Search results for: power law fluid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7887

Search results for: power law fluid

7887 Power Consumption for Viscoplastic Fluid in a Rotating Vessel with an Anchor Impeller

Authors: Draoui Belkacem, Rahmani Lakhdar, Benachour Elhadj, Seghier Oussama

Abstract:

Rheology is known to have a strong impact on the flow behavior and the power consumption of mechanically agitated vessels. The laminar 2D agitation flow and power consumption of viscoplastic fluids with an anchor impeller in a stirring tank is studied by using computational fluid dynamics (CFD). In this work the objective of this paper is: to evaluate the power consumption for yield stress fluids in standard mixing system. The power consumption is calculated for the different types of anchor impeller configurations and an optimum configuration is proposed.The hydrodynamic fields of incompressible yield stress fluid with model of Bingham in a cylindrical vessel not chicaned equipped with anchor stirrer was undertaken by means of numerical simulation. The flow structures, and especially the effect of inertia, the plasticity and the yield stress, are discussed.

Keywords: rheology, 2D, numerical, anchor, rotating vissel, non-Newtonien fluid

Procedia PDF Downloads 476
7886 Numerical Study of Two Mechanical Stirring Systems for Yield Stress Fluid

Authors: Amine Benmoussa, Mebrouk Rebhi, Rahmani Lakhdar

Abstract:

Mechanically agitated vessels are commonly used for various operations within a wide range process in chemical, pharmaceutical, polymer, biochemical, mineral, petroleum industries. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. In this paper, the laminar 2D agitation flow and power consumption of viscoplastic fluids with straight and circular gate impellers in a stirring tank is studied by using computational fluid dynamics (CFD), where the velocity profile, the velocity fields and power consumption was analyzed.

Keywords: CFD, mechanical stirring, power consumption, yield stress fluid

Procedia PDF Downloads 305
7885 Suitability of Alternative Insulating Fluid for Power Transformer: A Laboratory Investigation

Authors: S. N. Deepa, A. D. Srinivasan, K. T. Veeramanju, R. Sandeep Kumar, Ashwini Mathapati

Abstract:

Power transformer is a vital element in a power system as it continuously regulates power flow, maintaining good voltage regulation. The working of transformer much depends on the oil insulation, the oil insulation also decides the aging of transformer and hence its reliability. The mineral oil based liquid insulation is globally accepted for power transformer insulation; however it is potentially hazardous due to its non-biodegradability. In this work efficient alternative biodegradable insulating fluid is presented as a replacement to conventional mineral oil. Dielectric tests are performed as distinct alternating fluid to evaluate the suitability for transformer insulation. The selection of the distinct natural esters for an insulation system is carried out by the laboratory investigation of Breakdown voltage, Oxidation stability, Dissipation factor, Permittivity, Viscosity, Flash and Fire point. It is proposed to study and characterize the properties of natural esters to be used in power transformer. Therefore for the investigation of the dielectric behavior rice bran oil, sesame oil, and sunflower oil are considered for the study. The investigated results have been compared with the mineral oil to validate the dielectric behavior of natural esters.

Keywords: alternative insulating fluid, dielectric properties, natural esters, power transformers

Procedia PDF Downloads 110
7884 Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid

Authors: Cha’o-Kuang Chen, Ching-Chang Cho

Abstract:

This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.

Keywords: non-Newtonian fluid, power-law fluid, natural convection, heat transfer enhancement, cavity, wavy wall

Procedia PDF Downloads 237
7883 Enhancement Production and Development of Hot Dry Rock System by Using Supercritical CO2 as Working Fluid Instead of Water to Advance Indonesia's Geothermal Energy

Authors: Dhara Adhnandya Kumara, Novrizal Novrizal

Abstract:

