maximum of 9.0 shoots per nodal segment and 3.9 shoots per shoot tip with mean shoot length of 8.5 and 3.9 cm respectively. Half-strength MS medium supplemented with Naphthaleneacetic acid (NAA) (2.5 µM) was the best for in vitro root induction. After successful acclimatization in SoilriteTM, 92 % plantlets were survived in field conditions. Acclimatized plantlets were studied for chlorophyll and carotenoid content, net photosynthetic rate (PN) and related attributes such as stomatal conductance (Gs) and transpiration rate during subsequent days of acclimatization. The rise and fall of different biochemical enzymes (SOD, CAT, APX and GR) were also studies during successful days of acclimatization. Moreover, the effect of acclimatization on the synthesis of 2-hydroxy-4-methoxy benzaldehyde (2H4MB) was also studied in relation to the biomass production. Maximum fresh weight (2.8 gm/plant), dry weight (0.35 gm/plant) of roots and 2H4MB content (8.5 µg/ ml of root extract) were recorded after 8 weeks of acclimatization. The screening of in vitro raised plantlet root was also carried out by using GC-MS analysis which witnessed more than 25 compounds. The regenerated plantlets were also screened for homogeneity by using RAPD and ISSR. The proposed protocol surely can be used for the conservation and commercial production of the plant.

Keywords: 6-benzyladenine, PGRs, RAPD, 2H4MB

Procedia PDF Downloads 154
2706 A Comparative Evaluation of Antioxidant Activity of in vivo and in vitro Raised Holarrhena antidysenterica Linn.

Authors: Gayatri Nahak, Satyajit Kanungo, Rajani Kanta Sahu

Abstract:

Holarrhena antidysenterica Linn. (Apocynaceae) is a typical Indian medicinal plant popularly known as “Indrajav”. Traditionally the plant has been considered a popular remedy for the treatment of dysentery, diarrhea, intestinal worms and the seeds of this plant are also used as an anti-diabetic remedy. In the present study axillary shoot multiplication, callus induction and shoot regeneration from callus culture were obtained on Murashige and Skoog (MS) medium supplemented with different concentrations and combinations of plant growth regulators. Then in vivo and in vitro grown healthy plants were selected for study of antioxidant activity through DPPH and OH methods. Significantly higher antioxidant activity and phenol contents were observed in vitro raised plant in comparison to in vivo plants. The findings indicated the greater amount of phenolic compounds leads to more potent radical scavenging effect as shown in in vitro raised plant in comparison to in vivo plants which showed the ability to utilize tissue culture techniques towards development of desired bioactive metabolites from in vitro culture as an alternative way to avoid using endangered plants in pharmaceutical purposes.

Keywords: Holarrhena antidysenterica, in vitro, in vivo, antioxidant activity

Procedia PDF Downloads 466
2705 Indirect Regeneration and Somatic Embryogenesis from Leaf and Stem Explants of Crassula ovata 42-45 (Mill.) Druce: An Ornamental Medicinal Plant

Authors: A. B. A. Ahmed, D. I. Amar, R. M. Taha

Abstract:

This research aims to investigate callus induction, somatic embryogenesis and indirect plant regeneration of Crassula ovata (Mill.) Druce – the famous ornamental plant. Experiment no.1: Callus induction was obtained from leaf and stem explants on Murashige and Skoog (MS) medium supplemented with various plant growth regulators (PGRs). Effects of different PGRs, plant regeneration and subsequent plantlet conversion were also assessed. Indirect plant regeneration was achieved from the callus of stem explants by the addition of 1.5 mg/L Kinetin (KN) alone. Best shoot induction was achieved (6.5 shoots/per explant) after 60 days. For successful rooting, regenerated plantlets were sub-cultured on the same MS media supplemented with 1.5 mg/L KN alone. The rooted plantlets were acclimatized and the survival rate was 90%. Experiment no.2: Results revealed that 0.5 mg/L 2,4-D alone and in combination with 1.0 mg/L 6-Benzyladenine (BA) gave 89.8% callus from the stem explants as compared to leaf explants. Callus proliferation and somatic embryo formation were also evaluated by ‘Double Staining Method’ and different stages of somatic embryogenesis were revealed by scanning electron microscope. Full Strength MS medium produced the highest number (49.6%) of cotyledonary stage somatic embryos (SEs). Mature cotyledonary stage SEs developed into plantlets after 12 weeks of culture. Well-rooted plantlets were successfully acclimatized at the survival rate of 85%. Indirectly regenerated plants did not show any detectable variation in morphological and growth characteristics when compared with the donor plant.

