Search results for: environmentally friendly organic wastes
3440 Eco-Friendly Natural Dyes from Butea monosperma and Their Application on Cotton Fabric
Authors: Archna Mall, Neelam Agrawal, Hari O. Saxena, Bhavana Sharma
Abstract:
Butea monosperma occurs widely throughout central Indian states. Eco-friendly natural dyes were isolated in aqueous medium from leaves, bark and flowers of this plant. These dyes were used for dyeing on cotton fabric using various chemical (potassium aluminium sulphate, potassium dichromate, ferrous sulphate, stannous chloride & tannic acid) and natural mordants (rinds of Terminallia bellerica & Terminalia chebula fruits and shells of Prunus dulcis & Juglans regia nuts). Dyeing was carried out using the pre-mordanting technique. Large range of beautiful shades in terms of hue and darkness were recorded because of varying mordant concentrations and combinations. More importantly dyed fabrics registered varying the degree of colour fastness properties to washing (1-3, colour change and 4-5, colour staining), light (2-4), rubbing (4-5, dry and 3-5, wet) and perspiration (1-4, colour change and 4-5, colour staining). Thus, along with flowers which are traditionally known for natural dyes, the leaves and bark may also find their place in textile industries.Keywords: Butea monosperma, cotton, mordants, natural dyes
Procedia PDF Downloads 3413439 On Physico-Chemical Status of Agbabu Water, Oluwa River, Odigbo Local Government Area, Ondo State, Nigeria
Authors: Olaniyan Rotimi Francis
Abstract:
Agbabu Water, Oluwa River is used for artisanal fishing, ferrying and domestic activities in Odigbo Local Government Area (OLGA), Ondo State. The river receives bitumen spills and domestic and agricultural wastes, which could adversely impact on the water quality and resident biota. In spite of anthropogenic activities, there is a dearth of information on the limnology and biota of the river. Extensive bitumen spills, as well as uncontrolled discharge of domestic wastes have pollution implications as they alter prevailing conditions and destroy the habitats of aquatic organisms. The aim of this study was to investigate the physic-chemical parameters of Agbabu Water in order to provide baseline information for effective management. Monthly water samples were collected on the surface of Agbabu water, Oluwa River, for a period of 6 months (June,2024 to November,2024). All physic-chemicals were collected and analyzed according to APHA (2005) standard methods. Results showed that temperature ranged between 26.0-32.0oC, transparency (1.0-8.0 m), alkalinity (14.0-25.0 mg/l), electrical conductivity (18-105 µS/cm), dissolved oxygen (1.2-3.8 mg/l), sulphate (0.0 -4.0mg/l) and total dissolved solids (18-36). The parameters at the downstream (station A) accounted for the bulk of the highest values; there were, however, no significant differences between the stations at P<0.05. The results obtained from the physic-chemical parameters agree with the limits set by both national and international bodies for drinking and fish growth. It was recommended that urgent checks and monitoring by relevant agencies, government representatives, public health practitioners, and community leaders are required.Keywords: physico-chemical, water, Agbabu, River
Procedia PDF Downloads 53438 Facile Synthesis of Sulfur Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity
Authors: Vishnu V. Pillai, Sunil P. Lonkar, Akhil M. Abraham, Saeed M. Alhassan
Abstract:
An effectual technology for wastewater treatment is a great demand now in order to encounter the water pollution caused by organic pollutants. Photocatalytic oxidation technology is widely used in removal of such unsafe contaminants. Among the semi-conducting metal oxides, robust and thermally stable TiO2 has emerged as a fascinating material for photocatalysis. Enhanced catalytic activity was observed for nanostructured TiO2 due to its higher surface, chemical stability and higher oxidation ability. However, higher charge carrier recombination and wide band gap of TiO2 limits its use as a photocatalyst in the UV region. It is desirable to develop a photocatalyst that can efficiently absorb the visible light, which occupies the main part of the solar spectrum. Hence, in order to extend its photocatalytic efficiency under visible light, TiO2 nanoparticles are often doped with metallic or non-metallic elements. Non-metallic doping of TiO2 has attracted much attention due to the low thermal stability and enhanced recombination of charge carriers endowed by metallic doping of TiO2. Amongst, sulfur doped TiO2 is most widely used photocatalyst in environmental purification. However, the most of S-TiO2 synthesis technique uses toxic chemicals and complex procedures. Hence, a facile, scalable and environmentally benign preparation process for S-TiO2 is highly desirable. In present work, we have demonstrated new and facile solid-state reaction method for S-TiO2 synthesis that uses abundant elemental sulfur as S source and moderate temperatures. The resulting nano-sized S-TiO2 has been successfully employed as visible light photocatalyst in methylene blue dye removal from aqueous media.Keywords: ecofriendly, nanomaterials, methylene blue, photocatalysts
Procedia PDF Downloads 3483437 The Influence of Morphology and Interface Treatment on Organic 6,13-bis (triisopropylsilylethynyl)-Pentacene Field-Effect Transistors
Authors: Daniel Bülz, Franziska Lüttich, Sreetama Banerjee, Georgeta Salvan, Dietrich R. T. Zahn
Abstract:
For the development of electronics, organic semiconductors are of great interest due to their adjustable optical and electrical properties. Especially for spintronic applications they are interesting because of their weak spin scattering, which leads to longer spin life times compared to inorganic semiconductors. It was shown that some organic materials change their resistance if an external magnetic field is applied. Pentacene is one of the materials which exhibit the so called photoinduced magnetoresistance which results in a modulation of photocurrent when varying the external magnetic field. Also the soluble derivate of pentacene, the 6,13-bis (triisopropylsilylethynyl)-pentacene (TIPS-pentacene) exhibits the same negative magnetoresistance. Aiming for simpler fabrication processes, in this work, we compare TIPS-pentacene organic field effect transistors (OFETs) made from solution with those fabricated by thermal evaporation. Because of the different processing, the TIPS-pentacene thin films exhibit different morphologies in terms of crystal size and homogeneity of the substrate coverage. On the other hand, the interface treatment is known to have a high influence on the threshold voltage, eliminating trap states of silicon oxide at the gate electrode and thereby changing the electrical switching response of the transistors. Therefore, we investigate the influence of interface treatment using octadecyltrichlorosilane (OTS) or using a simple cleaning procedure with acetone, ethanol, and deionized water. The transistors consist of a prestructured OFET substrates including gate, source, and drain electrodes, on top of which TIPS-pentacene dissolved in a mixture of tetralin and toluene is deposited by drop-, spray-, and spin-coating. Thereafter we keep the sample for one hour at a temperature of 60 °C. For the transistor fabrication by thermal evaporation the prestructured OFET substrates are also kept at a temperature of 60 °C during deposition with a rate of 0.3 nm/min and at a pressure below 10-6 mbar. The OFETs are characterized by means of optical microscopy in order to determine the overall quality of the sample, i.e. crystal size and coverage of the channel region. The output and transfer characteristics are measured in the dark and under illumination provided by a white light LED in the spectral range from 450 nm to 650 nm with a power density of (8±2) mW/cm2.Keywords: organic field effect transistors, solution processed, surface treatment, TIPS-pentacene