Hot Dry Rock (HDR) is one of geothermal energy which is abundant in many provinces in Indonesia. Heat exploitation from HDR would need a method which injects fluid to subsurface to crack the rock and sweep the heat. Water is commonly used as the working fluid but known to be less effective in some ways. The new research found out that Supercritical CO2 (SCCO2) can be used to replace water as the working fluid. By studying heat transfer efficiency, pumping power, and characteristics of the returning fluid, we might decide how effective SCCO2 to replace water as working fluid. The method used to study those parameters quantitatively could be obtained from pre-existing researches which observe the returning fluids from the same reservoir with same pumping power. The result shows that SCCO2 works better than water. For cold and hot SCCO2 has lower density difference than water, this results in higher buoyancy in the system that allows the fluid to circulate with lower pumping power. Besides, lower viscosity of SCCO2 impacts in higher flow rate in circulation. The interaction between SCCO2 and minerals in reservoir could induce dehydration of the minerals and enhancement of rock porosity and permeability. While the dissolution and transportation of minerals by SCCO2 are unlikely to occur because of the nature of SCCO2 as poor solvent, and this will reduce the mineral scaling in the system. Under those conditions, using SCCO2 as working fluid for HDR extraction would give great advantages to advance geothermal energy in Indonesia.

Keywords: geothermal, supercritical CO2, injection fluid, hot dry rock

Procedia PDF Downloads 194
7882 Numerical Study of Pressure Losses of Turbulence Drilling Fluid Flow in the Oil Wellbore

Authors: Alireza Mehdizadeh, Ghanbarali Sheikhzadeh

Abstract:

In this paper the pressure loss of drilling fluid flow in the annulus is investigated. On this purpose the domains between two concentric and two eccentric cylinders are considered as computational domains. In this research foam is used as drilling fluid. Firstly simulation results for laminar flow and non Newtonian fluid and different density like 100, 200, 300 kg/m3 and different inner cylinder rotational velocity like 100, 200, 300 RPM is presented. These results are compared and matched with references results. The power law and Herschel Bulkly methods are used for non Newtonian fluid modeling. After that computations are repeated with turbulence flow considering. K- Model is used for turbulence modeling. Results show that in laminar flow Herschel bulkly model has best result in comparison with power law model. And pressure loss in turbulence flow is higher than laminar flow.

Keywords: simulation, concentric cylinders, drilling, non Newtonian

Procedia PDF Downloads 530
7881 Numerical Investigation of Fluid Flow and Temperature Distribution on Power Transformer Windings Using Open Foam

Authors: Saeed Khandan Siar, Stefan Tenbohlen, Christian Breuer, Raphael Lebreton

Abstract:

The goal of this article is to investigate the detailed temperature distribution and the fluid flow of an oil cooled winding of a power transformer by means of computational fluid dynamics (CFD). The experimental setup consists of three passes of a zig-zag cooled disc type winding, in which losses are modeled by heating cartridges in each winding segment. A precise temperature sensor measures the temperature of each turn. The laboratory setup allows the exact control of the boundary conditions, e.g. the oil flow rate and the inlet temperature. Furthermore, a simulation model is solved using the open source computational fluid dynamics solver OpenFOAM and validated with the experimental results. The model utilizes the laminar and turbulent flow for the different mass flow rate of the oil. The good agreement of the simulation results with experimental measurements validates the model.

Keywords: CFD, conjugated heat transfer, power transformers, temperature distribution

Procedia PDF Downloads 385
7880 Herschel-Bulkley Fluid Flow through Narrow Tubes

Authors: Santhosh Nallapu, G. Radhakrishnamacharya

Abstract:

A two-fluid model of Herschel-Bulkley fluid flow through tubes of small diameters is studied. It is assumed that the core region consists of Herschel-Bulkley fluid and Newtonian fluid in the peripheral region. The analytical solutions for velocity, flow flux, effective viscosity, core hematocrit and mean hematocrit have been derived and the effects of various relevant parameters on these flow variables have been studied. It has been observed that the effective viscosity and mean hematocrit increase with yield stress, power-law index, hematocrit and tube radius. Further, the core hematocrit decreases with hematocrit and tube radius.

Keywords: two-layered model, non-Newtonian fluid, hematocrit, Fahraeus-Lindqvist effect, plug flow

Procedia PDF Downloads 443
7879 Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits

Authors: Ainul Haque, Ameeye Kumar Nayak

Abstract:

Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation.

