Search results for: biceps brachii rupture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 235

Search results for: biceps brachii rupture

145 Determination of Johnson-Cook Material and Failure Model Constants for High Tensile Strength Tendon Steel in Post-Tensioned Concrete Members

Authors: I. Gkolfinopoulos, N. Chijiwa

Abstract:

To evaluate the remaining capacity in concrete tensioned members, it is important to accurately estimate damage in precast concrete tendons. In this research Johnson-Cook model and damage parameters of high-strength steel material were calculated by static and dynamic uniaxial tensile tests. Replication of experimental results was achieved through finite element analysis for both single 8-noded three-dimensional element as well as the full-scale dob-bone shaped model and relevant model parameters are proposed. Finally, simulation results in terms of strain and deformation were verified using digital image correlation analysis.

Keywords: DIC analysis, Johnson-Cook, quasi-static, dynamic, rupture, tendon

Procedia PDF Downloads 113
144 Specific Biomarker Level and Function Outcome Changes in Treatment of Patients with Frozen Shoulder Using Dextrose Prolotherapy Injection

Authors: Nuralam Sam, Irawan Yusuf, Irfan Idris, Endi Adnan

Abstract:

The most case in the shoulder in the the adult is the frozen shoulder. It make an uncomfortable sensation which disturbance daily activity. The studies of frozen shoulder are still limited. This study used a true experimental pre and post test design with a group design. The participant underwent dextrose prolotherapy injection in the rotator cuff, intraarticular glenohumeral joint, long head tendon biceps, and acromioclavicular joint injections with 15% dextrose, respectively, at week 2, week 4, and week 6. Participants were followed for 12 weeks. The specific biomarker MMP and TIMP, ROM, DASH score were measured at baseline, at week 6, and week 12. The data were analyzed by multivariate analysis (repeated measurement ANOVA, Paired T-Test, and Wilcoxon) to determine the effect of the intervention. The result showed a significant decrease in The Disability of the Arm, Shoulder, and Hand (DASH) score in prolo injection patients in each measurement week (p < 0.05). While the measurement of Range of Motion (ROM), each direction of shoulder motion showed a significant difference in average each week, from week 0 to week 6 (p <0.05).Dextrose prolotherapy injection results give a significant improvement in functional outcome of the shoulder joint, and ROMand did not show significant results in assessing the specific biomarker, MMP-1, and TIMP-1 in tissue repair. This study suggestion an alternative to the use of injection prolotherapy in Frozen shoulder patients, which has fewer side effects and better effectiveness than the use of corticosteroid injections.

Keywords: frozen shoulder, ROM, DASH score, prolotherapy, MMP-1, TIMP-1

Procedia PDF Downloads 88
143 Influence of Nonlinearity of Concrete and Reinforcement Using Micropiles on the Seismic Interaction of Soil-Piles-Bridge

Authors: Mohanad Alfach, Amjad Al Helwani

Abstract:

Post-seismic observations of recent devastating earthquakes have shown that the behavior of the soil-pile-structure shows strong nonlinearity of soil and concrete under intensive seismic loading. Many of pile ruptures recently observed after the strong earthquake due to structural reasons (development of plastic hinges in the piles). The most likely reason for this rupture is the exceeding of maximum bending moment supported by the pile at several points. An analysis of these problems is necessary to take into account the nonlinearity of concrete, the strategy of strengthening the damaged piles and the interaction of these piles with the proposed strengthening by using micropiles. This study aims to investigate the interaction aspects for soil-piles- micropiles-structure using a global approach with a three dimensional finite difference code Flac 3D (Fast lagrangian analysis of continua in 3 dimensions).

Keywords: interaction, piles, micropiles, concrete, seismic, nonlinear, three-dimensional

Procedia PDF Downloads 233
142 Sulforaphane Alleviates Muscular Dystrophy in Mdx Mice by Activation of Nrf2

Authors: Chengcao Sun, Cuili Yang, Shujun Li, Ruilin Xue, Liang Wang, Yongyong Xi, Dejia Li

Abstract:

