Search results for: living conditions
203 Agro-Forestry Expansion in Middle Gangetic Basin: Adopters' Motivations and Experiences in Bihar, India
Authors: Rakesh Tiwary, D. M. Diwakar, Sandhya Mahapatro
Abstract:
Agro-forestry offers huge opportunities for diversification of agriculture in middle Gangetic Basin of India, particularly in the state of Bihar as the region is identified with traditional & stagnant agriculture, low productivity, high population pressure, rural poverty and lack of agro- industrial development. The region is endowed with favourable agro-climatic, soil & drainage conditions; interestingly, there has been an age old tradition of agro-forestry in the state. However, due to demographic pressures, declining land holdings and other socio- economic factors, agro forestry practices have declined in recent decades. The government of Bihar has initiated a special program for expansion of agro-forestry based on modern practices with an aim to raise income level of farmers, make available raw material for wood based industries and increase green cover in the state. The Agro-forestry Schemes – Poplar & Other Species are the key components of the program being implemented by Department of Environment & Forest, Govt. of Bihar. The paper is based on fieldwork based evaluation study on experiences of implementation of the agro-forestry schemes. Understanding adoption patterns, identification of key motives for practising agro-forestry, experiences of farmers well analysing the barriers in expansion constituted the major themes of the research study. This paper is based on primary as well as secondary data. The primary data consists of beneficiary household survey, Focus Group Discussions among beneficiary communities, dialogue and multi stakeholder meetings and field visit to the sites. The secondary data information was collected and analysed from official records, policy documents and reports. Primary data was collected from about 500 beneficiary households of Muzaffarpur & Saharsa- two populous, large and agriculture dominated districts of middle Gangetic basin of North Bihar. Survey also covers 100 households of non-beneficiaries. Probability Proportionate to Size method was used to determine the number of samples to be covered in different blocks of two districts. Qualitative tools were also implemented to have better insights about key research questions. Present paper discusses socio-economic background of farmers practising agro-forestry; the adoption patterns of agro- forestry (choice of plants, methods of plantation and others); and motivation behind adoption of agro-forestry and the comparative benefits of agro-forestry (vis-a-vis traditional agriculture). Experience of beneficiary farmers with agro-forestry based on government programs & promotional campaigns (in terms of awareness, ease of access, knowhow and others) have been covered in the paper. Different aspects of survival of plants have been closely examined. Non beneficiaries but potential adopters were also interviewed to understand barriers of adoption of agro- forestry. Paper provides policy recommendations and interventions required for effective expansion of the agro- forestry and realisation of its future prospects for agricultural diversification in the region.Keywords: agro-forestry adoption patterns, farmers’ motivations & experiences, Indian middle Gangetic plains, strategies for expansion
Procedia PDF Downloads 204202 Biotite from Contact-Metamorphosed Rocks of the Dizi Series of the Greater Caucasus
Authors: Irakli Javakhishvili, Tamara Tsutsunava, Giorgi Beridze
Abstract:
The Caucasus is a component of the Mediterranean collision belt. The Dizi series is situated within the Greater Caucasian region of the Caucasus and crops out in the core of the Svaneti anticlinorium. The series was formed in the continental slope conditions on the southern passive margin of the small ocean basin. The Dizi series crops out on about 560 square km with the thickness 2000-2200 m. The rocks are faunally dated from the Devonian to the Triassic inclusive. The series is composed of terrigenous phyllitic schists, sandstones, quartzite aleurolites and lenses and interlayers of marbleized limestones. During the early Cimmerian orogeny, they underwent regional metamorphism of chlorite-sericite subfacies of greenschist facies. Typical minerals of metapelites are chlorite, sericite, augite, quartz, and tourmaline, but of basic rocks - actinolite, fibrolite, prehnite, calcite, and chlorite are developed. Into the Dizi series, polyphase intrusions of gabbros, diorites, quartz-diorites, syenite-diorites, syenites, and granitoids are intruded. Their K-Ar age dating (176-165Ma) points out that their formation corresponds to the Bathonian orogeny. The Dizi series is well-studied geologically, but very complicated processes of its regional and contact metamorphisms are insufficiently investigated. The aim of the authors was a detailed study of contact metamorphism processes of the series rocks. Investigations were accomplished applying the following methodologies: finding of key sections, a collection of material, microscopic study of samples, microprobe and structural analysis of minerals and X-ray determination of elements. The Dizi series rocks formed under the influence of the Bathonian magmatites on metapelites and carbonate-enriched rocks. They are represented by quartz, biotite, sericite, graphite, andalusite, muscovite, plagioclase, corundum, cordierite, clinopyroxene, hornblende, cummingtonite, actinolite, and tremolite bearing hornfels, marbles, and skarns. The contact metamorphism aureole reaches 350 meters. Biotite is developed only in contact-metamorphosed rocks and is a rather informative index mineral. In metapelites, biotite is formed as a result of the