Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: pharmacogenomics

5 Pattern Of Polymorphism SLC22A1 Gene In Children With Diabetes Mellitus Type 2

Authors: Elly Usman, S. Dante, Diah Purnamasari

Abstract:

Type 2 diabetes mellitus ( T2DM ) is a syndrome characterized by a state of increased blood sugar levels due to chronic disorders of insulin secretion by pancreatic beta cells and insulin action or a combination of both. The organic cation transporter 1, encoded by the SLC22A1 gene, responsible for the uptake of the antihyperglycemic drug, metformin, in the hepatocyte. We assessed whether a genetic variation in the SLC22A1 gene was associated with the glucose - lowering effect of metformin. Method case study research design. Samples are children with type 2 diabetes mellitus who meet the inclusion criteria. The results proportions SLC22A1 gene polymorphisms in children with diabetes mellitus type 2 amounted to 52.04 % at position 400T/C, there is one heterozygous and one at position 595T/C Conclusion The presence of SLC22A1 gene polymorphisms in children with diabetes mellitus type 2.

Keywords: diabetes Mellitus type 2, metformin, organic cation transporter 1, pharmacogenomics

Procedia PDF Downloads 319
4 Influence of ABCB1 2677G > T Single Nucleotide Polymorphism on Warfarin Maintenance Therapy among Patients with Prosthetic Heart Valve

Authors: M. G. Gopisankar, A. Surendiran, M. Hemachandren

Abstract:

The dose requirement of warfarin to achieve target INR range varies in patients with prosthetic heart valve. This variation in is affected by both genetic and non-genetic factors. Earlier studies have identified role of CYP2C9 and VKORC1 genetic polymorphisms on warfarin dose requirement. Warfarin being a substrate for drug transporter, P-glycoprotein coded by ABCB1 gene, may also be influenced by its genetic polymorphisms. This study was aimed to study the effect of single nucleotide polymorphism (SNP), ABCB1 2677G > T on warfarin maintenance dose requirement in patients with steady-state International Normalized Ratio (INR). The median dose requirement was significantly different between the genotype groups GG vs. GT (35 ± 20; 42.5 ± 18, p < 0.05), GG vs. TT (35 ± 20; 41.25 ± 25, p<0.05). There was no significant difference between GT vs. TT. In conclusion, patients with variant allele require a higher weekly maintenance dose of warfarin compared to patients without variant allele.

Keywords: warfarin pharamcogenetics, pharmacogenomics of warfarin, ABCB1 and warfarin, pglycoprotein and warfarin

Procedia PDF Downloads 158
3 Genetic Variation in CYP4F2 and VKORC1: Pharmacogenomics Implications for Response to Warfarin

Authors: Zinhle Cindi, Collet Dandara, Mpiko Ntsekhe, Edson Makambwa, Miguel Larceda

Abstract:

Background: Warfarin is the most commonly used drug in the management of thromboembolic disease. However, there is a huge variability in the time, number of doses or starting doses for patients to achieve the required international normalised ratio (INR) which is compounded by a narrow therapeutic index. Many genetic-association studies have reported on European and Asian populations which have led to the designing of specific algorithms that are now being used to assist in warfarin dosing. However, very few or no studies have looked at the pharmacogenetics of warfarin in African populations, yet, huge differences in dosage requirements to reach the same INR have been observed. Objective: We set out to investigate the distribution of 3 SNPs CYP4F2 c.1347C > T, VKORC1 g.-1639G > A and VKORC1 c.1173C > T among South African Mixed Ancestry (MA) and Black African patients. Methods: DNA was extracted from 383 participants and subsequently genotyped using PCR/RFLP for the CYP4F2 c.1347 (V433M) (rs2108622), VKORC1 g.-1639 (rs9923231) and VKORC1 c.1173 (rs9934438) SNPs. Results: Comparing the Black and MA groups, significant differences were observed in the distribution of the following genotypes; CYP4F2 c.1347C/T (23% vs. 39% p=0.03). All VKORC1 g.-1639G > A genotypes (p < 0.006) and all VKORC1 c.1173C > T genotypes (p < 0.007). Conclusion: CYP4F2 c.1347T (V433M) reduces CYP4F2 protein levels and therefore expected to affect the amount of warfarin needed to block vitamin k recycling. The VKORC1 g-1639A variant alters transcriptional regulation therefore affecting the function of vitamin k epoxide reductase in vitamin k production. The VKORC1 c.1173T variant reduces the enzyme activity of VKORC1 consequently enhancing the effectiveness of warfarin. These are preliminary results; more genetic characterization is required to understand all the genetic determinants affecting how patients respond to warfarin.