Keywords: electroosmotic flow, hydrophobic surface, power-law fluid, shear effect

Procedia PDF Downloads 336
7878 Experimental and Computational Fluid Dynamics Analysis of Horizontal Axis Wind Turbine

Authors: Saim Iftikhar Awan, Farhan Ali

Abstract:

Wind power has now become one of the most important resources of renewable energy. The machine which extracts kinetic energy from wind is wind turbine. This work is all about the electrical power analysis of horizontal axis wind turbine to check the efficiency of different configurations of wind turbines to get maximum output and comparison of experimental and Computational Fluid Dynamics (CFD) results. Different experiments have been performed to obtain that configuration with the help of which we can get the maximum electrical power output by changing the different parameters like the number of blades, blade shape, wind speed, etc. in first step experimentation is done, and then the similar configuration is designed in 3D CAD software. After a series of experiments, it has been found that the turbine with four blades at an angle of 75° gives maximum power output and increase in wind speed increases the power output. The models designed on CAD software are imported on ANSYS-FLUENT to predict mechanical power. This mechanical power is then converted into electrical power, and the results were approximately the same in both cases. In the end, a comparison has been done to compare the results of experiments and ANSYS-FLUENT.

Keywords: computational analysis, power efficiency, wind energy, wind turbine

Procedia PDF Downloads 115
7877 An Investigation of System and Operating Parameters on the Performance of Parabolic Trough Solar Collector for Power Generation

Authors: Umesh Kumar Sinha, Y. K. Nayak, N. Kumar, Swapnil Saurav, Monika Kashyap

Abstract:

The authors investigate the effect of system and operating parameters on the performance of high temperature solar concentrator for power generation. The effects of system and operating parameters were investigated using the developed mathematical expressions for collector efficiency, heat removal factor, fluid outlet temperature and power, etc. The results were simulated using C++program. The simulated results were plotted for investigation like effect of thermal loss parameter and radiative loss parameters on the collector efficiency, heat removal factor, fluid outlet temperature, rise of temperature and effect of mass flow rate of the fluid outlet temperature. In connection with the power generation, plots were drawn for the effect of (TM–TAMB) on the variation of concentration efficiency, concentrator irradiance on PM/PMN, evaporation temperature on thermal to electric power efficiency (Conversion efficiency) of the plant and overall efficiency of solar power plant.

Keywords: parabolic trough solar collector, radiative and thermal loss parameters, collector efficiency, heat removal factor, fluid outlet and inlet temperatures, rise of temperature, mass flow rate, conversion efficiency, concentrator irradiance

Procedia PDF Downloads 283
7876 Investigation of Enhanced Geothermal System with CO2 as Working Fluid

Authors: Ruina Xu, Peixue Jiang, Feng Luo

Abstract:

The novel concept of enhanced geothermal system with CO2 instead of water as working fluid (CO2-EGS) has attracted wide attention due to additional benefit of CO2 geological storage during the power generation process. In this research, numerical investigation on a doublet CO2-EGS system is performed, focusing on the influence of the injection/production well perforation location in the targeted geothermal reservoir. Three different reservoir inlet and outlet boundary conditions are used in simulations since the well constrains are different in reality. The results show that CO2-EGS system performance of power generation and power cost vary greatly among cases of different wells perforation locations, and the optimum options under different boundary conditions are also different.

Keywords: Enhanced Geothermal System, supercritical CO2, heat transfer, CO2-EGS

Procedia PDF Downloads 257
7875 Experimental Squeeze Flow of Bitumen: Rheological Properties

Authors: A. Kraiem, A. Ayadi

Abstract:

The squeeze flow tests were studied by many authors to measure the rheological properties of fluid. Experimental squeezing flow test with constant area between two parallel disks of bitumen is investigated in the present work. The effect of the temperature, the process of preparing the sample and the gap between the discs were discussed. The obtained results were compared with the theoretical models. The behavior of bitumen depends on the viscosity and the yield stress. Thus, the bitumen was presented as a power law for a small power law exponent and as a biviscous fluid when the viscosity ratio was smaller than one. Also, the influence of the ambient temperature is required for the compression test. Therefore, for a high temperature the yield stress decrease.