reaction between phengite, chlorite, and leucoxene, but in basites, it replaces actinolite or actinolite-hornblende. To study the compositional regularities of biotites, they were investigated from both - metapelites and metabasites. In total, biotite from the basites is characterized by an increased of titanium in contrast to biotite from metapelites. Biotites from metapelites are distinguished by an increased amount of aluminum. In biotites an increased amount of titanium and aluminum is observed as they approximate the contact, while their magnesia content decreases. Metapelite biotites are characterized by an increased amount of alumina in aluminum octahedrals, in contrast to biotite of the basites. In biotites of metapelites, the amount of tetrahedric aluminum is 28–34%, octahedral - 15–26%, and in basites tetrahedral aluminum is 28–33%, and octahedral 7–21%. As a result of the study of minerals, including biotite, from the contact-metamorphosed rocks of the Dizi series three exocontact zones with corresponding mineral assemblages were identified. It was established that contact metamorphism in the aureole of the Dizi series intrusions is going on at a significantly higher temperature and lower pressure than the regional metamorphism preceding the contact metamorphism.Keywords: biotite, contact metamorphism, Dizi series, the Greater Caucasus
Procedia PDF Downloads 132201 Development of Knowledge Discovery Based Interactive Decision Support System on Web Platform for Maternal and Child Health System Strengthening
Authors: Partha Saha, Uttam Kumar Banerjee
Abstract:
Maternal and Child Healthcare (MCH) has always been regarded as one of the important issues globally. Reduction of maternal and child mortality rates and increase of healthcare service coverage were declared as one of the targets in Millennium Development Goals till 2015 and thereafter as an important component of the Sustainable Development Goals. Over the last decade, worldwide MCH indicators have improved but could not match the expected levels. Progress of both maternal and child mortality rates have been monitored by several researchers. Each of the studies has stated that only less than 26% of low-income and middle income countries (LMICs) were on track to achieve targets as prescribed by MDG4. Average worldwide annual rate of reduction of under-five mortality rate and maternal mortality rate were 2.2% and 1.9% as on 2011 respectively whereas rates should be minimum 4.4% and 5.5% annually to achieve targets. In spite of having proven healthcare interventions for both mothers and children, those could not be scaled up to the required volume due to fragmented health systems, especially in the developing and under-developed countries. In this research, a knowledge discovery based interactive Decision Support System (DSS) has been developed on web platform which would assist healthcare policy makers to develop evidence-based policies. To achieve desirable results in MCH, efficient resource planning is very much required. In maximum LMICs, resources are big constraint. Knowledge, generated through this system, would help healthcare managers to develop strategic resource planning for combatting with issues like huge inequity and less coverage in MCH. This system would help healthcare managers to accomplish following four tasks. Those are a) comprehending region wise conditions of variables related with MCH, b) identifying relationships within variables, c) segmenting regions based on variables status, and d) finding out segment wise key influential variables which have major impact on healthcare indicators. Whole system development process has been divided into three phases. Those were i) identifying contemporary issues related with MCH services and policy making; ii) development of the system; and iii) verification and validation of the system. More than 90 variables under three categories, such as a) educational, social, and economic parameters; b) MCH interventions; and c) health system building blocks have been included into this web-based DSS and five separate modules have been developed under the system. First module has been designed for analysing current healthcare scenario. Second module would help healthcare managers to understand correlations among variables. Third module would reveal frequently-occurring incidents along with different MCH interventions. Fourth module would segment regions based on previously mentioned three categories and in fifth module, segment-wise key influential interventions will be identified. India has been considered as case study area in this research. Data of 601 districts of India has been used for inspecting effectiveness of those developed modules. This system has been developed by importing different statistical and data mining techniques on Web platform. Policy makers would be able to generate different scenarios from the system before drawing any inference, aided by its interactive capability.Keywords: maternal and child heathcare, decision support systems, data mining techniques, low and middle income countries
Procedia PDF Downloads 258200 Female Frontline Health Workers in High-Risk Workplaces: Legal Protection in Bangladesh amid the Covid-19 Pandemic
Authors: Nabila Farhin, Israt Jahan
Abstract:
Despite the feminisation of the global health force, women mostly engage in nursing, midwifery and community health workers (HWs), and the posts like surgeons, doctors, and specialists are generally male-dominated. It is also prominent in Bangladesh, where female HWs witness systematic workplace inequalities, discrimination, and underpayment. The Covid-19 pandemic put unsurmountable pressure on HWs as they had to serve in high-risk workplaces as frontliners. The already disadvantaged female HWs shouldered the same burden, were overworked without adequate occupational health and safety measures (OSH) and risked their lives. Acknowledging their vulnerable workplace conditions, the World Health Organization (WHO) and International Labour Organization (ILO) circulated a few specialised guidelines amid the peril. Bangladesh tried to adhere to international guidelines while formulating pandemic management strategies. In reality, the already weak and understaffed health sector collapsed with the patient influx and many HWs got infected and died in the line of duty, exposing the high-risk nature of the work. Unfortunately, the gender-segregated data of infected HWs are absent. This qualitative research investigates whether the existing laws of Bangladesh are adequate in protecting female HWs as frontliners in high-risk workplaces during the Covid-19 pandemic. The paper first examines international labour laws safeguarding female frontline HWs. It also analyses the specialised Covid-19 pandemic guidelines protecting their interests. Finally, the research investigates the compliance of Bangladesh as per international legal guidance during the pandemic. In doing so, it explores the domestic laws, professional guidelines for HWs and pandemic response strategies. The paper critically examines the primary sources like international and national statutes, rules, regulations and guidelines. Secondary sources like authoritative journal articles, books and newspaper reports are contextually analysed in line with the objective of the paper. The definition of HW is ambiguous in the labour laws of Bangladesh. It leads to confusion regarding the extent of legal protection rendered to female HWs at private hospitals in high-risk situations. The labour laws are not applicable in Public hospitals, as the employees follow the public service rules. Unfortunately, the country has no specialised law to protect HWs in high-risk workplaces, and the professional guidelines for HWs also remain inadequate in this regard. Even though the pandemic management strategies highlight some protective measures in high-risk situations, they only deal with HWs who are pregnant or have underlying health issues. No specialised protective guidelines can be found for female HWs as frontliners. Therefore, the laws are insufficient and failed to render adequate legal protection to female frontline HWs during the pandemic. The country also lacks comprehensive health legislation and uniform institutional and professional guidelines, preventing them from accessing grievance mechanisms. Hence, the female HWs felt victimised while duty-bound to serve in high-risk workplaces without adequate safeguards. Bangladesh should clarify the definition of HWs and standardise the service rules for providing medical care in high-risk workplaces. The research also recommends adequate health legislation and specialised legal protection to safeguard female HWs in future emergencies.Keywords: female health workers (HWs), high-risk workplaces, Covid-19 pandemic, Bangladesh
Procedia PDF Downloads 78199 Satellite Connectivity for Sustainable Mobility
Authors: Roberta Mugellesi Dow
Abstract:
As the climate crisis becomes unignorable, it is imperative that new services are developed addressing not only the needs of customers but also taking into account its impact on the environment. The Telecommunication and Integrated Application (TIA) Directorate of ESA is supporting the green transition with particular attention to the sustainable mobility.“Accelerating the shift to sustainable and smart mobility” is at the core of the European Green Deal strategy, which seeks a 90% reduction in related emissions by 2050 . Transforming the way that people and goods move is essential to increasing mobility while decreasing environmental impact, and transport must be considered holistically to produce a shared vision of green intermodal mobility. The use of space technologies, integrated with terrestrial technologies, is an enabler of smarter traffic management and increased transport efficiency for automated and connected multimodal mobility. Satellite connectivity, including future 5G networks, and digital technologies such as Digital Twin, AI, Machine Learning, and cloud-based applications are key enablers of sustainable mobility.SatCom is essential to ensure that connectivity is ubiquitously available, even in remote and rural areas, or in case of a failure, by the convergence of terrestrial and SatCom connectivity networks, This is especially crucial when there are risks of network failures or cyber-attacks targeting terrestrial communication. SatCom ensures communication network robustness and resilience. The combination of terrestrial and satellite communication networks is making possible intelligent and ubiquitous V2X systems and PNT services with significantly enhanced reliability and security, hyper-fast wireless access, as well as much seamless communication coverage. SatNav is essential in providing accurate tracking and tracing capabilities for automated vehicles and in guiding them to target locations. SatNav can also enable location-based services like car sharing applications, parking assistance, and fare payment. In addition to GNSS receivers, wireless connections, radar, lidar, and other installed sensors can enable automated vehicles to monitor surroundings, to ‘talk to each other’ and with infrastructure in real-time, and to respond to changes instantaneously. SatEO can be used to provide the maps required by the traffic management, as well as evaluate the conditions on the ground, assess changes and provide key data for monitoring and forecasting air pollution and other important parameters. Earth Observation derived data are used to provide meteorological information such as wind speed and direction, humidity, and others that must be considered into models contributing to traffic management services. The paper will provide examples of services and applications that have been developed aiming to identify innovative solutions and new business models that are allowed by new digital technologies engaging space and non space ecosystem together to deliver value and providing innovative, greener solutions in the mobility sector. Examples include Connected Autonomous Vehicles, electric vehicles, green logistics, and others. For the technologies relevant are the hybrid satcom and 5G providing ubiquitous coverage, IoT integration with non space technologies, as well as navigation, PNT technology, and other space data.Keywords: sustainability, connectivity, mobility, satellites
