Search results for: alkaline earth metals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2628

Search results for: alkaline earth metals

1458 In vitro Investigation of Genotoxic and Antigenotoxic Properties of Gunnera perpensa Roots Extracts

Authors: P. H. Mfengwana, S. S. Mashele, L. Verschaeve, R. Anthonissen, I. T. Manduna

Abstract:

Gunnera perpensa is traditionally used mostly by women for the treatment of different gynaecological related conditions due to its proven uterine contractility effects. The uses of this plant include menstrual pain relief, treatment of infertility and promotion of easy labour. However, even though this plant species has been reported to possess numerous medicinal properties, to author’s best knowledge, its safety has not been investigated. Thus, this study was aimed at investigating the genotoxicity and antigenotoxicity of Gunnera perpensa aqueous, methanol and dichloromethane extracts. The in vitro toxicity of the plant extracts was assessed with the neutral red uptake (NRU) test. Genotoxic and antigenotoxic properties of Gunnera perpensa were investigated using high-throughput assays: bacterial Vitotox test and the alkaline comet assay with and without S9 activation on human C3A cells. Ethyl Methanesulfonate (EMS) and 4-nitroquinoline-oxide (4-NQO) were used as positive controls, respectively. All extracts showed toxicity in a dose-dependent manner; however, that does not mean they were all genotoxic. Methanol extract did show genotoxicity with S9 (metabolism) only at the highest concentration of 500 µg/ml due to increased DNA damage observed, however, no genotoxicity was observed from other concentrations. Therefore, the results show that Gunnera perpensa extracts are genotoxic and not safe for human use.

Keywords: antigenotoxicity, comet test, genotoxicity, Gunnera perpensa, vitotox assay

Procedia PDF Downloads 125
1457 Assessment of the Potential of Fuel-derived Rice Husk Ash as Pozzolanic Material

Authors: Jesha Faye T. Librea, Leslie Joy L. Diaz

Abstract:

Fuel-derived rice husk ash (fRHA) is a waste material from industries employing rice husk as a biomass fuel which, on the downside, causes disposal and environmental problems. To mitigate this, the fRHA was evaluated for use in other applications such as a pozzolanic material for the construction industry. In this study, the assessment of the potential of fRHA as pozzolanic supplementary cementitious material was conducted by determining the chemical and physical properties of fRHA according to ASTM C618, evaluating the fineness of the material according to ASTM C430, and determining its pozzolanic activity using Luxan Method. The material was found to have a high amorphous silica content of around 95.82 % with traces of alkaline and carbon impurities. The retained carbon residue is 7.18 %, which is within the limit of the specifications for natural pozzolans indicated in ASTM C618. The fineness of the fRHA is at 88.88 % retained at a 45-micron sieve, which, however, exceeded the limit of 34 %. This large particle size distribution was found to affect the pozzolanic activity of the fRHA. This was shown in the Luxan test, where the fRHA was identified as non-pozzolan due to its low pozzolanic activity index of 0.262. Thus, further processing must be done to the fRHA to pass the required ASTM fineness, have a higher pozzolanic activity index, and fully qualify as a pozzolanic material.

Keywords: rice husk ash, pozzolanic, fuel-derived ash, supplementary cementitious material

Procedia PDF Downloads 46
1456 Sintering of YNbO3:Eu3+ Compound: Correlation between Luminescence and Spark Plasma Sintering Effect

Authors: Veronique Jubera, Ka-Young Kim, U-Chan Chung, Amelie Veillere, Jean-Marc Heintz

Abstract:

Emitting materials and all solid state lasers are widely used in the field of optical applications and materials science as a source of excitement, instrumental measurements, medical applications, metal shaping etc. Recently promising optical efficiencies were recorded on ceramics which result from a cheaper and faster ways to obtain crystallized materials. The choice and optimization of the sintering process is the key point to fabricate transparent ceramics. It includes a high control on the preparation of the powder with the choice of an adequate synthesis, a pre-heat-treatment, the reproducibility of the sintering cycle, the polishing and post-annealing of the ceramic. The densification is the main factor needed to reach a satisfying transparency, and many technologies are now available. The symmetry of the unit cell plays a crucial role in the diffusion rate of the material. Therefore, the cubic symmetry compounds having an isotropic refractive index is preferred. The cubic Y3NbO7 matrix is an interesting host which can accept a high concentration of rare earth doping element and it has been demonstrated that SPS is an efficient way to sinter this material. The optimization of diffusion losses requires a microstructure of fine ceramics, generally less than one hundred nanometers. In this case, grain growth is not an obstacle to transparency. The ceramics properties are then isotropic thereby to free-shaping step by orienting the ceramics as this is the case for the compounds of lower symmetry. After optimization of the synthesis route, several SPS parameters as heating rate, holding, dwell time and pressure were adjusted in order to increase the densification of the Eu3+ doped Y3NbO7 pellets. The luminescence data coupled with X-Ray diffraction analysis and electronic diffraction microscopy highlight the existence of several distorted environments of the doping element in the studied defective fluorite-type host lattice. Indeed, the fast and high crystallization rate obtained to put in evidence a lack of miscibility in the phase diagram, being the final composition of the pellet driven by the ratio between niobium and yttrium elements. By following the luminescence properties, we demonstrate a direct impact on the SPS process on this material.