Procedia PDF Downloads 4473436 Evaluating Viability of Using South African Forestry Process Biomass Waste Mixtures as an Alternative Pyrolysis Feedstock in the Production of Bio Oil
Authors: Thembelihle Portia Lubisi, Malusi Ntandoyenkosi Mkhize, Jonas Kalebe Johakimu
Abstract:
Fertilizers play an important role in maintaining the productivity and quality of plants. Inorganic fertilizers (containing nitrogen, phosphorus, and potassium) are largely used in South Africa as they are considered inexpensive and highly productive. When applied, a portion of the excess fertilizer will be retained in the soil, a portion enters water streams due to surface runoff or the irrigation system adopted. Excess nutrient from the fertilizers entering the water stream eventually results harmful algal blooms (HABs) in freshwater systems, which not only disrupt wildlife but can also produce toxins harmful to humans. Use of agro-chemicals such as pesticides and herbicides has been associated with increased antimicrobial resistance (AMR) in humans as the plants are consumed by humans. This resistance of bacterial poses a threat as it prevents the Health sector from being able to treat infectious disease. Archaeological studies have found that pyrolysis liquids were already used in the time of the Neanderthal as a biocide and plant protection product. Pyrolysis is thermal degradation process of plant biomass or organic material under anaerobic conditions leading to production of char, bio-oils and syn gases. Bio-oil constituents can be categorized as water soluble (wood vinegar) and water insoluble fractions (tar and light oils). Wood vinegar (pyro-ligneous acid) is said to contain contains highly oxygenated compounds including acids, alcohols, aldehydes, ketones, phenols, esters, furans, and other multifunctional compounds with various molecular weights and compositions depending on the biomass material derived from and pyrolysis operating conditions. Various researchers have found the wood vinegar to be efficient in the eradication of termites, effective in plant protection and plant growth, has antibacterial characteristics and was found effective in inhibiting the micro-organisms such as candida yeast, E-coli, etc. This study investigated characterisation of South African forestry product processing waste with intention of evaluating the potential of using the respective biomass waste as feedstock for boil oil production via pyrolysis process. Ability to use biomass waste materials in production of wood-vinegar has advantages that it does not only allows for reduction of environmental pollution and landfill requirement, but it also does not negatively affect food security. The biomass wastes investigated were from the popular tree types in KZN, which are, pine saw dust (PSD), pine bark (PB), eucalyptus saw dust (ESD) and eucalyptus bark (EB). Furthermore, the research investigates the possibility of mixing the different wastes with an aim to lessen the cost of raw material separation prior to feeding into pyrolysis process and mixing also increases the amount of biomass material available for beneficiation. A 50/50 mixture of PSD and ESD (EPSD) and mixture containing pine saw dust; eucalyptus saw dust, pine bark and eucalyptus bark (EPSDB). Characterisation of the biomass waste will look at analysis such as proximate (volatiles, ash, fixed carbon), ultimate (carbon, hydrogen, nitrogen, oxygen, sulphur), high heating value, structural (cellulose, hemicellulose and lignin) and thermogravimetric analysis.Keywords: characterisation, biomass waste, saw dust, wood waste
Procedia PDF Downloads 693435 Effects of Indole on Aerobic Biodegradation of Butanoic Acid by Pseudomonas aeruginosa and Serratia marcescens
Authors: J. B. J. Njalam’mano, E. M. N. Chirwa
Abstract:
In low resource settings in Africa and other developing regions, pit latrines remain the dominant basic minimum acceptable form of sanitation. However, unpleasant smells-malodours emitted from faecal sludge in the pit latrines, which elicit disgusting or repulsive response, are one of the factors that thwart people to use latrines and instead opt for open defecation as an alternative. This provides an important but often overlooked major impediment, dissuading people from adopting and using the pit latrines hence affecting successful, effective sanitation promotion. The malodours are primarily attributed to four odorants: butanoic acid (C₄H₈O₂), dimethyl trisulphide (C₂H₆S₃), indole (C₈H₇N) and para-cresol (C₇H₈O). Several pit latrine deodorisation methods such as addition of carbonous materials, use of ventilation systems and urine separation are available, and they continue to occupy their niche, but social, economic, environmental and technological shortfalls remain. Bioremediation has been gaining popularity because it is inexpensive, simple to operate and environmentally friendly. Recently, the biodegradation of butanoic acid as individual odorant has been studied. However, to the best of our knowledge, there have been no kinetic studies of the butanoic acid in the presence of other key odorous compounds. In this study, a series of experiments were conducted to investigate the effects of indole on the removal of butanoic acid under aerobic conditions using indigenous bacteria strains, Pseudomonas aeruginosa, and Serratia marcescens isolated from faecal sludge as pure cultures as well as mixed cultures. In this purpose, butanoic acid removal was performed in a batch reactor containing the bacterial strains in mineral salt medium (MSM) amended with 3000 ppm of butanoic acid at the temperature of 30°C, under continuous stirring rate of 150 rpm and the concentration of indole was varied from 50-200 ppm. The initial pH of the solution was in the range of 6.0-7.2. Overall, there were significant differences in the bacterial growth rate and total butanoic acid removal dependent on the concentration of indole in the solution.Keywords: biodegradation, butanoic acid, indole, pit latrine
Procedia PDF Downloads 1953434 Orange Fleshed Sweet Potato Response to Filter Cake and Macadamia Husk Compost in Two Agro-Ecologies of Kwazulu-Natal, South Africa
Authors: Kayode Fatokun, Nozipho N. Motsa
Abstract:
Field experiments were carried out during the summer/autumn (first trial) and winter/spring (second trial) seasons of 2019 and 2021 inDlangubo, Ngwelezane, and Mtubatubaareas of KwaZulu-Natal Province of South Africa to study the drought amelioration effects and impact of 2 locally available organic wastes [filter cake (FC) and macadamia husk compost (MHC)] on the productivity, and physiological responses of 4 orange-fleshed sweet potato cultivars (Buregard cv., Impilo, W-119 and 199062.1). The effects of FC and MHC were compared with that of inorganic fertilizer (IF) [2:3:2 (30)], FC+IF, MHC+IF, and control. The soil amendments were applied in the first trials only. Climatic data such as humidity, temperature, and rainfall were taken via remote sensing. The results of the first trial indicated that filter cake and IF significantly performed better than MHC. While the strength of filter cake may be attributable to its rich array of mineral nutrients such as calcium, magnesium, potassium, sodium, zinc, copper, manganese, iron, and phosphorus. The little performance from MHC may be attributable to its water holding capacity. Also, a positive correction occurred between the yield of the test OFSP cultivars and climatic factors such as rainfall, NDVI, and NDWI values. Whereas the inorganic fertilizer did not have any significant effect on the growth and productivity of any of the tested sweet potato cultivars in the second trial; FC, and MHC largely maintained their significant performances. In conclusion, the use of FC is highly recommended in the production of the test orange-fleshed sweet potato cultivars. Also, the study indicated that both FC and MHC may not only supply the needed plant nutrients but has the capacity to reduce the impact of drought on the growth of the test cultivars. These findings are of great value to farmers, especially the resource-poorones.Keywords: amendments, drought, filter cake, macadamia husk compost, sweet potato