Keywords: bitumen, biviscous fluid, squeeze flow, viscosity, yield stress

Procedia PDF Downloads 109
7874 Effects of Variable Properties and Double Dispersion on Magnetohydrodynamic (MHD) Mixed Convection in a Power-Law Fluid Saturated Non-Darcy Porous Medium

Authors: Pranitha Janapatla, Venkata Suman Gontla

Abstract:

The present paper investigates the effects of MHD, double dispersion and variable properties on mixed convection flow from a vertical surface in a power-law fluid saturated non-Darcy porous medium. The governing non-linear partial differential equations are reduced to a system of ordinary differential equations by using a special form of Lie group transformations viz. scaling group of transformations. These ordinary differential equations are solved numerically by using Shooting technique. The influence of relevant parameters on the non-dimensional velocity, temperature, concentration for pseudo-plastic fluid, Newtonian and dilatant fluid are discussed and displayed graphically. The behavior of heat and mass transfer coefficients are shown in tabular form. Comparisons with the published works are performed and are found to be in very good agreement. From this analysis, it is observed that an increase in variable viscosity causes to decrease in velocity profile and increase the temperature and concentration distributions. It is also concluded that increase in the solutal dispersion decreases the velocity and concentration but raises the temperature profile.

Keywords: power-law fluid, thermal conductivity, thermal dispersion, solutal dispersion, variable viscosity

Procedia PDF Downloads 194
7873 Simulation and Analysis of Different Parameters in Hydraulic Circuit Due to Leakage

Authors: J.Das, Gyan Wrat

Abstract:

Leakage is the main gradual failure in the fluid power system, which is usually caused by the impurity in the oil and wear of matching surfaces between parts and lead to the change of the gap value. When leakage occurs in the system, the oil will flow from the high pressure chamber into the low pressure chamber through the gap, causing the reduction of system flow as well as the loss of system pressure, resulting in the decreasing of system efficiency. In the fluid power system, internal leakage may occur in various components such as gear pump, reversing valve and hydraulic cylinder, and affect the system work performance. Therefore, component leakage in the fluid power system is selected as the study to characterize the leakage and the effect of leakage on the system. Effect of leakage on system pressure and cylinder displacement can be obtained using pressure sensors and the displacement sensor. The leakage can be varied by changing the orifice using a flow control valve. Hydraulic circuit for leakage will be developed in Matlab/Simulink environment and simulations will be done by changing different parameters.

Keywords: leakage causes, effect, analysis, MATLAB simulation, hydraulic circuit

Procedia PDF Downloads 370
7872 Application of a Hybrid Modified Blade Element Momentum Theory/Computational Fluid Dynamics Approach for Wine Turbine Aerodynamic Performances Prediction

Authors: Samah Laalej, Abdelfattah Bouatem

Abstract:

In the field of wind turbine blades, it is complicated to evaluate the aerodynamic performances through experimental measurements as it requires a lot of computing time and resources. Therefore, in this paper, a hybrid BEM-CFD numerical technique is developed to predict power and aerodynamic forces acting on the blades. Computational fluid dynamics (CFD) simulation was conducted to calculate the drag and lift forces through Ansys software using the K-w model. Then an enhanced BEM code was created to predict the power outputs generated by the wind turbine using the aerodynamic properties extracted from the CFD approach. The numerical approach was compared and validated with experimental data. The power curves calculated from this hybrid method were in good agreement with experimental measurements for all velocity ranges.