Keywords: emission, niobate of rare earth, Spark plasma sintering, lack of miscibility

Procedia PDF Downloads 253
1455 Effects of an Added Foaming Agent on Hydro-Mechanical Properties of Soil

Authors: Moez Selmi, Mariem Kacem, Mehrez Jamei, Philippe Dubujet

Abstract:

Earth pressure balance (EPB) tunnel boring machines are designed for digging in different types of soil, especially clay soils. This operation requires the treatment of soil by lubricants to facilitate the procedure of excavation. A possible use of this soil is limited by the effect of treatment on the hydro-mechanical properties of the soil. This work aims to study the effect of a foaming agent on the hydro-mechanical properties of clay soil. The injection of the foam agent in the soil leads to create a soil matrix in which they are incorporated gas bubbles. The state of the foam in the soil is scalable thanks to the degradation of the gas bubbles in the soil.

Keywords: EPB, clay soils, foam agent, hydro-mechanical properties, degradation

Procedia PDF Downloads 355
1454 Passive Solar Distiller with Low Cost of Implementation, Operation and Maintenance

Authors: Valentina Alessandra Carvalho do Vale, Elmo Thiago Lins Cöuras Ford, Rudson de Sousa Lima

Abstract:

Around the planet Earth, access to clean water is a problem whose importance has increased due to population growth and its misuse. Thus, projects that seek to transform water sources improper (salty and brackish) in drinking water sources are current issues. However, this transformation generally requires a high cost of implementation, operation and maintenance. In this context, the aim of this work is the development of a passive solar distiller for brackish water, made from recycled and durable materials such as aluminum, cement, glass and PVC basins. The results reveal factors that influence the performance and viability of the expansion project.

Keywords: solar distiller, passive distiller, distiller with pyramidal roof, ecologically correct

Procedia PDF Downloads 398
1453 Design and Analysis of Solar Powered Plane

Authors: Malarvizhi, Venkatesan

Abstract:

This paper summarizes about the design and optimization of solar powered unmanned aerial vehicle. The purpose of this research is to increase the range and endurance. It can be used for environmental research, aerial photography, search and rescue mission and surveillance in other planets. The ultimate aim of this research is to design and analyze the solar powered plane in order to detect lift, drag and other parameters by using cfd analysis. Similarly the numerical investigation has been done to compare the results of earth’s atmosphere to the mars atmosphere. This is the approach made to check whether the solar powered plane is possible to glide in the planet mars by using renewable energy (i.e., solar energy).

Keywords: optimization, range, endurance, surveillance, lift and drag parameters

Procedia PDF Downloads 451
1452 Purification, Biochemical Characterization and Application of an Extracellular Alkaline Keratinase Produced by Aspergillus sp. DHE7

Authors: Dina Helmy El-Ghonemy, Thanaa Hamed Ali

Abstract:

The aim of this study was to purify and characterize a keratinolytic enzyme produced by Aspergillus sp. DHE7 cultured in basal medium containing chicken feather as substrate. The enzyme was purified through ammonium sulfate saturation of 60%, followed by gel filtration chromatography in Sephadex G-100, with a 16.4-purification fold and recovery yield of 52.2%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified enzyme is a monomeric enzyme with an apparent molecular mass of 30 kDa — the purified keratinase of Aspergillus sp. DHE7 exhibited activity in a broad range of pH (7- 9) and temperature (40℃-60℃) profiles with an optimal activity at pH eight and 50℃. The keratinolytic activity was inhibited by protease inhibitors such as phenylmethylsulfonyl fluoride and ethylenediaminetetraacetate, while no reduction of activity was detected by the addition of dimethyl sulfoxide (DMSO). Bivalent cations, Ca²⁺ and Mn²⁺, were able to greatly enhance the activity of keratinase by 125.7% and 194.8%, respectively, when used at one mM final concentration. On the other hand, Cu²⁺ and Hg²⁺ inhibited the enzyme activity, which might be indicative of essential vicinal sulfhydryl groups of the enzyme for productive catalysis. Furthermore, the purified keratinase showed significant stability and compatibility against the tested commercial detergents at 37ºC. Therefore, these results suggested that the purified keratinase from Aspergillus sp. DHE7 may have potential use in the detergent industry and should be of interest in the processing of poultry feather waste.

Keywords: Aspergillus sp. DHE7, biochemical characterization, keratinase, purification, waste management

Procedia PDF Downloads 115
1451 Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor

Authors: Amin Mojiri, Akiyoshi Ohashi, Tomonori Kindaichi

Abstract:

Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO2-IrO2) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na2SO4) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4).