Procedia PDF Downloads 983433 Protein-Enrichment of Oilseed Meals by Triboelectrostatic Separation
Authors: Javier Perez-Vaquero, Katryn Junker, Volker Lammers, Petra Foerst
Abstract:
There is increasing importance to accelerate the transition to sustainable food systems by including environmentally friendly technologies. Our work focuses on protein enrichment and fractionation of agricultural side streams by dry triboelectrostatic separation technology. Materials are fed in particulate form into a system dispersed in a highly turbulent gas stream, whereby the high collision rate of particles against surfaces and other particles greatly enhances the electrostatic charge build-up over the particle surface. A subsequent step takes the charged particles to a delimited zone in the system where there is a highly uniform, intense electric field applied. Because the charge polarity acquired by a particle is influenced by its chemical composition, morphology, and structure, the protein-rich and fiber-rich particles of the starting material get opposite charge polarities, thus following different paths as they move through the region where the electric field is present. The output is two material fractions, which differ in their respective protein content. One is a fiber-rich, low-protein fraction, while the other is a high-protein, low-fiber composition. Prior to testing, materials undergo a milling process, and some samples are stored under controlled humidity conditions. In this way, the influence of both particle size and humidity content was established. We used two oilseed meals: lupine and rapeseed. In addition to a lab-scale separator to perform the experiments, the triboelectric separation process could be successfully scaled up to a mid-scale belt separator, increasing the mass feed from g/sec to kg/hour. The triboelectrostatic separation technology opens a huge potential for the exploitation of so far underutilized alternative protein sources. Agricultural side-streams from cereal and oil production, which are generated in high volumes by the industries, can further be valorized by this process.Keywords: bench-scale processing, dry separation, protein-enrichment, triboelectrostatic separation
Procedia PDF Downloads 1903432 Developing a Process and Cost Model for Xanthan Biosynthesis from Bioethanol Production Waste Effluents
Authors: Bojana Ž. Bajić, Damjan G. Vučurović, Siniša N. Dodić, Jovana A. Grahovac, Jelena M. Dodić
Abstract:
Biosynthesis of xanthan, a microbial polysaccharide produced by Xanthomonas campestris, is characterized by the possibility of using non-specific carbohydrate substrates, which means different waste effluents can be used as a basis for the production media. Potential raw material sources for xanthan production come from industries with large amounts of waste effluents that are rich in compounds necessary for microorganism growth and multiplication. Taking into account the amount of waste effluents generated by the bioethanol industry and the fact that it contains a high inorganic and organic load it is clear that they represent a potential environmental pollutants if not properly treated. For this reason, it is necessary to develop new technologies which use wastes and wastewaters of one industry as raw materials for another industry. The result is not only a new product, but also reduction of pollution and environmental protection. Biotechnological production of xanthan, which consists of using biocatalysts to convert the bioethanol waste effluents into a high-value product, presents a possibility for sustainable development. This research uses scientific software developed for the modeling of biotechnological processes in order to design a xanthan production plant from bioethanol production waste effluents as raw material. The model was developed using SuperPro Designer® by using input data such as the composition of raw materials and products, defining unit operations, utility consumptions, etc., while obtaining capital and operating costs and the revenues from products to create a baseline production plant model. Results from this baseline model can help in the development of novel biopolymer production technologies. Additionally, a detailed economic analysis showed that this process for converting waste effluents into a high value product is economically viable. Therefore, the proposed model represents a useful tool for scaling up the process from the laboratory or pilot plant to a working industrial scale plant.Keywords: biotechnology, process model, xanthan, waste effluents
Procedia PDF Downloads 3483431 Family Planning Programming for Youths and Adolescents in Nigeria
Authors: Ashimolowo Olubunmi
Abstract:
Contraception use helps prevent pregnancy as well as health-related challenges, most especially among youths and girls. Our communities are bedeviled with many problems, including rape, defilement, neglect by the spouse, and intimate partner violence. Current interventions target only adults, with most facilities having youth and unfriendly adolescent services. To further support the need for this research, especially with our target beneficiaries, the partnership embarked on qualitative evidence-finding research through focus group discussions and in-depth-interview in Abeokuta and Ibadan (the capital cities of Ogun). The Focus Group Discussion (FGD) sessions were held in the state with adolescents (10-18 years) and young women (18-30 years). The result revealed that teenagers and youths who receive formal and sexual education on abstinence, and birth control methods, are likely to have healthier sexual behaviours through the promotion of abstinence and the use of condoms and other forms of contraceptives at their first intercourse, thereby protecting themselves against HIV/AIDs (Human Immunodeficiency Virus/Acquired immunodeficiency syndrome. The result further revealed that parents do not discuss issues around Adolescent and Sexual Reproductive Health (ASRH) with their adolescent girls, leading to gaps in knowledge of ASRH. Stakeholders’ involvement and trust are low. Respondents noted that there were few outreaches on ASRH and that youth-friendly adolescent centres are not common in the community. Respondents noted that there were few outreaches on ASRH organised within the community. Also, youth-friendly services were not common. There is a need to work with all stakeholders to promote those foundational life skills on pubertal changes, menstruation, and sexual life to prepare youths and girls for challenges ahead through sex education; we should work to institutionalize youth and adolescent-friendly Sexual and Reproductive Health (SRH) in our communities.Keywords: contraception, family planning, focus group discussion, adolescents