Backgrounds: Sulforaphane, one of the most important isothiocyanates in the human diet, is known to have chemopreventive and antioxidant activities in different tissues via activation of NF-E2-related factor 2 (Nrf2)-mediated induction of antioxidant/phase II enzymes, such as heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). However, its effects on muscular dystrophy remain unknown. This work was undertaken to evaluate the effects of Sulforaphane on Duchenne muscular dystrophy (DMD). Methods: 4-week-old mdx mice were treated with SFN by gavage (2 mg/kg body weight per day) for 8 weeks. Blood was collected from eye socket every week, and tibial anterior, extensor digitorum longus, gastrocnemius, soleus, triceps brachii muscles and heart samples were collected after 8-week gavage. Force measurements and mice exercise capacity assays were detected. GSH/GSSG ratio, TBARS, CK and LDH levels were analyzed by spectrophotometric methods. H&E staining was used to analyze histological and morphometric of skeletal muscles of mdx mice, and Evas blue dye staining was made to detect sarcolemmal integrity of mdx mice. Further, the role of Sulforaphane on Nrf2/ARE signaling pathway was analyzed by ELISA, western blot and qRT-PCR. Results: Our results demonstrated that SFN treatment increased the expression and activity of muscle phase II enzymes NQO1 and HO-1 with Nrf2 dependent manner. SFN significantly increased skeletal muscle mass, muscle force (~30%), running distance (~20%) and GSH/GSSG ratio (~3.2 folds) of mdx mice, and decreased the activities of plasma creatine phosphokinase (CK) (~45%) and lactate dehydrogenase (LDH) (~40%), gastrocnemius hypertrophy (~25%), myocardial hypertrophy (~20%) and MDA levels (~60%). Further, SFN treatment also reduced the central nucleation (~40%), fiber size variability, inflammation and improved the sarcolemmal integrity of mdx mice. Conclusions: Collectively, these results show that SFN can improve muscle function, pathology and protect dystrophic muscle from oxidative damage in mdx mice through Nrf2 signaling pathway, which indicate Nrf2 may have clinical implications for the treatment of patients with muscular dystrophy.

Keywords: sulforaphane, duchenne muscular dystrophy, Nrf2, oxidative stress

Procedia PDF Downloads 296
141 Damage Micromechanisms of Coconut Fibers and Chopped Strand Mats of Coconut Fibers

Authors: Rios A. S., Hild F., Deus E. P., Aimedieu P., Benallal A.

Abstract:

The damage micromechanisms of chopped strand mats manufactured by compression of Brazilian coconut fiber and coconut fibers in different external conditions (chemical treatment) were used in this study. Mechanical analysis testing uniaxial traction were used with Digital Image Correlation (DIC). The images captured during the tensile test in the coconut fibers and coconut fiber mats showed an uncertainty of measurement in order centipixels. The initial modulus (modulus of elasticity) and tensile strength decreased with increasing diameter for the four conditions of coconut fibers. The DIC showed heterogeneous deformation fields for coconut fibers and mats and the displacement fields showed the rupture process of coconut fiber. The determination of poisson’s ratio of the mat was performed through of transverse and longitudinal deformations found in the elastic region.

Keywords: coconut fiber, mechanical behavior, digital image correlation, micromechanism

Procedia PDF Downloads 436
140 Fabrication and Evaluation of Particleboards from Oil Palm Fronds Blend with Empty Fruit Bunch Fibre

Authors: Ghazi Faisal Najmuldeen, Wahida Amat Fadzila

Abstract:

The aim of this study is to investigate physical and mechanical properties of experimental particleboards manufactured from mixing the oil palm fronds particles with empty fruit bunch fibers. Variables were two blending ratios (100:0 and 70:30), press temperature (160°C and 180°C) and press time (180 and 300 s). Experimental boards with a target density of 750 kg m-3 were manufactured from these two particles and fibers blended with urea formaldehyde resin and compressed into targeted thickness. The effect of these manufacturing conditions on bending strength, internal bonding, water absorption and thickness swelling were determined. From this research, it can be concluded that hybridization of fibers with fronds particles improved some properties of particleboard. Empty fruit bunch fibers and fronds particleboard showed better modulus of rupture and internal bonding than fronds particleboards.

Keywords: oil palm fronds, empty fruit bunch, particleboards, chemistry, environment

Procedia PDF Downloads 296
139 Body Mass Components in Young Soccer Players

Authors: Elizabeta Sivevska, Sunchica Petrovska, Vaska Antevska, Lidija Todorovska, Sanja Manchevska, Beti Dejanova, Ivanka Karagjozova, Jasmina Pluncevic Gligoroska

Abstract:

Introduction: Body composition plays an important role in the selection of young soccer players and it is associated with their successful performance. The most commonly used model of body composition divides the body into two compartments: fat components and fat-free mass (muscular and bone components). The aims of the study were to determine the body composition parameters of young male soccer players and to show the differences in age groups. Material and methods: A sample of 52 young male soccer players, with an age span from 9 to 14 years were divided into two groups according to the age (group 1 aged 9 to 12 years and group 2 aged 12 to 14 years). Anthropometric measurements were taken according to the method of Mateigka. The following measurements were made: body weight, body height, circumferences (arm, forearm, thigh and calf), diameters (elbow, knee, wrist, ankle) and skinfold thickness (biceps, triceps, thigh, leg, chest, abdomen). The measurements were used in Mateigka’s equations. Results: Body mass components were analyzed as absolute values (in kilograms) and as percentage values: the muscular component (MC kg and MC%), the bone component (BCkg and BC%) and the body fat (BFkg and BF%). The group up to 12 years showed the following mean values of the analyzed parameters: MM=21.5kg; MM%=46.3%; BC=8.1kg; BC%=19.1%; BF= 6.3kg; BF%= 15.7%. The second group aged 12-14 year had mean values of body composition parameters as follows: MM=25.6 kg; MM%=48.2%; BC = 11.4 kg; BC%=21.6%; BF= 8.5 kg; BF%= 14. 7%. Conclusions: The young soccer players aged 12 up to 14 years who are in the pre-pubertal phase of growth and development had higher bone component (p<0.05) compared to younger players. There is no significant difference in muscular and fat body component between the two groups of young soccer players.