Keywords: adsorption, electrochemical oxidation, metals, SBR

Procedia PDF Downloads 203
1450 Inertial Spreading of Drop on Porous Surfaces

Authors: Shilpa Sahoo, Michel Louge, Anthony Reeves, Olivier Desjardins, Susan Daniel, Sadik Omowunmi

Abstract:

The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field.

Keywords: droplet imbibition, hydrophilic surface, inertial phase, porous medium

Procedia PDF Downloads 122
1449 Chemical Composition, Petrology and P-T Conditions of Ti-Mg-Biotites within Syenitic Rocks from the Lar Igneous Suite, East of Iran

Authors: Sasan Ghafaribijar, Javad Hakimi, Mohsen Arvin, Peyman Tahernezhad

Abstract:

The Lar Igneous Suite (LIS), east of Iran, is part of post collisional alkaline magmatism related to Late Cretaceous- mid Eocene Sistan suture zone. The suite consists of a wide variety of igneous rocks, from volcanic to intrusive and hypabissal rocks such as tuffs, trachyte, monzonite, syenites and lamprophyres. Syenitic rocks which mainly occur in a giant ring dike and stocks, are shoshonitic to potassic-ultrapotassic (K2O/Na2O > 2 wt.%; MgO > 3 wt.%; K2O > 3 wt.%) in composition and are also associated with Cu-Mo mineralization. In this study, chemical composition of biotites within the Lar syenites (LS) is determined by electron microprobe analysis. The results show that LS biotites are Ti-Mg-biotites (phlogopite) which contain relatively high Ti and Mg, and low Fe concentrations. The Mg/(Fe2++ Mg) ratio in these biotites range between 0.56 and 0.73 that represent their transitionally chemical evolution. TiO2 content in these biotites is high and in the range of 3.0-5.4 wt.%. These chemical characteristics indicate that the LS biotites are primary and have been crystallized directly from magma. The investigations also demonstrate that the LS biotites have crystallized from a magma of orogenic nature. Temperature and pressure are the most significant factors controlling Mg and Ti content in the LS biotites, respectively. The results show that the LS biotites crystallized at temperatures (T) between 800 to 842 °C and pressures (P) between 0.99 to 1.44 kbar. These conditions are indicative of a crystallization depth of 3.26-4.74 km.

Keywords: sistan suture zone, Lar Igneous Suite, zahedan, syenite, biotite

Procedia PDF Downloads 124
1448 Adverse Effects on Liver Function in Male Rats after Exposure to a Mixture of Endocrine Disrupting Pesticides

Authors: Mohamed Amine Aiche, Elkhansa Yahia, Leila Mallem, Mohamed Salah Boulakoud

Abstract:

Exposure to endocrine disrupting (ED) during life may cause long-term health effects, the population is exposed to chemicals present in air, water, food and in a variety of consumer and personal care products. Previous research indicates that a wide range of pesticides may act as endocrine disrupters. The azole fungicides propiconazole and propineb have been shown to react through several endocrine disrupting mechanisms, and to induce various endocrine disrupting effects. The purpose of this study was to evaluate the effects of two fungicides; propiconazole and propineb tested separately and in combination, on liver function. The experimental was applied on male Wistar rats dosed orally with Propiconazole 60 mg/kg/day, Propineb 100 mg/kg/day and their mixture 30 mg Propiconazole/kg/day + 50 mg Propineb /kg/day for 4 weeks, for result, a significant increase in liver weights in both treated groups with propineb, propiconazole and their mixture by reference with controls group. Also, highly significant mean values of markers of liver function such as transaminases (ALT/AST) and the activity of alkaline phosphatase (ALP) in all treated groups. The antioxidant activity showed a significant decrease in the hepatic glutathione content (GSH) and glutathione peroxidase (GPX) in all treated groups.

Keywords: endocrine disrupting, pesticide mixture, propineb, propiconazole, liver, oxidative stress

Procedia PDF Downloads 509
1447 Single Cu‒N₄ Sites Enable Atomic Fe Clusters with High-Performance Oxygen Reduction Reaction

Authors: Shuwen Wu, Zhi LI

Abstract:

Atomically dispersed Fe‒N₄ catalysts are proven as promising alternatives to commercial Pt/C for the oxygen reduction reaction. Most reported Fe‒N₄ catalysts suffer from inferior O‒O bond-breaking capability due to superoxo-like O₂ adsorption, though the isolated dual-atomic metal sites strategy is extensively adopted. Atomic Fe clusters hold greater promise for promoting O‒O bond cleavage by forming peroxo-like O₂ adsorption. However, the excessively strong binding strength between Fe clusters and oxygenated intermediates sacrifices the activity. Here, we first report a Fex/Cu‒N@CF catalyst with atomic Fe clusters functionalized by adjacent single Cu‒N₄ sites anchoring on a porous carbon nanofiber membrane. The theoretical calculation indicates that the single Cu‒N₄ sites can modulate the electronic configuration of Fe clusters to reduce O₂* protonation reaction free energy, which ultimately enhances the electrocatalytic performance. Particularly, the Cu‒N₄ sites can increase the overlaps between the d orbitals of Fe and p orbitals of O to accelerate O‒O cleavage in OOH*. As a result, this unique atomic catalyst exhibits a half potential (E1/2) of 0.944 V in an alkaline medium exceeding that of commercial Pt/C, whereas acidic performance E1/2 = 0.815 V is comparable to Pt/C. This work shows the great potential of single atoms for improvements in atomic cluster catalysts.