Procedia PDF Downloads 703430 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel
Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin
Abstract:
Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel
Procedia PDF Downloads 5473429 Effect of Graphene on the Structural and Optical Properties of Ceria:Graphene Nanocomposites
Authors: R. Udayabhaskar, R. V. Mangalaraja, V. T. Perarasu, Saeed Farhang Sahlevani, B. Karthikeyan, David Contreras
Abstract:
Bandgap engineering of CeO₂ nanocrystals is of high interest for many research groups to meet the requirement of desired applications. The band gap of CeO₂ nanostructures can be modified by varying the particle size, morphology and dopants. Anchoring the metal oxide nanostructures on graphene sheets will result in composites with improved properties than the parent materials. The presence of graphene sheets will acts a support for the growth, influences the morphology and provides external paths for electronic transitions. Thus, the controllable synthesis of ceria:graphene composites with various morphologies and the understanding of the optical properties is highly important for the usage of these materials in various applications. The development of ceria and ceria:graphene composites with low cost, rapid synthesis with tunable optical properties is still desirable. By this work, we discuss the synthesis of pure ceria (nanospheres) and ceria:graphene composites (nano-rice like morphology) by using commercial microwave oven as a cost effective and environmentally friendly approach. The influence of the graphene on the crystallinity, morphology, band gap and luminescence of the synthesized samples were analyzed. The average crystallite size obtained by using Scherrer formula of the CeO₂ nanostructures showed a decreasing trend with increasing the graphene loading. The higher graphene loaded ceria composite clearly depicted morphology of nano-rice like in shape with the diameter below 10 nm and the length over 50 nm. The presence of graphene and ceria related vibrational modes (100-4000 cm⁻¹) confirmed the successful formation of composites. We observed an increase in band gap (blue shift) with increasing loading amount of graphene. Further, the luminescence related to various F-centers was quenched in the composites. The authors gratefully acknowledge the FONDECYT Project No.: 3160142 and BECA Conicyt National Doctorado2017 No. 21170851 Government of Chile, Santiago, for the financial assistance.Keywords: ceria, graphene, luminescence, blue shift, band gap widening
Procedia PDF Downloads 1923428 Characterization of the Ignitability and Flame Regression Behaviour of Flame Retarded Natural Fibre Composite Panel
Authors: Timine Suoware, Sylvester Edelugo, Charles Amgbari
Abstract:
Natural fibre composites (NFC) are becoming very attractive especially for automotive interior and non-structural building applications because they are biodegradable, low cost, lightweight and environmentally friendly. NFC are known to release high combustible products during exposure to heat atmosphere and this behaviour has raised concerns to end users. To improve on their fire response, flame retardants (FR) such as aluminium tri-hydroxide (ATH) and ammonium polyphosphate (APP) are incorporated during processing to delay the start and spread of fire. In this paper, APP was modified with Gum Arabic powder (GAP) and synergized with carbon black (CB) to form new FR species. Four FR species at 0, 12, 15 and 18% loading ratio were added to oil palm fibre polyester composite (OPFC) panels as follows; OPFC12%APP-GAP, OPFC15%APP-GAP/CB, OPFC18%ATH/APP-GAP and OPFC18%ATH/APPGAP/CB. The panels were produced using hand lay-up compression moulding and cured at room temperature. Specimens were cut from the panels and these were tested for ignition time (Tig), peak heat released rate (HRRp), average heat release rate (HRRavg), peak mass loss rate (MLRp), residual mass (Rm) and average smoke production rate (SPRavg) using cone calorimeter apparatus as well as the available flame energy (ɸ) in driving the flame using radiant panel flame spread apparatus. From the ignitability data obtained at 50 kW/m2 heat flux (HF), it shows that the hybrid FR modified with APP that is OPFC18%ATH/APP-GAP exhibited superior flame retardancy and the improvement was based on comparison with those without FR which stood at Tig = 20 s, HRRp = 86.6 kW/m2, HRRavg = 55.8 kW/m2, MLRp =0.131 g/s, Rm = 54.6% and SPRavg = 0.05 m2/s representing respectively 17.6%, 67.4%, 62.8%, 50.9%, 565% and 62.5% improvements less than those without FR (OPFC0%). In terms of flame spread, the least flame energy (ɸ) of 0.49 kW2/s3 for OPFC18%ATH/APP-GAP caused early flame regression. This was less than 39.6 kW2/s3 compared to those without FR (OPFC0%). It can be concluded that hybrid FR modified with APP could be useful in the automotive and building industries to delay the start and spread of fire.Keywords: flame retardant, flame regression, oil palm fibre, composite panel
Procedia PDF Downloads 1283427 Evaluation of Duncan-Chang Deformation Parameters of Granular Fill Materials Using Non-Invasive Seismic Wave Methods
Authors: Ehsan Pegah, Huabei Liu
Abstract:
Characterizing the deformation properties of fill materials in a wide stress range always has been an important issue in geotechnical engineering. The hyperbolic Duncan-Chang model is a very popular model of stress-strain relationship that captures the nonlinear deformation of granular geomaterials in a very tractable manner. It consists of a particular set of the model parameters, which are generally measured from an extensive series of laboratory triaxial tests. This practice is both time-consuming and costly, especially in large projects. In addition, undesired effects caused by soil disturbance during the sampling procedure also may yield a large degree of uncertainty in the results. Accordingly, non-invasive geophysical seismic approaches may be utilized as the appropriate alternative surveys for measuring the model parameters based on the seismic wave velocities. To this end, the conventional seismic refraction profiles were carried out in the test sites with the granular fill materials to collect the seismic waves information. The acquired shot gathers are processed, from which the P- and S-wave velocities can be derived. The P-wave velocities are extracted from the Seismic Refraction Tomography (SRT) technique while S-wave velocities are obtained by the Multichannel Analysis of Surface Waves (MASW) method. The velocity values were then utilized with the equations resulting from the rigorous theories of elasticity and soil mechanics to evaluate the Duncan-Chang model parameters. The derived parameters were finally compared with those from laboratory tests to validate the reliability of the results. The findings of this study may confidently serve as the useful references for determination of nonlinear deformation parameters of granular fill geomaterials. Those are environmentally friendly and quite economic, which can yield accurate results under the actual in-situ conditions using the surface seismic methods.Keywords: Duncan-Chang deformation parameters, granular fill materials, seismic waves velocity, multichannel analysis of surface waves, seismic refraction tomography
Procedia PDF Downloads 1823426 Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven
Authors: Daniela N. Correa-Llantén, Sebastián A. Muñoz-Ibacache, Mathilde Maire, Jenny M. Blamey
Abstract:
The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.Keywords: genus Geobacillus, NADPH/NADH-dependent reductase, selenium nanoparticles, biosynthesis