Keywords: body composition, young soccer players, body fat, fat-free mass

Procedia PDF Downloads 431
138 Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault

Authors: Yingxin Hui

Abstract:

Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage.

Keywords: bridge engineering, seismic response feature, across faults, rupture directivity effect, fling step

Procedia PDF Downloads 404
137 The Engineering Properties of Jordanian Marble

Authors: Mousa Bani Baker, Raed Abendeh, Zaidoon Abu Salem, Hesham Ahmad

Abstract:

This research paper was commissioned to discuss the Jordanian marble, which is a non-foliated metamorphic rock composed of recrystallized carbonate minerals, most commonly calcite or dolomite. Geologists use the term "marble" to refer to metamorphosed limestone; however, stonemasons use the term more broadly to encompass unmetamorphised limestone. Marble is commonly used for sculpture and as a building material. The marble has many uses; one of them is using the white marble that has been prized for its use in sculptures since classical times. This preference has to do with its softness, relative isotropy and homogeneity, and a relative resistance to shattering. Another use of it is the construction marble which is “a stone which is composed of calcite, dolomite or serpentine which is capable of taking a polish” Marble Institute of America. This report focuses most about the marble in Jordan and its properties: rock definition, physical properties, the marble occurrences in Jordan, types of Jordanian marble and their prices and test done on this marble.

Keywords: marble, metamorphic, non-foliated, compressive strength, recrystallized, Moh’s hardness, abrasion, absorption, modulus of rupture, porosity

Procedia PDF Downloads 343
136 Strengthening and Toughening of Dental Porcelain by the Inclusion of an Yttria-Stabilized Zirconia Reinforcing Phase

Authors: Buno Henriques, Rafaela Santos, Júlio Matias de Souza, Filipe Silva, Rubens Nascimento, Márcio Fredel

Abstract:

Dental porcelain composites reinforced and toughened by 20 wt.% tetragonal zirconia (3Y-TZP) were processed by hot pressing at 1000°C. Two types of particles were tested: yttria-stabilized zirconia (ZrO2–3%Y2O3) agglomerates and pre-sintered yttria-stabilized zirconia (ZrO2–3%Y2O3) particles. The composites as well as the reinforcing particles were analyzed by the means of optical and Scanning Electron Microscopy (SEM), Energy Dispersion Spectroscopy (EDS) and X-Ray Diffraction (XRD). The mechanical properties were obtained by the transverse rupture strength test, Vickers indentations and fracture toughness. Wear tests were also performed on the composites and monolithic porcelain. The best mechanical and wear results were displayed by the porcelain reinforced with the pre-sintered ZrO2–3%Y2O3 particles.

Keywords: dental restoration, zirconia, porcelain, composites, strengthening, toughening, wear

Procedia PDF Downloads 413
135 Analysis and Prediction of the Behavior of the Landslide at Ain El Hammam, Algeria Based on the Second Order Work Criterion

Authors: Zerarka Hizia, Akchiche Mustapha, Prunier Florent

Abstract:

The landslide of Ain El Hammam (AEH) is characterized by a complex geology and a high hydrogeology hazard. AEH's perpetual reactivation compels us to look closely at its triggers and to better understand the mechanisms of its evolution in mass and in depth. This study builds a numerical model to simulate the influencing factors such as precipitation, non-saturation, and pore pressure fluctuations, using Plaxis software. For a finer analysis of instabilities, we use Hill's criterion, based on the sign of the second order work, which is the most appropriate material stability criterion for non-associated elastoplastic materials. The results of this type of calculation allow us, in theory, to predict the shape and position of the slip surface(s) which are liable to ground movements of the slope, before reaching the rupture given by the plastic limit of Mohr Coulomb. To validate the numerical model, an analysis of inclinometer measures is performed to confirm the direction of movement and kinematic of the sliding mechanism of AEH’s slope.