Keywords: Hierarchical porous fibers, atomic Fe clusters, Cu single atoms, oxygen reduction reaction; O-O bond cleavage

Procedia PDF Downloads 101
1446 Electrochemical Studies of Nickel Nanoparticles Decorated the Surface of Some Conducting Polymers for Glucose Oxidation in Biofuel Cells

Authors: Z. Khalifa, K. M. Hassan, M. Abdel Azzem

Abstract:

Potential strategies for deriving useful forms of renewable high density energy from abundant energy stored in carbohydrates is direct conversion of glucose (GLU) to electrical power. A three novel versatile modified electrodes, synthesized by electrochemical polymerization of organic monomers on glassy carbon electrodes (GC), have been developed for biofuel cells results in stable and long-term power production. Electrocatalytic oxidation of glucose in alkaline solution on conducting polymers electrodes modified by incorporation of Ni nanoparticles (NiNPs) onto poly(1,5-aminonaphthalene) (1,5-PDAN), poly(1,8-diaminonaphthalene) (1,8-PDAN) and poly(1-amino-2-methyl-9,10-anthraquinone) (PAMAQ) was investigated. The electrocatalytic oxidation of glucose at NiNPs-modified 1,5-PDAN/GC, 1,8-PDAN/GC and PAMAQ/GC electrodes has been studied using voltammetry technique. The PDAN electrodes show a slight activity in the potential of interest. The prepared NiNPs/PAMAQ/GC catalyst showed a very interesting catalytic activity that was nicely comparable to the NiNPs/1,5-PDAN/GC, NiNPs/1,8-PDAN/GC modified electrodes. In advance, both shows a significant more catalytic activity compared to the reported data for electrodes for glucose electrocatalytic oxidation.

Keywords: biofuel cells, glucose oxidation, electrocatalysis, nanoparticles and modified electrodes

Procedia PDF Downloads 236
1445 Gas Sensor Based On a One-Dimensional Nano-Grating Au/ Co/ Au/ TiO2 Magneto-Plasmonic Structure

Authors: S. M. Hamidi, M. Afsharnia

Abstract:

Gas sensors based on magneto-plasmonic (MP) structures have attracted much attention due to the high signal to noise ratio in these type of sensors. In these sensors, both the plasmonic and the MO properties of the resulting MP structure become interrelated because the surface Plasmon resonance (SPR) of the metallic medium. This interconnection can be modified the sensor responses and enhanced the signal to noise ratio. So far the sensor features of multilayered structures made of noble and ferromagnetic metals as Au/Co/Au MP multilayer with TiO2 sensor layer have been extensively studied, but their SPR assisted sensor response need to the krestchmann configuration. Here, we present a systematic study on the new MP structure based on one-dimensional nano-grating Au/ Co/ Au/ TiO2 multilayer to utilize as an inexpensive and easy to use gas sensor.

Keywords: Magneto-plasmonic structures, Gas sensor, nano-garting

Procedia PDF Downloads 436
1444 Synthesis and Use of Thiourea Derivative (1-Phenyl-3- Benzoyl-2-Thiourea) for Extraction of Cadmium Ion

Authors: Abdulfattah M. Alkherraz, Zaineb I. Lusta, Ahmed E. Zubi

Abstract:

The environmental pollution by heavy metals became more problematic nowadays. To solve the problem of Cadmium accumulation in human organs which lead to dangerous effects on human health, and to determine its concentration, the organic legand 1-phenyl-3-benzoyl-2-thiourea was used to extract the cadmium ions from its solution. This legand as one of thiourea derivatives was successfully synthesized. The legand was characterized by NMR and CHN elemental analysis, and used to extract the cadmium from its solutions by formation of a stable complex at neutral pH. The complex was characterized by elemental analysis and melting point. The concentrations of cadmium ions before and after the extraction were determined by Atomic Absorption Spectrophotometer (AAS). The data show the percentage of the extract was more than 98.7% of the concentration of cadmium used in the study.

Keywords: thiourea derivatives, cadmium extraction, water, environment

Procedia PDF Downloads 339
1443 Study of Nanocrystalline Al Doped Zns Thin Films by Chemical Bath Deposition Method

Authors: Hamid Merzouk, Djahida Touati-Talantikite, Amina Zaabar

Abstract:

New nanosized materials are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made to the design and control fabrication of nanostructured semiconductors such zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work the preparation and characterization of ZnS and Al doped ZnS thin films. Nanoparticles ZnS and Al doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and manganese acetate as manganese ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuKα radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1.The transmittance (70 %) is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Al doping.