Keywords: callus induction, indirect plant regeneration, double staining, somatic embryogenesis, Crassula ovata

Procedia PDF Downloads 349
2704 Adaptive Responses of Carum copticum to in vitro Salt Stress

Authors: R. Razavizadeh, F. Adabavazeh, M. Rezaee Chermahini

Abstract:

Salinity is one of the most widespread agricultural problems in arid and semi-arid areas that limits the plant growth and crop productivity. In this study, the salt stress effects on protein, reducing sugar, proline contents and antioxidant enzymes activities of Carum copticum L. under in vitro conditions were studied. Seeds of C. copticum were cultured in Murashige and Skoog (MS) medium containing 0, 25, 50, 100 and 150 mM NaCl and calli were cultured in MS medium containing 1 μM 2, 4-dichlorophenoxyacetic acid, 4 μM benzyl amino purine and different levels of NaCl (0, 25, 50, 100 and 150 mM). After NaCl treatment for 28 days, the proline and reducing sugar contents of shoots, roots and calli increased significantly in relation to the severity of the salt stress. The highest amount of proline and carbohydrate were observed at 150 and 100 mM NaCl, respectively. The reducing sugar accumulation in shoots was the highest as compared to roots, whereas, proline contents did not show any significant difference in roots and shoots under salt stress. The results showed significant reduction of protein contents in seedlings and calli. Based on these results, proteins extracted from the shoots, roots and calli of C. copticum treated with 150 mM NaCl showed the lowest contents. The positive relationships were observed between activity of antioxidant enzymes and the increase in stress levels. Catalase, ascorbate peroxidase and superoxide dismutase activity increased significantly under salt concentrations in comparison to the control. These results suggest that the accumulation of proline and sugars, and activation of antioxidant enzymes play adaptive roles in the adaptation of seedlings and callus of C. copticum to saline conditions.

Keywords: antioxidant enzymes, Carum copticum, organic solutes, salt stress

Procedia PDF Downloads 246
2703 The Effects of Zinc Oxide Nanoparticles Loaded with Indole-3-Acetic Acid and Indole-3-Butyric Acid on in vitro Rooting of Apple Microcuttings

Authors: Shabnam Alizadeh, Hatice Dumanoglu

Abstract:

Plant tissue culture is a substantial plant propagation technique for mass clonal production throughout the year, regardless of time in fruit species. However, the rooting achievement must be enhanced in the difficult-to-root genotypes. Classical auxin applications in clonal propagation of these genotypes are inadequate to solve the rooting problem. Nanoparticles having different physical and chemical properties from bulk material could enhance the rooting success of controlled release of these substances when loaded with auxin due to their ability to reach the active substance up to the target cells as a carrier system.The purpose of this study is to investigate the effects of zinc oxide nanoparticles loaded with indole-3-acetic acid (IAA-nZnO) and indole-3-butyric acid (IBA-nZnO) on in vitro rooting of microcuttings in a difficult-to-root apple genotype (Malus domestica Borkh.). Rooting treatments consisted of IBA or IAA at concentrations of 0.5, 1.0, 2.0, 3.0 mg/L; nZnO, IAA-nZnO and IBA-nZnO at doses of 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 mg/L were used. All components were added to the Murashige and Skoog (MS) basal medium at strength ½ with 2% sucrose and 0.7% agar before autoclaving. In the study, no rooting occurred in control and nZnO applications. Especially, 1.0 mg/L and 2.0 mg/L IBA-nZnO nanoparticle applications (containing 0.5 mg/L and 0.9 mg/L IBA), respectively with rooting rates of 40.3% and 70.4%, rooting levels of 2.0±0.4 and 2.3±0.4, 2.6±0.7 and 2.5±0.6 average root numbers and 20.4±1.6 mm and 20.2±3.4 mm average root lengths put forward as effective applications.

Keywords: Auxin, Malus, nanotechnology, zinc oxide nanoparticles

Procedia PDF Downloads 103
2702 Protoplast Cultures of Murraya paniculata L. Jack and Their Regeneration into Plant Precocious Flowering

Authors: Hasan Basri Jumin

Abstract:

Protoplasts isolated from embryogenic callus of Murraya paniculata (L. Jack.) were cultured in MT (Murashige and Tucker, 1969) basal medium containing 5% sucrose supplemented with kinetin, malt extract (ME) and 0.6 M sorbitol. About 85% of the surviving protoplasts formed a cell wall within 6 d of culture and the first cell division was observed 7 days after isolation. The highest plating effi¬ciency was obtained on MT basal medium containing 5% sucrose supplemented with 0.01 mg 1-1 kinetin 600 mg 1-1 ME, MT basal medium containing 5% sucrose and supplemented with 0.01 mg 1-1 Indole-acetic-acid (IAA) was found to be a medium suitable for the development somatic embryos into heart-shaped somatic embryos. The highest percentage of shoot formation was obtained using 0.1 mg 1-1 Indole-acitic-acid (IAA) 0..1 mg 1-1 gibberellic acid (GA3). In this investigation 40 plants were survived and grew normally in the soil. After two months maitained in the soil plants formed flower and flower developed into fruits on the soil treated with BA.