Keywords: landslide, second order work, precipitation, inclinometers

Procedia PDF Downloads 149
134 Effects of Oxidized LDL in M2 Macrophages: Implications in Atherosclerosis

Authors: Fernanda Gonçalves, Karla Alcântara, Vanessa Moura, Patrícia Nolasco, Jorge Kalil, Maristela Hernandez

Abstract:

Introduction: Atherosclerosis is a chronic disease where two striking features are observed: retention of lipids and inflammation. Understanding the interaction between immune cells and lipoproteins involved in atherogenesis are urgent challenges, since cardiovascular diseases are the leading cause of death worldwide. Macrophages are critical to the development of atherosclerotic plaques and in the perpetuation of inflammation in these lesions. These cells are also directly involved in unstable plaque rupture. Recently different populations of macrophages are being identified in atherosclerotic lesions. Although the presence of M2 macrophages (macrophages activated by the alternative pathway, eg. The IL-4) has been identified, the function of these cells in atherosclerosis is not yet defined. M2 macrophages have a high endocytic capacity, they promote remodeling of tissues and to have anti-inflammatory activity. However, in atherosclerosis, especially unstable plaques, severe inflammatory reaction, accumulation of cellular debris and intense degradation of the tissue is observed. Thus, it is possible that the M2 macrophages have altered function (phenotype) in atherosclerosis. Objective: Our aim is to evaluate if the presence of oxidized LDL alters the phenotype and function of M2 macrophages in vitro. Methods: For this, we will evaluate whether the addition of lipoprotein in M2 macrophages differentiated in vitro with IL -4 induces 1) a reduction in the secretion of anti-inflammatory cytokines (CBA and ELISA), 2) secretion of inflammatory cytokines (CBA and ELISA), 3) expression of cell activation markers (Flow cytometry), 4) alteration in gene expression of molecules adhesion and extracellular matrix (Real-Time PCR) and 5) Matrix degradation (confocal microscopy). Results: In oxLDL stimulated M2 macrophages cultures we did not find any differences in the expression of the cell surface markers tested, including: HLA-DR, CD80, CD86, CD206, CD163 and CD36. Also, cultures stimulated with oxLDL had similar phagocytic capacity when compared to unstimulated cells. However, in the supernatant of these cultures an increase in the secretion of the pro-inflammatory cytokine IL-8 was detected. No significant changes where observed in IL-6, IL-10, IL-12 and IL-1b levels. The culture supernatant also induced massive extracellular matrix (produced by mouse embryo fibroblast) filaments degradation. When evaluating the expression of 84 extracellular matrix and adhesion molecules genes, we observed that the stimulation of oxLDL in M2 macrophages decreased 47% of the genes and increased the expression of only 3% of the genes. In particular we noted that oxLDL inhibit the expression of 60% of the genes constituents of extracellular matrix and collagen expressed by these cells, including fibronectin1 and collagen VI. We also observed a decrease in the expression of matrix protease inhibitors, such as TIMP 2. On the opposite, the matricellular protein thrombospondin had a 12 fold increase in gene expression. In the presence of native LDL 90% of the genes had no altered expression. Conclusion: M2 macrophages stimulated with oxLDL secrete the pro-inflammatory cytokine IL-8, have an altered extracellular matrix constituents gene expression, and promote the degradation of extracellular matrix. M2 macrophages may contribute to the perpetuation of inflammation in atherosclerosis and to plaque rupture.

Keywords: atherosclerosis, LDL, macrophages, m2

Procedia PDF Downloads 301
133 Evaluation of Joint Contact Forces and Muscle Forces in the Subjects with Non-Specific Low Back Pain

Authors: Mohammad Taghi Karimi, Maryam Hasan Zahraee

Abstract:

Background: Low back pain (LBP) is a common health and socioeconomic problem, especially the chronic one. The joint contact force is an important parameter during walking which increases the incidence of injury and degenerative joint disease. To our best knowledge, there are not enough evidences in literature on the muscular forces and joint contact forces in subjects with low back pain. Purpose: The main hypothesis associated with this research was that joint contact force of L4/L5 of non-specific chronic low back pain subjects was the same as that of normal. Therefore, the aim of this study was to determine the joint contact force difference between non-specific chronic low back pain and normal subjects. Method: This was an experimental-comparative study. 20 normal subjects and 20 non-specific chronic low back pain patients were recruited in this study. Qualysis motion analysis system and a Kistler force plate were used to collect the motions and the force applied on the leg, respectively. OpenSimm software used to determine joint contact force and muscle forces in this study. Some parameters such as force applied on the legs (pelvis), kinematic of hip and pelvic, peaks of muscles, force of trunk musculature and joint contact force of L5/S1 were used for further analysis. Differences between mean values of all data were measured using two-sample t-test among the subjects. Results: The force produced by Semitendinosus, Biceps Femoris, and Adductor muscles were significantly different between low back pain and normal subjects. Moreover, the mean value of breaking component of the force of the knee joint increased significantly in low back pain subjects, besides a significant decrease in mean value of the vertical component of joint reaction force compared to the normal ones. Conclusions: The forces produced by the trunk and pelvic muscles, and joint contact forces differ significantly between low back pain and normal subjects. It seems that those with non-specific chronic low back pain use trunk muscles more than normal subjects to stabilize the pelvic during walking.