Keywords: ZnS, nanostructured semiconductors, thin films, chemical bath deposition

Procedia PDF Downloads 518
1442 Selective Extraction Separation of Vanadium and Chromium in the Leaching/Aqueous Solution with Trioctylamine

Authors: Xiaohua Jing

Abstract:

Efficient extraction for separation of V and Cr in the leaching/aqueous solution is essential to the reuse of V and Cr in the V-Cr slag. Trioctylamine, a common tertiary amine extractant, with some good characters (e.g., weak base, insoluble in water and good stability) different from N1923, was investigated in this paper. The separation factor of Cr and V can be reached to 230.71 when initial pH of the aqueous solution is 0.5, so trioctylamine can be used for extracting Cr from the leaching/aqueous solution contained V and Cr. The highest extraction percentages of Cr and V were 98.73% and 90.22% when the initial pH values were 0.5 and 1.5, respectively. Via FT-IR spectra of loaded organic phase and trioctylamine, the hydrogen bond association mechanism of extracting V and Cr was investigated, which was the same with the way of extracting the two metals with primary amine N1923.

Keywords: selective extraction, trioctylamine, V and Cr, separation factor, hydrogen bond association

Procedia PDF Downloads 346
1441 A Comparative Approach for Modeling the Toxicity of Metal Mixtures in Two Ecologically Related Three-Spined (Gasterosteus aculeatus L.) And Nine-Spined (Pungitius pungitius L.) Sticklebacks

Authors: Tomas Makaras

Abstract:

Sticklebacks (Gasterosteiformes) are increasingly used in ecological and evolutionary research and become well-established role as model species for biologists. However, ecotoxicology studies concerning behavioural effects in sticklebacks regarding stress responses, mainly induced by chemical mixtures, have hardly been addressed. Moreover, although many authors in their studies emphasised the similarity between three-spined and nine-spined stickleback in morphological, neuroanatomical and behavioural adaptations to environmental changes, several comparative studies have revealed considerable differences between these species in and their susceptibility and resistance to variousstressors in laboratory experiments. The hypothesis of this study was that three-spined and nine-spined stickleback species will demonstrate apparent differences in response patterns and sensitivity to metal-based chemicals stimuli. For this purpose, we investigated the swimming behaviour (including mortality rate based on 96-h LC50 values) of two ecologically similar three-spined (Gasterosteusaculeatus) and nine-spined sticklebacks (Pungitiuspungitius) to short-term (up to 24 h) metal mixture (MIX) exposure. We evaluated the relevance and efficacy of behavioural responses of test species in the early toxicity assessment of chemical mixtures. Fish exposed to six (Zn, Pb, Cd, Cu, Ni and Cr) metals in the mixture were either singled out by the Water Framework Directive as priority or as relevant substances in surface water, which was prepared according to the environmental quality standards (EQSs) of these metals set for inland waters in the European Union (EU) (Directive 2013/39/EU). Based on acute toxicity results, G. aculeatus found to be slightly (1.4-fold) more tolerant of MIX impact than those of P. pungitius specimens. The performed behavioural analysis showed the main effect on the interaction between time, species and treatment variables. Although both species exposed to MIX revealed a decreasing tendency in swimming activity, these species’ responsiveness to MIX was somewhat different. Substantial changes in the activity of G. aculeatus were established after 3-h exposure to MIX solutions, which was 1.43-fold lower, while in the case of P. pungitius, 1.96-fold higher than established 96-h LC50 values for each species. This study demonstrated species-specific differences in response sensitivity to metal-based water pollution, indicating behavioural insensitivity of P. pungitiuscompared to G. aculeatus. While many studies highlight the usefulness and suitability of nine-spined sticklebacks for evolutionary and ecological research, attested by their increasing popularity in these fields, great caution must be exercised when using them as model species in ecotoxicological research to probe metal contamination. Meanwhile, G. aculeatus showed to be a promising bioindicator species in the environmental ecotoxicology field.

Keywords: acute toxicity, comparative behaviour, metal mixture, swimming activity

Procedia PDF Downloads 149
1440 3D Writing on Photosensitive Glass-Ceramics

Authors: C. Busuioc, S. Jinga, E. Pavel

Abstract:

Optical lithography is a key technique in the development of sub-5 nm patterns for the semiconductor industry. We have already reported that the best results obtained with respect to direct laser writing process on active media, such as glass-ceramics, are achieved only when the energy of the laser radiation is absorbed in discrete quantities. Further, we need to clarify the role of active centers concentration in silver nanocrystals natural generation, as well as in fluorescent rare-earth nanostructures formation. As a consequence, samples with different compositions were prepared. SEM, AFM, TEM and STEM investigations were employed in order to demonstrate that few nm width lines can be written on fluorescent photosensitive glass-ceramics, these being efficient absorbers. Moreover, we believe that the experimental data will lead to the best choice in terms of active centers amount, laser power and glass-ceramic matrix.