Keywords: algorithms, pharmacogenetics, thromboembolic disease, warfarin

Procedia PDF Downloads 169
2 Strategies of Drug Discovery in Insects

Authors: Alaaeddeen M. Seufi

Abstract:

Many have been published on therapeutic derivatives from living organisms including insects. In addition to traditional maggot therapy, more than 900 therapeutic products were isolated from insects. Most people look at insects as enemies and others believe that insects are friends. Many beneficial insects rather than Honey Bees, Silk Worms and Shellac insect could insure human-insect friendship. In addition, insects could be MicroFactories, Biosensors or Bioreactors. InsectFarm is an amazing example of the applied research that transfers insects from laboratory to market by Prof Mircea Ciuhrii and co-workers. They worked for 18 years to derive therapeutics from insects. Their research resulted in production of more than 30 commercial medications derived from insects (e.g. Imunomax, Noblesse, etc.). Two general approaches were followed to discover drugs from living organisms. Some laboratories preferred biochemical approach to purify components of the innate immune system of insects and insect metabolites as well. Then the purified components could be tested for many therapeutic trials. Other researchers preferred molecular approach based on proteomic studies. Components of the innate immune system of insects were then tested for their medical activities. Our Laboratory team preferred to induce insect immune system (using oral, topical and injection routes of administration), then a transcriptomic study was done to discover the induced genes and to identify specific biomarkers that can help in drug discovery. Biomarkers play an important role in medicine and in drug discovery and development as well. Optimum biomarker development and application will require a team approach because of the multifaceted nature of biomarker selection, validation, and application. This team uses several techniques such as pharmacoepidemiology, pharmacogenomics, and functional proteomics; bioanalytical development and validation; modeling and simulation to improve and refine drug development. Our Achievements included the discovery of four components of the innate immune system of Spodoptera littoralis and Musca domestica. These components were designated as SpliDef (defesin), SpliLec (lectin), SpliCec (cecropin) and MdAtt (attacin). SpliDef, SpliLec and MdAtt were confirmed as antimicrobial peptides, while SpliCec was additionally confirmed as anticancer peptide. Our current research is going on to achieve something in antioxidants and anticoagulants from insects. Our perspective is to achieve something in the mass production of prototypes of our products and to reach it to the commercial level. These achievements are the integrated contributions of everybody in our team staff.

Keywords: AMPs, insect, innate immunitty, therappeutics

Procedia PDF Downloads 280
1 Genetics of Pharmacokinetic Drug-Drug Interactions of Most Commonly Used Drug Combinations in the UK: Uncovering Unrecognised Associations

Authors: Mustafa Malki, Ewan R. Pearson

Abstract:

Tools utilized by health care practitioners to flag potential adverse drug reactions secondary to drug-drug interactions ignore individual genetic variation, which has the potential to markedly alter the severity of these interactions. To our best knowledge, there have been limited published studies on the impact of genetic variation on drug-drug interactions. Therefore, our aim in this project is the discovery of previously unrecognized, clinically important drug-drug-gene interactions (DDGIs) within the list of most commonly used drug combinations in the UK. The UKBB database was utilized to identify the top most frequently prescribed drug combinations in the UK with at least one route of interaction (over than 200 combinations were identified). We have recognised 37 common and unique interacting genes considering all of our drug combinations. Out of around 600 potential genetic variants found in these 37 genes, 100 variants have met the selection criteria (common variant with minor allele frequency ≥ 5%, independence, and has passed HWE test). The association between these variants and the use of each of our top drug combinations has been tested with a case-control analysis under the log-additive model. As the data is cross-sectional, drug intolerance has been identified from the genotype distribution as presented by the lower percentage of patients carrying the risky allele and on the drug combination compared to those free of these risk factors and vice versa with drug tolerance. In GoDARTs database, the same list of common drug combinations identified by the UKBB was utilized here with the same list of candidate genetic variants but with the addition of 14 new SNPs so that we have a total of 114 variants which have met the selection criteria in GoDARTs. From the list of the top 200 drug combinations, we have selected 28 combinations where the two drugs in each combination are known to be used chronically. For each of our 28 combinations, three drug response phenotypes have been identified (drug stop/switch, dose decrease, or dose increase of any of the two drugs during their interaction). The association between each of the three phenotypes belonging to each of our 28 drug combinations has been tested against our 114 candidate genetic variants. The results show replication of four findings between both databases : (1) Omeprazole +Amitriptyline +rs2246709 (A > G) variant in CYP3A4 gene (p-values and ORs with the UKBB and GoDARTs respectively = 0.048,0.037,0.92,and 0.52 (dose increase phenotype)) (2) Simvastatin + Ranitidine + rs9332197 (T > C) variant in CYP2C9 gene (0.024,0.032,0.81, and 5.75 (drug stop/switch phenotype)) (3) Atorvastatin + Doxazosin + rs9282564 (T > C) variant in ABCB1 gene (0.0015,0.0095,1.58,and 3.14 (drug stop/switch phenotype)) (4) Simvastatin + Nifedipine + rs2257401 (C > G) variant in CYP3A7 gene (0.025,0.019,0.77,and 0.30 (drug stop/switch phenotype)). In addition, some other non-replicated, but interesting, significant findings were detected. Our work also provides a great source of information for researchers interested in DD, DG, or DDG interactions studies as it has highlighted the top common drug combinations in the UK with recognizing 114 significant genetic variants related to drugs' pharmacokinetic.

Keywords: adverse drug reactions, common drug combinations, drug-drug-gene interactions, pharmacogenomics

Procedia PDF Downloads 51