Keywords: low back pain, joint contact force, kinetic, muscle force

Procedia PDF Downloads 215
132 A Comparative CFD Study on the Hemodynamics of Flow through an Idealized Symmetric and Asymmetric Stenosed Arteries

Authors: B. Prashantha, S. Anish

Abstract:

The aim of the present study is to computationally evaluate the hemodynamic factors which affect the formation of atherosclerosis and plaque rupture in the human artery. An increase of atherosclerosis disease in the artery causes geometry changes, which results in hemodynamic changes such as flow separation, reattachment, and adhesion of new cells (chemotactic) in the artery. Hence, geometry plays an important role in the determining the nature of hemodynamic patterns. Influence of stenosis in the non-bifurcating artery, under pulsatile flow condition, has been studied on an idealized geometry. Analysis of flow through symmetric and asymmetric stenosis in the artery revealed the significance of oscillating shear index (OSI), flow separation, low WSS zones and secondary flow patterns on plaque formation. The observed characteristic of flow in the post-stenotic region highlight the importance of plaque eccentricity on the formation of secondary stenosis on the arterial wall.

Keywords: atherosclerotic plaque, oscillatory shear index, stenosis nature, wall shear stress

Procedia PDF Downloads 329
131 Performance of Structural Concrete Containing Marble Dust as a Partial Replacement for River Sand

Authors: Ravande Kishore

Abstract:

The paper present the results of experimental investigation carried out to understand the mechanical properties of concrete containing marble dust. Two grades of concrete viz. M25 and M35 have been considered for investigation. For each grade of concrete five replacement percentages of sand viz. 5%, 10%, 15%, 20% and 25% by marble dust have been considered. In all, 12 concrete mix cases including two control concrete mixtures have been studied to understand the key properties such as Compressive strength, Modulus of elasticity, Modulus of rupture and Split tensile strength. Development of Compressive strength is also investigated. In general, the results of investigation indicated improved performance of concrete mixture containing marble dust. About 21% increase in Compressive strength is noticed for concrete mixtures containing 20% marble dust and 80% river sand. An overall assessment of investigation results pointed towards high potential for marble dust as alternative construction material coming from waste generated in marble industry.

Keywords: construction material, partial replacement, marble dust, compressive strength

Procedia PDF Downloads 405
130 Analysis of Wall Deformation of the Arterial Plaque Models: Effects of Viscoelasticity

Authors: Eun Kyung Kim, Kyehan Rhee

Abstract:

Viscoelastic wall properties of the arterial plaques change as the disease progresses, and estimation of wall viscoelasticity can provide a valuable assessment tool for plaque rupture prediction. Cross section of the stenotic coronary artery was modeled based on the IVUS image, and the finite element analysis was performed to get wall deformation under pulsatile pressure. The effects of viscoelastic parameters of the plaque on luminal diameter variations were explored. The result showed that decrease of viscous effect reduced the phase angle between the pressure and displacement waveforms, and phase angle was dependent on the viscoelastic properties of the wall. Because viscous effect of tissue components could be identified using the phase angle difference, wall deformation waveform analysis may be applied to predict plaque wall composition change and vascular wall disease progression.

Keywords: atherosclerotic plaque, diameter variation, finite element method, viscoelasticity

Procedia PDF Downloads 188
129 Effects of the Non-Newtonian Viscosity of Blood on Flow Field in a Constricted Artery with a Porous Plaque

Authors: Maedeh Shojaeizadeh, Amirreza Yeganegi

Abstract:

Nowadays many people lose their lives due to cardiovascular diseases. Inappropriate food habits and lack of exercise expedite deposit process of fatty substances on inner surface of blood arteries. This abnormal lump disturbs uniform blood flow and reduces oxygen delivery to active organs. This work presents a numerical simulation of Non-Newtonian blood flow in a stenosis vessel. The vessel is considered as two dimensional channel and plaque area is modelled as a homogenous porous medium. To simulate blood flow reaction around stenosis region, we use C++ code and solve coupled Cauchy, Darcy, governing continuity and energy equations. The analyses results show that viscosity power (n) plays an important role in flow separation and the size of the eddy at the downstream edge of the plaque. It is also observed that with increasing (n) value, temperature discontinuity and likelihood of vessel rupture declined.