Keywords: glass-ceramics, 3D laser writing, optical disks, data storage

Procedia PDF Downloads 287
1439 Factors Affecting the Occurrence of Cracks on Road Surfaces and the Causes of Their Formation

Authors: Ainura Kairanbayeva

Abstract:

Currently, the issue of maintaining the operational condition of highways at the required level is acute in Kazakhstan. The impact of landslides on the state of the road industry in Kazakhstan has been poorly studied. This article presents the classification of natural hazards and examines the influence of atmospheric natural processes on the operational condition of the sections of the highway "Ayusai–Kosmostantsia" passing along the mountain slopes of the Trans-Ili Alatau. According to the results of field studies, multi-turn reflected cracks have been identified, this is also due to the fact that the base of the road is made of a sand-gravel mixture and is not treated with reinforcing additives and the actual density of the asphalt concrete pavement is below regulatory requirements.

Keywords: building materials and products, construction of highways and engineering structures, construction processes, displacements of the earth's surface, geodynamic processes

Procedia PDF Downloads 67
1438 Characterization of the Soils of the Edough Massif (North East Algeria)

Authors: Somia Lakehal Ayat, Ibtissem Samai, Srara Lakehal Ayat, Chaima Dahmani

Abstract:

The aim of this work relates to the physicochemical diversity and the characterization of the different types of soils of the edough massif (North East of Algeria) and to the evaluation and characterization of the existing organic matter as well as to the evolution. and the dynamics of the latter, also on its influence on changes in the physical properties of soils. In order to know the soil properties of seraidi forest, we established a stratified sampling plan. The results obtained show that we are in the presence of a great diversity of soils, such as neutral to alkaline, whose adsorbent complex is sufficiently saturated. Also, the presence of limestone offers the soil a fairly significant buffering capacity. In our study region, the texture of the soils is varied between clayey and silty, where it offers medium porosity, there is a strong accumulation of organic matter, therefore soils rich in organic matter.The fractionation of the organic matter of the soils allowed to obtain a very high rate of humification. The soil characteristics of the edough massif (North East of Algeria) are controlled by the contribution of organic matter, which presents a dynamic and an important evolution and which varies with the climatic conditions and the nature and the type of plant formation, and these the latter have a capital and important role in the rate of mineralization of organic matter.

Keywords: organic matter, soil, foresty, diversity, mineralization

Procedia PDF Downloads 74
1437 Biochemical Evaluation of Air Conditioning West Water in Jeddah City: Concept of Sustainable Water Resources

Authors: D. Alromi, A. Alansari, S. Alghamdi, E. Jambi

Abstract:

As the need for water is increasing globally, and the available water resources are barely meeting the current quality of life and economy. Air conditioning (AC) condensate water could be explored as an alternative water source, which could be considered within the global calculations of the water supply. The objective of this study is to better understand the potential for recovery of condensate water from air conditioning systems. The results generated so far showed that the AC produces a high quantity of water, and data analysis revealed that the amount of water is positively and significantly correlated with the humidity (P <= 0.05). In the meantime, the amount of heavy metals has been measuring using ICP-OES. The results, in terms of quantity, clearly show that the AC can be used as an alternative source of water, especially in the regions characterized by high humidity. The results also showed that the amount of produced water depends on the type of AC.

Keywords: air conditioning systems, water quantity, water resources, wastewater

Procedia PDF Downloads 191
1436 Investigation of the Inhibition Effect of 2,3-Diaminopyridine on Mild Steel Corrosion in Solution Simulating Water of Pores Concrete in Absence and Presence of Chloride Ions

Authors: Fatiha Benghanem, Mokhtar Berarma, Saida Keraghel, Ali Ourari

Abstract:

Corrosion is the result of the reaction between a material and its environment. Steel in concrete is protected from corrosion by a passive film promoted by concrete alkalinity. For the initiation of corrosion, this protective film must be destroyed and this can be mainly done in two ways: by the attack of chlorides on the steel or by carbonation of the cover concrete due the reaction with carbon dioxide, which causes reduction in the alkalinity of concrete. The literature reports several ways to decrease or to prevent reinforcement corrosion. Among them, the use of corrosion inhibitors has been an envisaged solution. Two approaches are generally used to evaluate the efficiency of inhibitors for concrete application; one uses simulated pore solution testing , and the other uses actual concrete or mortar specimens. Both methods are some times used in conjunction. The aim of this study is to investigate the use of 2,3-diaminopyridine as a corrosion inhibitors of steel in alkaline media which simulate the electrolyte in the concrete pores. The effectiveness of this compound as corrosion inhibitor was investigated by measuring the corrosion potentials, the polarization curves and the corrosion current densities of steel with and without chlorides. The study of corrosion inhibition by this compound led to the conclusion that he has low rates of inhibition in the absence of aggressive ions and high rates in their presence. This type of organic compounds are promoting for the protection of armatures in concrete.