Keywords: blade element momentum, aerodynamic forces, wind turbine blades, computational fluid dynamics approach

Procedia PDF Downloads 17
7871 Theoretical Investigation of Thermal Properties of Nanofluids with Application to Solar Collector

Authors: Reema Jain

Abstract:

Nanofluids are emergent fluids that exhibit thermal properties superior than that of the conventional fluid. Nanofluids are suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest nanoparticle concentrations. Solar collectors are commonly used in areas such as industries, heating, and cooling for domestic purpose, thermal power plants, solar cooker, automobiles, etc. Performance and efficiency of solar collectors depend upon various factors like collector & receiver material, solar radiation intensity, nature of working fluid, etc. The properties of working fluid which flow through the collectors greatly affects its performance. In this research work, a theoretical effort has been made to enhance the efficiency and improve the performance of solar collector by using Nano fluids instead of conventional fluid like water as working fluid.

Keywords: nanofluids, nanoparticles, heat transfer, solar collector

Procedia PDF Downloads 286
7870 On the Well-Posedness of Darcy–Forchheimer Power Model Equation

Authors: Johnson Audu, Faisal Fairag

Abstract:

In a bounded subset of R^d, d=2 or 3, we consider the Darcy-Forchheimer power model with the exponent 1 < m ≤ 2 for a single-phase strong-inertia fluid flow in a porous medium. Under necessary compatibility condition, and some mild regularity assumptions on the interior and the boundary data, we prove the existence and uniqueness of solution (u, p) in L^(m+1 ) (Ω)^d X (W^(1,(m+1)/m) (Ω)^d ⋂L_0^2 (Ω)^d) and its stability.

Keywords: porous media, power law, strong inertia, nonlinear, monotone type

Procedia PDF Downloads 278
7869 Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle

Authors: Mahmoud Huleihil

Abstract:

In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms.

Keywords: magnetohydrodynamic generator, electrical efficiency, maximum power, maximum efficiency, heat engine

Procedia PDF Downloads 209
7868 Computational Fluid Dynamics Simulations of Thermal and Flow Fields inside a Desktop Personal Computer Cabin

Authors: Mohammad Salehi, Mohammad Erfan Doraki

Abstract:

In this paper, airflow analysis inside a desktop computer case is performed by simulating computational fluid dynamics. The purpose is to investigate the cooling process of the central processing unit (CPU) with thermal capacities of 80 and 130 watts. The airflow inside the computer enclosure, selected from the microATX model, consists of the main components of heat production such as CPU, hard disk drive, CD drive, floppy drive, memory card and power supply unit; According to the amount of thermal power produced by the CPU with 80 and 130 watts of power, two different geometries have been used for a direct and radial heat sink. First, the independence of the computational mesh and the validation of the solution were performed, and after ensuring the correctness of the numerical solution, the results of the solution were analyzed. The simulation results showed that changes in CPU temperature and other components linearly increased with increasing CPU heat output. Also, the ambient air temperature has a significant effect on the maximum processor temperature.

Keywords: computational fluid dynamics, CPU cooling, computer case simulation, heat sink

Procedia PDF Downloads 84
7867 Numerical Simulation of Fluid Structure Interaction Using Two-Way Method

Authors: Samira Laidaoui, Mohammed Djermane, Nazihe Terfaya

Abstract:

The fluid-structure coupling is a natural phenomenon which reflects the effects of two continuums: fluid and structure of different types in the reciprocal action on each other, involving knowledge of elasticity and fluid mechanics. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. In this paper, a problem of fluid structure interaction is investigated with two-way coupling method. The formulation Arbitrary Lagrangian-Eulerian (ALE) was used, by considering a dynamic grid, where the solid is described by a Lagrangian formulation and the fluid by a Eulerian formulation. The simulation was made on the ANSYS software.