Procedia PDF Downloads 3153425 Evolution of Fluvial-Deltaic System Recorded in Accumulation of Organic Material: From the Example of the Kura River in the South Caspian Basin
Authors: Dadash Huseynov, Elmira Aliyeva, Robert Hoogendoorn, Salomon Kroonenberg
Abstract:
The study of organic material in bottom sediments together with lithologic and biostratigraphic data improves our understanding of the evolution of fluvial and deltaic systems. The modern Kura River delta is located in the Southwest Caspian Sea and is fluvial-dominated. The river distributes its sediment load through three channels oriented North-East, South-East, and South-West. The offshore modern delta consists of thinly bedded or laminated silty clays and dark grey clays. Locally sand and shell-rich horizons occur. Onshore delta is composed of channel-levee sands and floodplain silts and clays. Overall sedimentation rates in the delta determined by the 210Pb method range between 1.5-3.0 cm/yr. We investigated the distribution of organic material in the deltaic sediments in 300 samples selected from 3m deep piston cores. The studies of transparent sections demonstrate that deltaic sediments are enriched in terrestrial debris. It is non-transparent and has an irregular, isometric, or elongated shape, angular edges, black or dark-brown colour, and a clearly expressed fabric. Partially it is dissolved at the edges and is replaced by iron sulphides. Fragments of marine algae have more smooth edges, brown colour. They are transparent; the fabric is rarely preserved. The evidences of dissolution and gelification are well observed. Iron sulphides are common. The recorded third type of organic material has a round, drop-like, or oval shape and belongs to planktonic organisms. Their initial organic material is strongly transformed or replaced by dark organic compounds, probably, neoplasms. The particles are red-brown and transparent. The iron sulphides are not observed. The amount of Corg in the uppermost portion of sediments accumulated in the offshore Kura River delta varies from 0.2 to 1.22%, with median values of 0.6-0.8%. In poorly sorted sediments Corg content changes from 0.24 to 0.97% (average 0.69%), silty-sandy clay - 0.45 to 1.22% (average 0.77%), sandy-silty clay - 0.5 to 0.97% (average 0.67%), silty clay - 0.52 to 0.95% (average 0.70%). The data demonstrate that in sediments deposited during Caspian Sea high stand in 1929, the minimum of Corg content is localised near the mouth of the main south-eastern distributary channel and coincides with the minimum of the clay fraction. At the same time, the maximum of organic matter content locates near the mouth of the eastern channel, which was inactive at that time. In sediments accumulated during the last Caspian Sea low stand in 1977, the area of Corg minimum is attached to the north-eastern distributary’s mouth. It indicates the high activity of this distributary during the Caspian Sea fall. The area of Corg minimum is also recorded around the mouth of the main channel and eastern part of the delta. Maximums of Corg and clay fraction shift towards the basin. During the Caspian high stand in 1995, the minimum of Corg content is again observed in the mouth of the main south-eastern channel. The distribution of organic matter in the modern sediments of the Kura river delta displays the strong time dependence and reflects progradational-retrogradational cycles of evolution of this fluvial-deltaic system.Keywords: high and low stands, Kura River delta, South Caspian Sea, organic matter
Procedia PDF Downloads 1263424 A Step Towards Circular Economy: Assessing the Efficacy of Ion Exchange Resins in the Recycling of Automotive Engine Coolants
Authors: George Madalin Danila, Mihaiella Cretu, Cristian Puscasu
Abstract:
The recycling of used antifreeze/coolant is a widely discussed and intricate issue. Complying with government regulations for the proper disposal of hazardous waste poses a significant challenge for today's automotive and industrial industries. In recent years, global focus has shifted toward Earth's fragile ecology, emphasizing the need to restore and preserve the natural environment. The business and industrial sectors have undergone substantial changes to adapt and offer products tailored to these evolving markets. The global antifreeze market size was evaluated at US 5.4 billion in 2020 to reach USD 5,9 billion by 2025 due to the increased number of vehicles worldwide, but also to the growth of HVAC systems. This study presents the evaluation of an ion exchange resin-based installation designed for the recycling of engine coolants, specifically ethylene glycol (EG) and propylene glycol (PG). The recycling process aims to restore the coolant to meet the stringent ASTM standards for both new and recycled coolants. A combination of physical-chemical methods, gas chromatography-mass spectrometry (GC-MS), and inductively coupled plasma mass spectrometry (ICP-MS) was employed to analyze and validate the purity and performance of the recycled product. The experimental setup included performance tests, namely corrosion to glassware and the tendency to foaming of coolant, to assess the efficacy of the recycled coolants in comparison to new coolant standards. The results demonstrate that the recycled EG coolants exhibit comparable quality to new coolants, with all critical parameters falling within the acceptable ASTM limits. This indicates that the ion exchange resin method is a viable and efficient solution for the recycling of engine coolants, offering an environmentally friendly alternative to the disposal of used coolants while ensuring compliance with industry standards.Keywords: engine coolant, glycols, recycling, ion exchange resin, circular economy
Procedia PDF Downloads 453423 Application of Response Surface Methodology in Optimizing Chitosan-Argan Nutshell Beads for Radioactive Wastewater Treatment
Authors: F. F. Zahra, E. G. Touria, Y. Samia, M. Ahmed, H. Hasna, B. M. Latifa
Abstract:
The presence of radioactive contaminants in wastewater poses a significant environmental and health risk, necessitating effective treatment solutions. This study investigates the optimization of chitosan-Argan nutshell beads for the removal of radioactive elements from wastewater, utilizing Response Surface Methodology (RSM) to enhance the treatment efficiency. Chitosan, known for its biocompatibility and adsorption properties, was combined with Argan nutshell powder to form composite beads. These beads were then evaluated for their capacity to remove radioactive contaminants from synthetic wastewater. The Box-Behnken design (BBD) under RSM was employed to analyze the influence of key operational parameters, including initial contaminant concentration, pH, bead dosage, and contact time, on the removal efficiency. Experimental results indicated that all tested parameters significantly affected the removal efficiency, with initial contaminant concentration and pH showing the most substantial impact. The optimized conditions, as determined by RSM, were found to be an initial contaminant concentration of 50 mg/L, a pH of 6, a bead dosage of 0.5 g/L, and a contact time of 120 minutes. Under these conditions, the removal efficiency reached up to 95%, demonstrating the potential of chitosan-Argan nutshell beads as a viable solution for radioactive wastewater treatment. Furthermore, the adsorption process was characterized by fitting the experimental data to various isotherm and kinetic models. The adsorption isotherms conformed well to the Langmuir model, indicating monolayer adsorption, while the kinetic data were best described by the pseudo-second-order model, suggesting chemisorption as the primary mechanism. This study highlights the efficacy of chitosan-Argan nutshell beads in removing radioactive contaminants from wastewater and underscores the importance of optimizing treatment parameters using RSM. The findings provide a foundation for developing cost-effective and environmentally friendly treatment technologies for radioactive wastewater.Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology
Procedia PDF Downloads 323422 Invasive Asian Carp Fish Species: A Natural and Sustainable Source of Methionine for Organic Poultry Production
Authors: Komala Arsi, Ann M. Donoghue, Dan J. Donoghue
Abstract:
Methionine is an essential dietary amino acid necessary to promote growth and health of poultry. Synthetic methionine is commonly used as a supplement in conventional poultry diets and is temporarily allowed in organic poultry feed for lack of natural and organically approved sources of methionine. It has been a challenge to find a natural, sustainable and cost-effective source for methionine which reiterates the pressing need to explore potential alternatives of methionine for organic poultry production. Fish have high concentrations of methionine, but wild-caught fish are expensive and adversely impact wild fish populations. Asian carp (AC) is an invasive species and its utilization has the potential to be used as a natural methionine source. However, to our best knowledge, there is no proven technology to utilize this fish as a methionine source. In this study, we co-extruded Asian carp and soybean meal to form a dry-extruded, methionine-rich AC meal. In order to formulate rations with the novel extruded carp meal, the product was tested on cecectomized roosters for its amino acid digestibility and total metabolizable energy (TMEn). Excreta was collected and the gross energy, protein content of the feces was determined to calculate Total Metabolizable Energy (TME). The methionine content, digestibility and TME values were greater for the extruded AC meal than control diets. Carp meal was subsequently tested as a methionine source in feeds formulated for broilers, and production performance (body weight gain and feed conversion ratio) was assessed in comparison with broilers fed standard commercial diets supplemented with synthetic methionine. In this study, broiler chickens were fed either a control diet with synthetic methionine or a treatment diet with extruded AC meal (8 replicates/treatment; n=30 birds/replicate) from day 1 to 42 days of age. At the end of the trial, data for body weights, feed intake and feed conversion ratio (FCR) was analyzed using one-way ANOVA with Fisher LSD test for multiple comparisons. Results revealed that birds on AC diet had body weight gains and feed intake comparable to diets containing synthetic methionine (P > 0.05). Results from the study suggest that invasive AC-derived fish meal could potentially be an effective and inexpensive source of sustainable natural methionine for organic poultry farmers.Keywords: Asian carp, methionine, organic, poultry
Procedia PDF Downloads 1583421 Performance of Bimetallic Catalyst in the Oxidation of Volatile Organic Compounds
Authors: Faezeh Aghazadeh
Abstract:
The catalytic activity of Pt/γ-Al₂O₃ and Pt-Fe/γ-Al₂O₃ catalysts was investigated to bring about the complete oxidation of 2-Propanol. Among them, Pt-Fe/γ-Al₂O₃ was found to be the most promising catalyst based on activity. The catalysts were characterized by (XRD), (SEM), (TEM) and ICP-AES techniques. Iron loadings on Pt/γ-Al₂O₃ had a great effect on catalytic activity, and Pt-Fe/γ-Al₂O₃ (1.75 wt% Fe) catalyst at calcination temperature 300°C was observed to be the most active, which might be contributed to the favorable synergetic effects between Pt and Fe, high activity and the well-dispersed bimetallic phase. The combustion of 2-Propanol in the vapor phase was carried out in a conventional flow U-shape glass reactor used in the differential mode at atmospheric pressure. 2-Propanol was analyzed by a gas chromatograph VARIAN 3800 CX equipped with an FID. As observed, better performance and activity were observed for Pt-Fe/Al₂O₃ bimetallic catalyst. These results indicate that the high dispersion on support gives a positive effect on catalytic activity.Keywords: volatile organic compounds, bimetallic catalyst, catalytic activity, low temperature
Procedia PDF Downloads 1463420 Developing a Green Information Technology Model in Australian Higher-Educational Institutions
Authors: Mahnaz Jafari, Parisa Izadpanahi, Francesco Mancini, Muhammad Qureshi
Abstract:
The advancement in Information Technology (IT) has been an intrinsic element in the developments of the 21st century bringing benefits such as increased economic productivity. However, its widespread application has also been associated with inadvertent negative impacts on society and the environment necessitating selective interventions to mitigate these impacts. This study responded to this need by developing a Green IT Rating Tool (GIRT) for higher education institutions (HEI) in Australia to evaluate the sustainability of IT-related practices from an environmental, social, and economic perspective. Each dimension must be considered equally to achieve sustainability. The development of the GIRT was informed by the views of interviewed IT professionals whose opinions formed the basis of a framework listing Green IT initiatives in order of their importance as perceived by the interviewed professionals. This framework formed the base of the GIRT, which identified Green IT initiatives (such as videoconferencing as a substitute for long-distance travel) and the associated weighting of each practice. The proposed sustainable Green IT model could be integrated into existing IT systems, leading to significant reductions in carbon emissions and e-waste and improvements in energy efficiency. The development of the GIRT and the findings of this study have the potential to inspire other organizations to adopt sustainable IT practices, positively impact the environment, and be used as a reference by IT professionals and decision-makers to evaluate IT-related sustainability practices. The GIRT could also serve as a benchmark for HEIs to compare their performance with other institutions and to track their progress over time. Additionally, the study's results suggest that virtual and cloud-based technologies could reduce e-waste and energy consumption in the higher education sector. Overall, this study highlights the importance of incorporating Green IT practices into the IT systems of HEI to contribute to a more sustainable future.Keywords: green information technology, international higher-educational institution, sustainable solutions, environmentally friendly IT systems
Procedia PDF Downloads 763419 Pattern Of Polymorphism SLC22A1 Gene In Children With Diabetes Mellitus Type 2
Authors: Elly Usman, S. Dante, Diah Purnamasari
Abstract:
Type 2 diabetes mellitus ( T2DM ) is a syndrome characterized by a state of increased blood sugar levels due to chronic disorders of insulin secretion by pancreatic beta cells and insulin action or a combination of both. The organic cation transporter 1, encoded by the SLC22A1 gene, responsible for the uptake of the antihyperglycemic drug, metformin, in the hepatocyte. We assessed whether a genetic variation in the SLC22A1 gene was associated with the glucose - lowering effect of metformin. Method case study research design. Samples are children with type 2 diabetes mellitus who meet the inclusion criteria. The results proportions SLC22A1 gene polymorphisms in children with diabetes mellitus type 2 amounted to 52.04 % at position 400T/C, there is one heterozygous and one at position 595T/C Conclusion The presence of SLC22A1 gene polymorphisms in children with diabetes mellitus type 2.Keywords: diabetes Mellitus type 2, metformin, organic cation transporter 1, pharmacogenomics