Keywords: corrosion, inhibitors, mild steel, conjunction

Procedia PDF Downloads 430
1435 Plasma Biochemistry Values in Wild Hawksbill Turtles (Eretmochelys imbricata) during Nesting and Foraging Seasons in Qeshm Island, Persian Gulf

Authors: Fateme Afkhami, Mohsen Ehsanpour, Majid Afkhami, Maryam Ehsanpour

Abstract:

Normal reference ranges of biochemical parameters are considered important for assessing and monitoring the health status of sea turtles. For this means, serum biochemistry determinations were analyzed in normal adult nesting and foraging hawksbill turtles (Eretmochelys imbricata). Blood samples were collected in March–April during nesting season and December-November in the foraging season. Plasma biochemistry values, except for creatinine and lipase were significant between the two periods. FBS, cholesterol, triglycerides, ALP (alkaline phosphatase), AST (aspartate aminotransferase), bilirubin, total protein, LDH (lactate dehydrogenase), CK (creatine kinase) and amylase were significantly higher in nesting season than foraging season (P<0.05). On the other hand urea, ALT (alanine aminotransferase) and albumin in the nesting season were significantly lower than foraging season (P<0.05). It was concluded that the nesting E. imbricata showed significant variation in their biochemical profile due to reproductive output. This study has produced working reference intervals useful for hawksbill turtles for future conservation and rehabilitation projects in the Persian Gulf and may be of assistance in similar programs worldwide.

Keywords: plasma biochemistry, nesting, foraging, hawksbill turtles, Persian Gulf

Procedia PDF Downloads 608
1434 Electro-Oxidation of Glycerol Using Nickel Deposited Carbon Ceramic Electrode and Product Analysis Using High Performance Liquid Chromatography

Authors: Mulatu Kassie Birhanu

Abstract:

Electro-oxidation of glycerol is an important process to convert the less price glycerol into other expensive (essential) and energy-rich chemicals. In this study, nickel was electro-deposited on laboratory-made carbon ceramic electrode (CCE) substrate using electrochemical techniques that is cyclic voltammetry (CV) to prepare an electro-catalyst (Ni/CCE) for electro-oxidation of glycerol. Carbon ceramic electrode was prepared from graphite and methyl tri-methoxy silane (MTMOS) through the processes called hydrolysis and condensation with methanol in acidic media (HCl) by a sol-gel technique. Physico-chemical characterization of bare CCE and modified (deposited) CCE (Ni/CCE) was measured and evaluated by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Electro-oxidation of glycerol was performed in 0.1 M glycerol in alkaline media (0.5 M NaOH). High-Performance Liquid Chromatography (HPLC) technique was used to identify and determine the concentration of glycerol, reaction intermediates and oxidized products of glycerol after its electro-oxidation is performed. The conversion (%) of electro-oxidation of glycerol during 9-hour oxidation was 73% and 36% at 1.8V and 1.6V vs. RHE, respectively. Formate, oxalate, glycolate and glycerate are the main oxidation products of glycerol with selectivity (%) of 75%, 8.6%, 1.1% and 0.95 % at 1.8 V vs. RHE and 55.4%, 2.2%, 1.0% and 0.6% at 1.6 V vs. RHE respectively. The result indicates that formate is the main product in the electro-oxidation of glycerol on Ni/CCE using the indicated applied potentials.

Keywords: carbon-ceramic electrode, electrodeposition, electro-oxidation, Methyltrimethoxysilane

Procedia PDF Downloads 220
1433 Role of Environmental Risk Factors in Autism Spectrum Disorder

Authors: Dost Muhammad Halepoto, Laila AL-Ayadhi

Abstract:

Neurodevelopmental disorders such as autism can cause lifelong disability. Genetic and environmental factors are believed to contribute to the development of autism spectrum disorder (ASD), but relatively few studies have considered potential environmental risks. Several industrial chemicals and other environmental exposures are recognized causes of neurodevelopmental disorders and subclinical brain dysfunction. The toxic effects of such chemicals in the developing human brain are not known. This review highlights the role of environmental risk factors including drugs, toxic chemicals, heavy metals, pesticides, vaccines, and other suspected neurotoxicants including persistent organic pollutants for ASD. It also provides information about the environmental toxins to yield new insights into factors that affect autism risk as well as an opportunity to investigate the relation between autism and environmental exposure.

Keywords: Autism Spectrum Disorder, ASD, environmental factors, neurodevelopmental disorder

Procedia PDF Downloads 392
1432 Cd2+ Ions Removal from Aqueous Solutions Using Alginite

Authors: Vladimír Frišták, Martin Pipíška, Juraj Lesný

Abstract:

Alginate has been evaluated as an efficient pollution control material. In this paper, alginate from maar Pinciná (SR) for removal of Cd2+ ions from aqueous solution was studied. The potential sorbent was characterized by X-Ray Fluorescence Analysis (RFA) analysis, Fourier Transform Infrared Spectral Analysis (FT-IR) and Specific Surface Area (SSA) was also determined. The sorption process was optimized from the point of initial cadmium concentration effect and effect of pH value. The Freundlich and Langmuir models were used to interpret the sorption behaviour of Cd2+ ions, and the results showed that experimental data were well fitted by the Langmuir equation. Alginate maximal sorption capacity (QMAX) for Cd2+ ions calculated from Langmuir isotherm was 34 mg/g. Sorption process was significantly affected by initial pH value in the range from 4.0-7.0. Alginate is a comparable sorbent with other materials for toxic metals removal.