Keywords: gibberellic-acid, indole-acetic-acid, protoplast, precocious-flowering, somatic-embryo

Procedia PDF Downloads 296
2701 Evaluation of Genetic Fidelity and Phytochemical Profiling of Micropropagated Plants of Cephalantheropsis obcordata: An Endangered Medicinal Orchid

Authors: Gargi Prasad, Ashiho A. Mao, Deepu Vijayan, S. Mandal

Abstract:

The main objective of the present study was to optimize and develop an efficient protocol for in vitro propagation of a medicinally important orchid Cephalantheropsis obcordata (Lindl.) Ormerod along with genetic stability analysis of regenerated plants. This plant has been traditionally used in Chinese folk medicine and the decoction of whole plant is known to possess anticancer activity. Nodal segments used as explants were inoculated on Murashige and Skoog (MS) medium supplemented with various concentrations of isopentenyl adenine (2iP). The rooted plants were successfully acclimatized in the greenhouse with 100% survival rate. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic fidelity of in vitro raised plants and the mother plant. It was revealed that monomorphic bands showing the absence of polymorphism in all in vitro raised plantlets analyzed, confirming the genetic uniformity among the regenerants. Phytochemical analysis was done to compare the antioxidant activities and HPLC fingerprinting assay of 80% aqueous ethanol extract of the leaves and stem of in vitro and in vivo grown C. obcordata. The extracts of the plants were examined for their antioxidant activities by using free radical 1, 1-diphenyl-2-picryl hydrazyl (DPPH) scavenging method, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability, reducing power capacity, estimation of total phenolic content, flavonoid content and flavonol content. A simplified method for the detection of ascorbic acid, phenolic acids and flavonoids content was also developed by using reversed phase high-performance liquid chromatography (HPLC). This is the first report on the micropropagation, genetic integrity study and quantitative phytochemical analysis of in vitro regenerated plants of C. obcordata.

Keywords: Cephalantheropsis obcordata, genetic fidelity, ISSR markers, HPLC

Procedia PDF Downloads 116
2700 Effects of Silver Nanoparticles on in vitro Adventitious Shoot Regeneration of Water Hyssop (Bacopa monnieri L. Wettst.)

Authors: Muhammad Aasim, Mehmet Karataş, Fatih Erci, Şeyma Bakırcı, Ecenur Korkmaz, Burak Kahveci

Abstract:

Water hyssop (Bacopa monnieri L. Wettst.) is an important medicinal aquatic/semi aquatic plant native to India where it is used in traditional medicinal system. The plant contains bioactive compounds mainly Bacosides which are the main ingridient of commercial drug available as memory enhancer tonic. The local name of water hyssop is Brahmi and brahmi based drugs are available against for curing chronic diseases and disorders Alzheimer’s disease, anxiety, asthma, cancer, mental illness, respiratory ailments, and stomach ulcers. The plant is not a cultivated plant and collection of plant from nature make palnt threatened to endangered. On the other hand, low seed viability and availability make it difficult to propagate plant through traditional techniques. In recent years, plant tissue culture techniques have been employed to propagate plant for its conservation and production for continuous availability of secondary metabolites. On the other hand, application of nanoparticles has been reported for increasing biomass, in vitro regeneration and secondary metabolites production. In this study, silver nanoparticles (AgNPs) were applied at the rate of 2, 4, 6, 8 and 10 ppm to Murashihe and Skoog (MS) medium supplemented with 1.0 mg/l Benzylaminopurine (BAP), 3.0% sucrose and 0.7% agar. Leaf explants of water hyssop were cultured on AgNPs containing medium. Shoot induction from leaf explants were relatively slow compared to medium without AgNPs. Multiple shoot induction was recorded after 3-4 weeks of culture comapred to control that occured within 10 days. Regenerated shoots were rooted successfully on MS medium supplemented with 1.0 mg/l IBA and acclimatized in the aquariums for further studies.

Keywords: Water hyssop, Silver nanoparticles, In vitro, Regeneration, Secondary metabolites

Procedia PDF Downloads 133
2699 Photon-Electron Interaction in the Different Medium

Authors: Vahid Borji

Abstract:

The interaction between photons and particles is a common phenomenon in nature that is discussed in order to obtain information about the environment and the conditions governing the phenomena. In the astrophysics, like others, we study these interactions to get useful knowledge and can be predict aftercoming events. One of the events is the transition of photon beam through medium with special conditions, like shocked medium. In our discussion, we have studied this situation and obtained results for different conditions that transition of photon depends on the energy of photon and distributions of electrons in medium.