Keywords: blood flow, computational fluid dynamic, porosity, power law fluid

Procedia PDF Downloads 438
128 Effect of the Ratio, Weight, Treatment of Loofah Fiber on the Mechanical Properties of the Composite: Loofah Fiber Resin

Authors: F. Siahmed, A. Lounis, L. Faghi

Abstract:

The aim of this work is to study mechanical properties of composites based on fiber natural. This material has attracted attention of the scientific community for its mechanical properties, its moderate cost and its specification as regards the protection of environment. In this study the loofah part of the family of the natural fiber has been used for these significant mechanical properties. The fiber has porous structure, which facilitates the impregnation of the resin through these pores. The matrix used in this study is the type of unsaturated polyester. This resin was chosen for its resistance to long term.The work involves: -The chemical treatment of the fibers of loofah by NaOH solution (5%) -The realization of the composite resin / fiber loofah; The preparation of samples for testing -The tensile tests and bending -The observation of facies rupture by scanning electron microscopy The results obtained allow us to observe that the values of Young's modulus and tensile strength in tension is high and open up real prospects. The improvement in mechanical properties has been obtained for the two-layer composite fiber with 7.5% (by weight).

Keywords: loofah fiber, mechanical properties, composite, loofah fiber resin

Procedia PDF Downloads 423
127 Mechanical Properties of Aspen Wood of Structural Dimensions

Authors: Barbora Herdová, Rastislav Lagaňa

Abstract:

The paper investigates the mechanical properties of European aspen (Populus tremula L.) as a potential replacement for load-bearing elements in historical structures. One of the main aims of the research has been the quantification of mechanical properties via destructive testing and the subsequent calculation of characteristic values of these properties. The research encompasses experimental testing of wood specimens for the determination of dynamic modulus of elasticity (MOEdyn), modulus of elasticity (MOE), modulus of rupture (MOR), and density. The results were analyzed and compared to established standards for structural timber. The results confirmed statistically significant dependence between MOR and MOEdyn. The correlation between the MOR and the dynamic MOEdyn enabled non-destructive strength grading using the Sylvatest Duo® system. The findings of this research contribute to the potential use of European aspen as a structural timber, which could have implications for the sustainable use of this abundant and renewable resource in the construction industry. They also show the usability of European aspen in the reconstruction of historical buildings.

Keywords: populus tremula, MOE, MOR, sylvatest Duo®.

Procedia PDF Downloads 33
126 Effect of Confinement on Flexural Tensile Strength of Concrete

Authors: M. Ahmed, Javed Mallick, Mohammad Abul Hasan

Abstract:

The flexural tensile strength of concrete is an important parameter for determining cracking behavior of concrete structure and to compute deflection under flexure. Many factors have been shown to influence the flexural tensile strength, particularly the level of concrete strength, size of member, age of concrete and confinement to flexure member etc. Empirical equations have been suggested to relate the flexural tensile strength and compressive strength. Limited literature is available for relationship between flexural tensile strength and compressive strength giving consideration to the factors affecting the flexural tensile strength specially the concrete confinement factor. The concrete member such as slabs, beams and columns critical locations are under confinement effects. The paper presents the experimental study to predict the flexural tensile strength and compressive strength empirical relations using statistical procedures considering the effect of confinement and age of concrete for wide range of concrete strength (from 35 to about 100 MPa). It is concluded from study that due consideration of confinement should be given in deriving the flexural tensile strength and compressive strength proportionality equations.

Keywords: compressive strength, flexural tensile strength, modulus of rupture, statistical procedures, concrete confinement

Procedia PDF Downloads 432
125 Limiting Fracture Stress of Composite Ceramics with Symmetric Triangle Eutectic

Authors: Jian Zheng, Jinfeng Yu, Xinhua Ni

Abstract:

The limiting fracture stress predicting model of composite ceramics with symmetric triangle eutectic was established based on its special microscopic structure. The symmetric triangle eutectic is consisted of matrix, the strong constraint inter-phase and reinforced fiber inclusions which are 120 degrees uniform symmetrical distribution. Considering the conditions of the rupture of the cohesive bond between matrix and fibers in eutectic and the stress concentration effect at the fiber end, the intrinsic fracture stress of eutectic was obtained. Based on the biggest micro-damage strain in eutectic, defining the load function, the macro-damage fracture stress of symmetric triangle eutectic was determined by boundary conditions. Introducing the conception of critical zone, the theoretical limiting fracture stress forecasting model of composite ceramics was got, and the stress was related to the fiber size and fiber volume fraction in eutectic. The calculated results agreed with the experimental results in the literature.

Keywords: symmetric triangle eutectic, composite ceramics, limiting stress, intrinsic fracture stress

Procedia PDF Downloads 232
124 Characterization of Mechanical Properties of Graphene-Modified Epoxy Resin for Pipeline Repair

Authors: Siti Nur Afifah Azraai, Lim Kar Sing, Nordin Yahaya, Norhazilan Md Noor

Abstract:

This experimental study consists of a characterization of epoxy grout where an amount of 2% of graphene nanoplatelets particles were added to commercial epoxy resin to evaluate their behavior regarding neat epoxy resin. Compressive tests, tensile tests and flexural tests were conducted to study the effect of graphene nanoplatelets on neat epoxy resin. By comparing graphene-based and neat epoxy grout, there is no significant increase of strength due to weak interface in the graphene nanoplatelets/epoxy composites. From this experiment, the tension and flexural strength of graphene-based epoxy grouts is slightly lower than ones of neat epoxy grout. Nevertheless, the addition of graphene has produced more consistent results according to a smaller standard deviation of strength. Furthermore, the graphene has also improved the ductility of the grout, hence reducing its brittle behaviour. This shows that the performance of graphene-based grout is reliably predictable and able to minimize sudden rupture. This is important since repair design of damaged pipeline is of deterministic nature.