Procedia PDF Downloads 4293418 Bioremediation of Paper Mill Effluent by Microbial Consortium Comprising Bacterial and Fungal Strain and Optimizing the Effect of Carbon Source
Authors: Priya Tomar, Pallavi Mittal
Abstract:
Bioremediation has been recognized as an environment friendly and less expensive method which involves the natural processes resulting in the efficient conversion of hazardous compounds into innocuous products. The pulp and paper mill effluent is one of the high polluting effluents amongst the effluents obtained from polluting industries. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin, and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. For solving the above problem we present this paper with some new techniques that were developed for the efficiency of paper mill effluents. In the present study we utilized the consortia of fungal and bacterial strain and the treatment named as C1, C2, and C3 for the decolourization of paper mill effluent. During the study, role of carbon source i.e. glucose was studied for decolourization. From the results it was observed that a maximum colour reduction of 66.9%, COD reduction of 51.8%, TSS reduction of 0.34%, TDS reduction of 0.29% and pH changes of 4.2 is achieved by consortia of Aspergillus niger with Pseudomonas aeruginosa. Data indicated that consortia of Aspergillus niger with Pseudomonas aeruginosa is giving better result with glucose.Keywords: bioremediation, decolourization, black liquor, mycoremediation
Procedia PDF Downloads 4113417 Development of Solid Electrolytes Based on Networked Cellulose
Authors: Boor Singh Lalia, Yarjan Abdul Samad, Raed Hashaikeh
Abstract:
Three different kinds of solid polymer electrolytes were prepared using polyethylene oxide (PEO) as a base polymer, networked cellulose (NC) as a physical support and LiClO4 as a conductive salt for the electrolytes. Networked cellulose, a modified form of cellulose, is a biodegradable and environmentally friendly additive which provides a strong fibrous networked support for structural stability of the electrolytes. Although the PEO/NC/LiClO4 electrolyte retains its structural integrity and mechanical properties at 100oC as compared to pristine PEO-based polymer electrolytes, it suffers from poor ionic conductivity. To improve the room temperature conductivity of the electrolyte, PEO is replaced by the polyethylene glycol (PEG) which is a liquid phase that provides high mobility for Li+ ions transport in the electrolyte. PEG/NC/LiClO4 shows improvement in ionic conductivity compared to PEO/NC/LiClO4 at room temperature, but it is brittle and tends to form cracks during processing. An advanced solid polymer electrolyte with optimum ionic conductivity and mechanical properties is developed by using a ternary system: TEGDME/PEO/NC+LiClO4. At room temperature, this electrolyte exhibits an ionic conductivity to the order of 10-5 S/cm, which is very high compared to that of the PEO/LiClO4 electrolyte. Pristine PEO electrolytes start melting at 65 °C and completely lose its mechanical strength. Dynamic mechanical analysis of TEGDME: PEO: NC (70:20:10 wt%) showed an improvement of storage modulus as compared to the pristine PEO in the 60–120 °C temperature range. Also, with an addition of NC, the electrolyte retains its mechanical integrity at 100 oC which is beneficial for Li-ion battery operation at high temperatures. Differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA) studies revealed that the ternary polymer electrolyte is thermally stable in the lithium ion battery operational temperature range. As-prepared polymer electrolyte was used to assemble LiFePO4/ TEGDME/PEO/NC+LiClO4/Li half cells and their electrochemical performance was studied via cyclic voltammetry and charge-discharge cycling.Keywords: solid polymer electrolyte, ionic conductivity, mechanical properties, lithium ion batteries, cyclic voltammetry
Procedia PDF Downloads 4293416 Water Vapor Oxidization of NiO for a Hole Transport Layer in All Inorganic QD-LED
Authors: Jaeun Park, Daekyoung Kim, Ho Kyoon Chung, Heeyeop Chae
Abstract:
Quantum dots light-emitting diodes (QD-LEDs) have been considered as the next generation display and lighting devices due to their excellent color purity, photo-stability solution process possibility and good device stability. Currently typical quantum dot light emitting diodes contain organic layers such as PEDOT:PSS and PVK for charge transport layers. To make quantum dot light emitting diodes (QD-LED) more stable, it is required to replace those acidic and relatively unstable organic charge transport layers with inorganic materials. Therefore all inorganic and solution processed quantum dot light emitting diodes can potentially be a solution to stable and cost-effective display devices. We studied solution processed NiO films to replace organic charge transport layers that are required for stable all-inorganic based light emitting diodes. The transition metal oxides can be made by various vacuum and solution processes, but the solution processes are considered more cost-effective than vacuum processes. In this work we investigated solution processed NiOx for a hole transport layer (HTL). NiOx, has valence band energy levels of 5.3eV and they are easy to make sol-gel solutions. Water vapor oxidation process was developed and applied to solution processed all-inorganic QD-LED. Turn-on voltage, luminance and current efficiency of QD in this work were 5V, 1800Cd/m2 and 0.5Cd/A, respectively.Keywords: QD-LED, metal oxide solution, NiO, all-inorganic QD-LED device
Procedia PDF Downloads 7503415 Graphene-Based Nanocomposites as Ecofriendly Antifouling Surfaces
Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Xiang Chen
Abstract:
After the prohibition of tin-based fouling-prevention coatings in 2003, the researchers were directed toward eco-friendly coatings. Because of their nonstick, environmental, and economic benefits, foul-release nanocoatings have received a lot of attention. They use physical anti-adhesion terminology to deter any fouling attachment.Natural bioinspired surfaces have micro/nano-roughness and low surface free energy features, which may inspire the design of dynamic antifouling coatings. Graphene-based nanocomposite surfaces were designed to combat marine-fouling adhesion with ecological as well as eco-friendly effects rather than biocidal solutions. Polymer–graphenenanofiller hybrids are a novel class of composite materials in fouling-prevention applications. The controlled preparation of nanoscale orientation, arrangement, and direction along the composite building blocks would result in superior fouling prohibition. This work representsfoul-release nanocomposite top coats for marine coating applications with superhydrophobicity, surface inertness against fouling adherence, cost-effectiveness, and increased lifetime.Keywords: foul-release nanocoatings, graphene-based nanocomposite, polymer, nanofillers
Procedia PDF Downloads 1413414 Solid Health Care Waste Management Practice in Ethiopia
Authors: Yeshanew Ayele Tiruneh, L. M. Modiba, S. M. Zuma
Abstract:
Introduction- Healthcare waste is any waste generated by health care facilities, considered potentially hazardous to health. Solid health care waste is categorised into infectious and non-infectious wastes. Infectious waste is material suspected to contain pathogens. The non-infectious waste includes wastes that have not been in contact with infectious agents, hazardous chemicals, or radioactive substances. The purpose is to assess solid health care waste (SHCW) management practice toward developing guidelines. The setting is all health facilities found in Hossaena town. A mixed-method study design used. For the qualitative part, small purposeful samples were considered and large samples for the quantitative phase. Both samples were taken from the same population. Result - 17(3.1%) of health facility workers have hand washing facilities. 392 (72.6%) of the participants agree on the availability of one or more of personal protective equipment (PPE) in the facility ‘’the reason for the absence of some of the PPEs like boots, goggles, and shortage of disposable gloves are owing to cost inflation from time to time and sometimes absent from the market’’. The observational finding shows that colour coded waste bins are available at 23 (9.6%) of the rooms. Majority of the sharp container used in the health facility are reusable in the contrary to the health care waste management standards and most of them are plastic buckets and easily cleanable. All of the health facility infectious waste are collected transported and deposed daily. Regarding the preventive vaccination nearly half of the the fahealth facility workers wer vaccinated for Hep B virus. Conclusion- Hand washing facilities, personal protective equipment’s and preventive vaccinations are not easily available for health workers. Solid waste segregation practices are poor and these practices showed that SWMP is below the acceptable level.Keywords: health care waste, waste management, disposal, private health facilities
Procedia PDF Downloads 743413 Functional Dyspepsia and Irritable Bowel Syndrome: Life sketches of Functional Illnesses (Non-Organic) in West Bengal, India
Authors: Urmita Chakraborty
Abstract:
To start with, Organic Illnesses are no longer considered as only health difficulties. Functional Illnesses that are emotional in origin have become the search areas in many investigations. In the present study, an attempt has made to study the psychological nature of Functional Gastro-Intestinal Disorders (FGID) in West Bengal. In the specialty of Gastroenterology, the medically unexplained symptom-based conditions are known as Functional Gastrointestinal Disorder (FGID). In the present study, Functional Dyspepsia (FD) and Irritable Bowel Syndrome (IBS) have been taken for investigations. 72 cases have been discussed in this context. Results of the investigation have been analyzed in terms of a qualitative framework. Theoretical concepts on persistent thoughts and behaviors will be delineated in the analysis. Processes of self-categorization will be implemented too. Aspects of Attachments and controlling of affect as well as meta-cognitive appraisals are further considered for the depiction.Keywords: functional dyspepsia, irritable bowel syndrome, self-categorization
Procedia PDF Downloads 5663412 UV-Cured Thiol-ene Based Polymeric Phase Change Materials for Thermal Energy Storage
Authors: M. Vezir Kahraman, Emre Basturk
Abstract:
Energy storage technology offers new ways to meet the demand to obtain efficient and reliable energy storage materials. Thermal energy storage systems provide the potential to acquire energy savings, which in return decrease the environmental impact related to energy usage. For this purpose, phase change materials (PCMs) that work as 'latent heat storage units' which can store or release large amounts of energy are preferred. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. PCMs have found different application areas such as solar energy storage and transfer, HVAC (Heating, Ventilating and Air Conditioning) systems, thermal comfort in vehicles, passive cooling, temperature controlled distributions, industrial waste heat recovery, under floor heating systems and modified fabrics in textiles. Ultraviolet (UV)-curing technology has many advantages, which made it applicable in many different fields. Low energy consumption, high speed, room-temperature operation, low processing costs, high chemical stability, and being environmental friendly are some of its main benefits. UV-curing technique has many applications. One of the many advantages of UV-cured PCMs is that they prevent the interior PCMs from leaking. Shape-stabilized PCM is prepared by blending the PCM with a supporting material, usually polymers. In our study, this problem is minimized by coating the fatty alcohols with a photo-cross-linked thiol-ene based polymeric system. Leakage is minimized because photo-cross-linked polymer acts a matrix. The aim of this study is to introduce a novel thiol-ene based shape-stabilized PCM. Photo-crosslinked thiol-ene based polymers containing fatty alcohols were prepared and characterized for the purpose of phase change materials (PCMs). Different types of fatty alcohols were used in order to investigate their properties as shape-stable PCMs. The structure of the PCMs was confirmed by ATR-FTIR techniques. The phase transition behaviors, thermal stability of the prepared photo-crosslinked PCMs were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). This work was supported by Marmara University, Commission of Scientific Research Project.Keywords: differential scanning calorimetry (DSC), Polymeric phase change material, thermal energy storage, UV-curing
Procedia PDF Downloads 2283411 Physical Characteristics of Locally Composts Produced in Saudi Arabia and the Need for Regulations
Authors: Ahmad Al-Turki
Abstract:
Composting is the suitable way of recycling organic waste for agricultural application and environment protection. In Saudi Arabia, several composting facilities are available and producing high quantity of composts. The aim of this study is to evaluate the physical characteristics of composts manufactured in Saudi Arabia and acquire a comprehensive image of its quality through the comparative with international standards of compost quality such as CCQC and PAS-100. In the present study different locally produced compost were identified and most of the producing factories were visited during the manufacturing of composts. Representative samples of different compost production stage were collected and Physical characteristics were determined, which included moisture content, bulk density, percentage of sand and the size of distribution of the compost particles. Results showed wide variations in all parameters investigated. Results of the study indicated generally that there is a wide variation in the physical characteristics of the types of compost under study. The initial moister contents in composts were generally low, it was less than 60% in most samples and not sufficient for microbial activities for biodegradation in 96% of the 96% of the types of compost and this will impede the decomposition of organic materials. The initial bulk density values ranged from 117 gL-1 to 1110.0 gL-1, while the final apparent bulk density ranged from 340.0 gL-1 to 1000gL-1 and about 45.4 % did not meet the ideal bulk density value. Sand percents in composts were between 3.3 % and 12.5%. This study has confirmed the need for a standard specification for compost manufactured in Saudi Arabia for agricultural use based on international standards for compost and soil characteristics and climatic conditions in Saudi Arabia.Keywords: compost, maturity, Saudi Arabia, organic material
Procedia PDF Downloads 349