Keywords: cross section, astrophysics, GRB, photon

Procedia PDF Downloads 43
2698 Impact of Instructional Mode and Medium of Instruction on the Learning Outcomes of Secondary Level School Children

Authors: Dipti Parida, Atasi Mohanty

Abstract:

The focus of this research is to examine the interaction effect of flipped teaching and traditional teaching mode across two different medium (English and Odia) of instructional groups. Both Science and History subjects were taken to be taught in the Class- VIII in two different instructional mode/s. In total, 180 students of Class-VIII of both Odia and English medium schools were taken as the samples of this study; 90 participants (each group) were from both English and Odia medium schools ; 45 participants of each of these two groups were again assigned either to flip or traditional teaching method. We have two independent variables and each independent variable with two levels. Medium and mode of instruction are the two independent variables. Medium of instruction has two levels of Odia medium and English medium groups. The mode of instruction has also two levels of flip and traditional teaching method. Here we get 4 different groups, such as Odia medium students with traditional mode of teaching (O.M.T), Odia medium students with flipped mode of teaching (O.M.F), English medium students with traditional mode of teaching (E.M.T) and English medium students with flipped mode of teaching (E.M.F). Before the instructional administration, these four groups were given a test on the concerned topic to be taught. Based on this result, a one-way ANOVA was computed and the obtained result showed that these four groups don’t differ significantly from each other at the beginning. Then they were taught the concerned topic either in traditional or flip mode of teaching method. After that a 2×2×2 repeated measures ANOVA was done to analyze the group differences as well as the learning outcome before and after the teaching. The result table also shows that in post-test the learning outcome is highest in case of English medium students with flip mode of instruction. From the statistical analysis it is clear that the flipped mode of teaching is as effective for Odia medium students as it is for English medium students.

Keywords: medium of instruction, mode of instruction, test mode, vernacular medium

Procedia PDF Downloads 319
2697 Nonstationary Waves Excited by the Rigid Cylinder in Elastic Medium

Authors: Tukeaban Hasanova, Jamila Imamalieva

Abstract:

By the operational method, the problem on two-dimensional wave propagation in elastic medium excited by the round cylinder is solved. An analytical solution responding to instantaneous application of speed to the inclusion at its subsequent change is constructed. The two-dimensional problem on wave propagation in an elastic medium is considered.

Keywords: cylinder, inclusion, wave, elastic medium, speed

Procedia PDF Downloads 125
2696 Beneficial Effect of Micropropagation Coupled with Mycorrhization on Enhancement of Growth Performance of Medicinal Plants

Authors: D. H. Tejavathi

Abstract:

Medicinal plants are globally valuable sources of herbal products. Wild populations of many medicinal plants are facing threat of extinction because of their narrow distribution, endemicity, and degradation of specific habitats. Micropropagation is an established in vitro technique by which large number of clones can be obtained from a small bit of explants in a short span of time within a limited space. Mycorrhization can minimize the transient transplantation shock, experienced by the micropropagated plants when they are transferred from lab to land. AM fungal association improves the physiological status of the host plants through better uptake of water and nutrients, particularly phosphorus. Consequently, the growth performance and biosynthesis of active principles are significantly enhanced in AM fungal treated plants. Bacopa monnieri, Andrographis paniculata, Agave vera-curz, Drymaria cordata and Majorana hortensis, important medicinal plants used in various indigenous systems of medicines, are selected for the present study. They form the main constituents of many herbal formulations. Standard in vitro techniques were followed to obtain the micropropagated plants. Shoot tips and nodal segments were used as explants. Explants were cultured on Murashige and Skoog, and Phillips and Collins media supplemented with various combinations of growth regulators. Multiple shoots were obtained on a media containing both auxins and cytokinins at various concentrations and combinations. Multiple shoots were then transferred to rooting media containing auxins for root induction. Thus, obtained in vitro regenerated plants were subjected to brief acclimatization before transferring them to land. One-month-old in vitro plants were treated with AM fungi, and the symbiotic effect on the overall growth parameters was analyzed. It was found that micropropagation coupled with mycorrhization has significant effect on the enhancement of biomass and biosynthesis of active principles in these selected medicinal plants. In vitro techniques coupled with mycorrhization have opened a possibility of obtaining better clones in respect of enhancement of biomass and biosynthesis of active principles. Beneficial effects of AM fungal association with medicinal plants are discussed.

Keywords: cultivation, medicinal plants, micropropagation, mycorrhization

Procedia PDF Downloads 132