Keywords: composite, epoxy resin, graphene nanoplatelets, pipeline

Procedia PDF Downloads 459
123 Behavior of Helical Piles as Foundation of Photovoltaic Panels in Tropical Soils

Authors: Andrea J. Alarcón, Maxime Daulat, Raydel Lorenzo, Renato P. Da Cunha, Pierre Breul

Abstract:

Brazil has increased the use of renewable energy during the last years. Due to its sunshine and large surface area, photovoltaic panels founded in helical piles have been used to produce solar energy. Since Brazilian territory is mainly cover by highly porous structured tropical soils, when the helical piles are installed this structure is broken and its soil properties are modified. Considering the special characteristics of these soils, helical foundations behavior must be extensively studied. The first objective of this work is to determine the most suitable method to estimate the tensile capacity of helical piles in tropical soils. The second objective is to simulate the behavior of these piles in tropical soil. To obtain the rupture to assess load-displacement curves and the ultimate load, also a numerical modelling using Plaxis software was conducted. Lastly, the ultimate load and the load-displacements curves are compared with experimental values to validate the implemented model.

Keywords: finite element, helical piles, modelling, tropical soil, uplift capacity

Procedia PDF Downloads 145
122 Splenic Artery Aneurysms: A Rare, Insidious Cause of Abdominal Pain

Authors: Christopher Oyediran, Nicola Ubayasiri, Christopher Gough

Abstract:

Splenic artery aneurysms are often clinically occult, occasionally identified incidentally with imaging. The pathogenesis of aneurysms is complex, but certain factors are thought to contribute to their development. Given the potential fatal complications of rupture, a high index of suspicion is required to make an early diagnosis. We present a case of a 36-year-old female with a history of endometriosis and multiple sclerosis who presented to the Emergency Department with sudden onset epigastric pain and collapse. On arrival, she was pale and clammy with profound tachycardia and hypotension. An ultrasound done in the resuscitation department revealed abdominal free fluid. She was resuscitated with blood and transferred for emergent laparotomy. Laparotomy revealed massive haemoperitoneum from the spleen. She underwent emergency splenectomy and inspection of the spleen revealed a splenic artery aneurysm. She received our massive transfusion protocol followed by a short stay on ITU, making a good post-operative recovery and was discharged home a week later.

Keywords: aneurysm, human chorionic gonadotrophin (hCG), resuscitation, laparotomy

Procedia PDF Downloads 406
121 Synthesis and Characterization of Nanocellulose Based Bio-Composites

Authors: Krishnakant Bhole, Neerakallu D. Shivakumar, Shakti Singh Chauhan, Sanketh Tonannavar, Rajath S

Abstract:

Synthesis of natural-based composite materials is state of the art. This work discusses the preparation and characterization of cellulose nanofibers (CNF) extracted from the bamboo pulp using TEMPO-oxidization and high-pressure homogenization methods. Bio-composites are prepared using synthesized CNF and bamboo particles. Nanocellulose prepared is characterized using SEM and XRD for morphological and crystallinity analysis, and the formation of fibers at the nano level is ensured. Composite specimens are fabricated using these natural sources and subjected to tensile and flexural tests to characterize the mechanical properties such as modulus of elasticity (MOE), modulus of rupture (MOR), and interfacial strength. Further, synthesized nanocellulose is used as a binding agent to prepare particleboards using various natural sources like bamboo, areca nut, and banana in the form of fibers. From the results, it can be inferred that nanocellulose prepared from bamboo pulp acts as a binding agent for making bio-composites. Hence, the concept of using matrix and reinforcement derived from natural sources can be used to prepare green composites that are highly degradable.

Keywords: nanocellulose, biocomposite, CNF, bamboo

Procedia PDF Downloads 60
120 A Hyperflexion Hallux Mallet Injury: A Case Report

Authors: Tan G. K. Y., Chew M. S. J., Sajeev S., Vellasamy A.