Keywords: ALE, coupling, FEM, fluid-structure, interaction, one-way method, two-way method

Procedia PDF Downloads 646
7866 Formation of Mg-Silicate Scales and Inhibition of Their Scale Formation at Injection Wells in Geothermal Power Plant

Authors: Samuel Abebe Ebebo

Abstract:

Scale precipitation causes a major issue for geothermal power plants because it reduces the production rate of geothermal energy. Each geothermal power plant's different chemical and physical conditions can cause the scale to precipitate under a particular set of fluid-rock interactions. Depending on the mineral, it is possible to have scale in the production well, steam separators, heat exchangers, reinjection wells, and everywhere in between. The scale consists mainly of smectite and trace amounts of chlorite, magnetite, quartz, hematite, dolomite, aragonite, and amorphous silica. The smectite scale is one of the difficult scales at injection wells in geothermal power plants. X-ray diffraction and chemical composition identify this smectite as Stevensite. The characteristics and the scale of each injection well line are different depending on the fluid chemistry. The smectite scale has been widely distributed in pipelines and surface plants. Mineral water equilibrium showed that the main factors controlling the saturation indices of smectite increased pH and dissolved Mg concentration due to the precipitate on the equipment surface. This study aims to characterize the scales and geothermal fluids collected from the Onuma geothermal power plant in Akita Prefecture, Japan. Field tests were conducted on October 30–November 3, 2021, at Onuma to determine the pH control methods for preventing magnesium silicate scaling, and as exemplified, the formation of magnesium silicate hydrates (M-S-H) with MgO to SiO2 ratios of 1.0 and pH values of 10 for one day has been studied at 25 °C. As a result, M-S-H scale formation could be suppressed, and stevensite formation could also be suppressed when we can decrease the pH of the fluid by less than 8.1, 7.4, and 8 (at 97 °C) in the fluid from O-3Rb and O-6Rb, O-10Rg, and O-12R, respectively. In this context, the scales and fluids collected from injection wells at a geothermal power plant in Japan were analyzed and characterized to understand the formation conditions of Mg-silicate scales with on-site synthesis experiments. From the results of the characterizations and on-site synthesis experiments, the inhibition method of their scale formation is discussed based on geochemical modeling in this study.

Keywords: magnesium silicate, scaling, inhibitor, geothermal power plant

Procedia PDF Downloads 23
7865 Design, Numerical Simulation, Fabrication and Physical Experimentation of the Tesla’s Cohesion Type Bladeless Turbine

Authors: M.Sivaramakrishnaiah, D. S .Nasan, P. V. Subhanjeneyulu, J. A. Sandeep Kumar, N. Sreenivasulu, B. V. Amarnath Reddy, B. Veeralingam

Abstract:

Design, numerical simulation, fabrication, and physical experimentation of the Tesla’s Bladeless centripetal turbine for generating electrical power are presented in this research paper. 29 Pressurized air combined with water via a nozzle system is made to pass tangentially through a set of parallel smooth discs surfaces, which impart rotational motion to the discs fastened common shaft for the power generation. The power generated depends upon the fluid speed parameter leaving the nozzle inlet. Physically due to laminar boundary layer phenomena at smooth disc surface, the high speed fluid layers away from the plate moving against the low speed fluid layers nearer to the plate develop a tangential drag from the viscous shear forces. This compels the nearer layers to drag along with the high layers causing the disc to spin. Solid Works design software and fluid mechanics and machine elements design theories was used to compute mechanical design specifications of turbine parts like 48 mm diameter discs, common shaft, central exhaust, plenum chamber, swappable nozzle inlets, etc. Also, ANSYS CFX 2018 was used for the numerical 2 simulation of the physical phenomena encountered in the turbine working. When various numerical simulation and physical experimental results were verified, there is good agreement between them 6, both quantitatively and qualitatively. The sources of input and size of the blades may affect the power generated and turbine efficiency, respectively. The results may change if there is a change in the fluid flowing between the discs. The inlet fluid pressure versus turbine efficiency and the number of discs versus turbine power studies based on both results were carried out to develop the 8 relationships between the inlet and outlet parameters of the turbine. The present research work obtained the turbine efficiency in the range of 7-10%, and for this range; the electrical power output generated was 50-60 W.

Keywords: tesla turbine, cohesion type bladeless turbine, boundary layer theory, cohesion type bladeless turbine, tangential fluid flow, viscous and adhesive forces, plenum chamber, pico hydro systems

Procedia PDF Downloads 55
7864 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126℃, the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: downhole heat exchangers, geothermal power generation, organic rankine cycle, refrigerants, working fluids

Procedia PDF Downloads 288
7863 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture

Authors: Juan Huang, Hugo Ninanya

Abstract:

Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.

Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis

Procedia PDF Downloads 175
7862 Fluid Structure Interaction Study between Ahead and Angled Impact of AGM 88 Missile Entering Relatively High Viscous Fluid for K-Omega Turbulence Model

Authors: Abu Afree Andalib, Rafiur Rahman, Md Mezbah Uddin

Abstract:

The main objective of this work is to anatomize on the various parameters of AGM 88 missile anatomized using FSI module in Ansys. Computational fluid dynamics is used for the study of fluid flow pattern and fluidic phenomenon such as drag, pressure force, energy dissipation and shockwave distribution in water. Using finite element analysis module of Ansys, structural parameters such as stress and stress density, localization point, deflection, force propagation is determined. Separate analysis on structural parameters is done on Abacus. State of the art coupling module is used for FSI analysis. Fine mesh is considered in every case for better result during simulation according to computational machine power. The result of the above-mentioned parameters is analyzed and compared for two phases using graphical representation. The result of Ansys and Abaqus are also showed. Computational Fluid Dynamics and Finite Element analyses and subsequently the Fluid-Structure Interaction (FSI) technique is being considered. Finite volume method and finite element method are being considered for modelling fluid flow and structural parameters analysis. Feasible boundary conditions are also utilized in the research. Significant change in the interaction and interference pattern while the impact was found. Theoretically as well as according to simulation angled condition was found with higher impact.

Keywords: FSI (Fluid Surface Interaction), impact, missile, high viscous fluid, CFD (Computational Fluid Dynamics), FEM (Finite Element Analysis), FVM (Finite Volume Method), fluid flow, fluid pattern, structural analysis, AGM-88, Ansys, Abaqus, meshing, k-omega, turbulence model

Procedia PDF Downloads 435
7861 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.

Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet

Procedia PDF Downloads 129
7860 Topology Optimization of Heat and Mass Transfer for Two Fluids under Steady State Laminar Regime: Application on Heat Exchangers

Authors: Rony Tawk, Boutros Ghannam, Maroun Nemer

Abstract:

Topology optimization technique presents a potential tool for the design and optimization of structures involved in mass and heat transfer. The method starts with an initial intermediate domain and should be able to progressively distribute the solid and the two fluids exchanging heat. The multi-objective function of the problem takes into account minimization of total pressure loss and maximization of heat transfer between solid and fluid subdomains. Existing methods account for the presence of only one fluid, while the actual work extends optimization distribution of solid and two different fluids. This requires to separate the channels of both fluids and to ensure a minimum solid thickness between them. This is done by adding a third objective function to the multi-objective optimization problem. This article uses density approach where each cell holds two local design parameters ranging from 0 to 1, where the combination of their extremums defines the presence of solid, cold fluid or hot fluid in this cell. Finite volume method is used for direct solver coupled with a discrete adjoint approach for sensitivity analysis and method of moving asymptotes for numerical optimization. Several examples are presented to show the ability of the method to find a trade-off between minimization of power dissipation and maximization of heat transfer while ensuring the separation and continuity of the channel of each fluid without crossing or mixing the fluids. The main conclusion is the possibility to find an optimal bi-fluid domain using topology optimization, defining a fluid to fluid heat exchanger device.

Keywords: topology optimization, density approach, bi-fluid domain, laminar steady state regime, fluid-to-fluid heat exchanger

Procedia PDF Downloads 368
7859 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nano Fluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W. Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in mini channel of carbon graphite plate to mimic the PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: heat transfer, mini channel, nanofluid, PEMFC

Procedia PDF Downloads 308
7858 Numerical Optimization of Trapezoidal Microchannel Heat Sinks

Authors: Yue-Tzu Yang, Shu-Ching Liao

Abstract:

This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 ≦ ≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.

Keywords: microchannel heat sinks, conjugate heat transfer, optimization, genetic algorithm method

Procedia PDF Downloads 281