Keywords: alginates, Cd2+, sorption, QMAX

Procedia PDF Downloads 345
1431 Investigation of Municipal Solid Waste Incineration Filter Cake as Minor Additional Constituent in Cement Production

Authors: Veronica Caprai, Katrin Schollbach, Miruna V. A. Florea, H. J. H. Brouwers

Abstract:

Nowadays MSWI (Municipal Solid Waste Incineration) bottom ash (BA) produced by Waste-to-Energy (WtE) plants represents the majority of the solid residues derived from MSW incineration. Once processed, the BA is often landfilled resulting in possible environmental problems, additional costs for the plant and increasing occupation of public land. In order to limit this phenomenon, European countries such as the Netherlands aid the utilization of MSWI BA in the construction field, by providing standards about the leaching of contaminants into the environment (Dutch Soil Quality Decree). Commonly, BA has a particle size below 32 mm and a heterogeneous chemical composition, depending on its source. By washing coarser BA, an MSWI sludge is obtained. It is characterized by a high content of heavy metals, chlorides, and sulfates as well as a reduced particle size (below 0.25 mm). To lower its environmental impact, MSWI sludge is filtered or centrifuged for removing easily soluble contaminants, such as chlorides. However, the presence of heavy metals is not easily reduced, compromising its possible application. For lowering the leaching of those contaminants, the use of MSWI residues in combination with cement represents a precious option, due to the known retention of those ions into the hydrated cement matrix. Among the applications, the European standard for common cement EN 197-1:1992 allows the incorporation of up to 5% by mass of a minor additional constituent (MAC), such as fly ash or blast furnace slag but also an unspecified filler into cement. To the best of the author's knowledge, although it is widely available, it has the appropriate particle size and a chemical composition similar to cement, FC has not been investigated as possible MAC in cement production. Therefore, this paper will address the suitability of MSWI FC as MAC for CEM I 52.5 R, within a 5% maximum replacement by mass. After physical and chemical characterization of the raw materials, the crystal phases of the pastes are determined by XRD for 3 replacement levels (1%, 3%, and 5%) at different ages. Thereafter, the impact of FC on mechanical and environmental performances of cement is assessed according to EN 196-1 and the Dutch Soil Quality Decree, respectively. The investigation of the reaction products evidences the formation of layered double hydroxides (LDH), in the early stage of the reaction. Mechanically the presence of FC results in a reduction of 28 days compressive strength by 8% for a replacement of 5% wt., compared with the pure CEM I 52.5 R without any MAC. In contrast, the flexural strength is not affected by the presence of FC. Environmentally, the Dutch legislation for the leaching of contaminants for unshaped (granular) material is satisfied. Based on the collected results, FC represents a suitable candidate as MAC in cement production.

Keywords: environmental impact evaluation, Minor additional constituent, MSWI residues, X-ray diffraction crystallography

Procedia PDF Downloads 161
1430 Impact of Coal Mining on River Sediment Quality in the Sydney Basin, Australia

Authors: A. Ali, V. Strezov, P. Davies, I. Wright, T. Kan

Abstract:

The environmental impacts arising from mining activities affect the air, water, and soil quality. Impacts may result in unexpected and adverse environmental outcomes. This study reports on the impact of coal production on sediment in Sydney region of Australia. The sediment samples upstream and downstream from the discharge points from three mines were taken, and 80 parameters were tested. The results were assessed against sediment quality based on presence of metals. The study revealed the increment of metal content in the sediment downstream of the reference locations. In many cases, the sediment was above the Australia and New Zealand Environment Conservation Council and international sediment quality guidelines value (SQGV). The major outliers to the guidelines were nickel (Ni) and zinc (Zn).

Keywords: coal mine, environmental impact, produced water, sediment quality guidelines value (SQGV)

Procedia PDF Downloads 294
1429 Photoluminescence Spectroscopy to Probe Mixed Valence State in Eu-Doped Nanocrystalline Glass-Ceramics

Authors: Ruchika Bagga, Mauro Falconieri, Venu Gopal Achanta, José M. F. Ferreira, Ashutosh Goel, Gopi Sharma

Abstract:

Mixed valence Eu-doped nanocrystalline NaAlSiO4/NaY9Si6O26 glass-ceramics have been prepared by controlled crystallization of melt quenched bulk glasses. XRD and SEM techniques were employed to characterize the crystallization process of the precursor glass and their resultant glass-ceramics. Photoluminescence spectroscopy was used to analyze the formation of divalent europium (Eu2+) from Eu3+ ions during high temperature synthesis under ambient atmosphere and is explained on the basis of optical basicity model. The observed luminescence properties of Eu: NaY9Si6O26 are compared with that of well explored Eu: β-PbF2 nanocrystals and their marked differences are discussed.

Keywords: rare earth, oxyfluoride glasses, nano-crystalline glass-ceramics, photoluminescence spectroscopy

Procedia PDF Downloads 334