Abstract:

Injuries of the extensor hallucis longus (EHL) tendon are a rare phenomenon, with most occurring due to lacerations or penetrating injuries. Closed traumatic ruptures of the EHL are described as “Mallet injuries of the toe”. These can be classified as bony or soft mallet injuries depending on the presence or absence of a fracture at the insertion site of the EHL tendon in the distal phalanx. We present a case of a 33-year-old woman who presented with a hyperflexion injury to the left big toe with an inability to extend the big toe. Ultrasound showed a complete rupture of the EHL tendon with retraction proximal to the hallucal interphalangeal joint of the big toe. The patient was treated through transarticular pinning and repair using the Arthrex Mini Bio-Suture Tak with a 2-0 fibre wire. Six months postoperatively, the patient had symmetrical EHL power and full range of motion of the toe. The lessons to be drawn from this case report are that isolated hallux mallet injuries are rare and can be easily missed in the absence of penetrating wounds. Patients who have such injuries should be investigated early with the appropriate imaging techniques, such as ultrasound or MRI, and treated surgically.

Keywords: hallux mallet, extensor hallucis longus tendon, extensor hallucis longus

Procedia PDF Downloads 43
119 Effect of Pressing Pressure on Mechanical Properties of Elaeis guineensis Jacq. Fronds-Based Composite Board

Authors: Ellisha Iling, Dayang Siti Hazimmah Ali

Abstract:

Experimental composite boards were fabricated using oil palm (Elaeis guineensis Jacq) fronds particles by applying hot press pressure of 5MPa, 6MPa and 7MPa respectively. Modulus of rupture (MOR) and internal bond strength (IB) of the composite boards made with target density of 0.80 g/cm³ were evaluated. Composite board fabricated under hot press pressure of 5MPa had MOR and IB values of 16.27 and 4.34 N/mm² respectively. Corresponding values for composite board fabricated under hot press pressure of 6MPa were 16.76 and 5.41 N/mm² respectively. Whereas, the MOR and IB values of composite board fabricated under hot press pressure of 7MPa were 17.24 and 6.19 N/mm² respectively. All composite boards met the MOR and IB requirement stated in Japanese Industrial Standard (JIS). Based on results of this work, the strength of mechanical properties of composite board increased with increase of hot press pressure. This study revealed that the selection of applied pressure during fabrication of composite board is important to improve mechanical properties of composite boards.

Keywords: composite board, Elaeis guineensis Jacq. Fronds, hot press pressure, mechanical properties

Procedia PDF Downloads 161
118 Physical and Mechanical Performance of Mortars with Ashes from Straw and Bagasse Sugarcane

Authors: Débora C. G. Oliveira, Julio D. Salles, Bruna A. Moriy, João A. Rossignolo, Holmer Savastano Jr.

Abstract:

The objective of this study was to identify the optimal level of partial replacement of Portland cement by the ashes originating from burning straw and bagasse from sugar cane (ASB). Order to this end, were made five series of flat plates and cylindrical bodies: control and others with the partial replacement in 20, 30, 40, and 50% of ASB in relation to the mass of the Ordinary Portland cement, and conducted a mechanical testing of simple axial compression (cylindrical bodies) and the four-point bending (flat plates) and determined water absorption (WA), bulk density (BD) and apparent void volume (AVV) on both types of specimens. Based on the data obtained, it may be noted that the control treatment containing only Portland cement, obtained the best results. However, the cylindrical bodies with 20% ashes showed better results compared to the other treatments. And in the formulations plates, the treatment which showed the best results was 30% cement replacement by ashes.

Keywords: modulus of rupture, simple axial compression, waste, bagasse sugarcane

Procedia PDF Downloads 399
117 Modeling of Digital and Settlement Consolidation of Soil under Oedomete

Authors: Yu-Lin Shen, Ming-Kuen Chang

Abstract:

In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.

Keywords: EMAT, artificial defect, NDT, ultrasonic testing

Procedia PDF Downloads 300
116 Study of Mechanical Behavior of Unidirectional Composite Laminates According

Authors: Deliou Adel, Saadalah Younes, Belkaid Khmissi, Dehbi Meriem

Abstract:

Composite materials, in the most common sense of the term, are a set of synthetic materials designed and used mainly for structural applications; the mechanical function is dominant. The mechanical behaviors of the composite, as well as the degradation mechanisms leading to its rupture, depend on the nature of the constituents and on the architecture of the fiber preform. The profile is required because it guides the engineer in designing structures with precise properties in relation to the needs. This work is about studying the mechanical behavior of unidirectional composite laminates according to different failure criteria. Varying strength parameter values make it possible to compare the ultimate mechanical characteristics obtained by the criteria of Tsai-Hill, Fisher and maximum stress. The laminate is subjected to uniaxial tensile membrane forces. Estimates of their ultimate strengths and the plotting of the failure envelope constitute the principal axis of this study. Using the theory of maximum stress, we can determine the various modes of damage of the composite. The different components of the deformation are presented for different orientations of fibers.

Keywords: unidirectional kevlar/epoxy composite, failure criterion, membrane stress, deformations, failure envelope

Procedia PDF Downloads 52