Procedia PDF Downloads 133198 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 339197 Gendered Water Insecurity: a Structural Equation Approach for Female-Headed Households in South Africa
Authors: Saul Ngarava, Leocadia Zhou, Nomakhaya Monde
Abstract:
Water crises have the fourth most significant societal impact after weapons of mass destruction, climate change, and extreme weather conditions, ahead of natural disasters. Intricacies between women and water are central to achieving the 2030 Sustainable Development Goals (SDGs). The majority of the 1.2 billion poor people worldwide, with two-thirds being women, and mostly located in Sub Sahara Africa (SSA) and South Asia, do not have access to safe and reliable sources of water. There exist gendered differences in water security based on the division of labour associating women with water. Globally, women and girls are responsible for water collection in 80% of the households which have no water on their premises. Women spend 16 million hours a day collecting water, while men and children spend 6 million and 4 million per day, respectively, which is time foregone in the pursuit of other livelihood activities. Due to their proximity and activities concerning water, women are vulnerable to water insecurity through exposures to water-borne diseases, fatigue from physically carrying water, and exposure to sexual and physical harassment, amongst others. Proximity to treated water and their wellbeing also has an effect on their sensitivity and adaptive capacity to water insecurity. The great distances, difficult terrain and heavy lifting expose women to vulnerabilities of water insecurity. However, few studies have quantified the vulnerabilities and burdens on women, with a few taking a phenomenological qualitative approach. Vulnerability studies have also been scanty in the water security realm, with most studies taking linear forms of either quantifying exposures, sensitivities or adaptive capacities in climate change studies. The current study argues for the need for a water insecurity vulnerability assessment, especially for women into research agendas as well as policy interventions, monitoring, and evaluation. The study sought to identify and provide pathways through which female-headed households were water insecure in South Africa, the 30th driest country in the world. This was through linking the drinking water decision as well as the vulnerability frameworks. Secondary data collected during the 2016 General Household Survey (GHS) was utilised, with a sample of 5928 female-headed households. Principal Component Analysis and Structural Equation Modelling were used to analyse the data. The results show dynamic relationships between water characteristics and water treatment. There were also associations between water access and wealth status of the female-headed households. Association was also found between water access and water treatment as well as between wealth status and water treatment. The study concludes that there are dynamic relationships in water insecurity (exposure, sensitivity, and adaptive capacity) for female-headed households in South Africa. The study recommends that a multi-prong approach is required in tackling exposures, sensitivities, and adaptive capacities to water insecurity. This should include capacitating and empowering women for wealth generation, improve access to water treatment equipment as well as prioritising the improvement of infrastructure that brings piped and safe water to female-headed households.Keywords: gender, principal component analysis, structural equation modelling, vulnerability, water insecurity
Procedia PDF Downloads 121196 The Role of Creative Works Dissemination Model in EU Copyright Law Modernization
Authors: Tomas Linas Šepetys
Abstract:
In online content-sharing service platforms, the ability of creators to restrict illicit use of audiovisual creative works has effectively been abolished, largely due to specific infrastructure where a huge volume of copyrighted audiovisual content can be made available to the public. The European Union legislator has attempted to strengthen the positions of creators in the realm of online content-sharing services. Article 17 of the new Digital Single Market Directive considers online content-sharing service providers to carry out acts of communication to the public of any creative content uploaded to their platforms by users and posits requirements to obtain licensing agreements. While such regulation intends to assert authors‘ ability to effectively control the dissemination of their creative works, it also creates threats of parody content overblocking through automated content monitoring. Such potentially paradoxical outcome of the efforts of the EU legislator to deliver economic safeguards for the creators in the online content-sharing service platforms leads to presume lack of informity on legislator‘s part regarding creative works‘ economic exploitation opportunities provided to creators in the online content-sharing infrastructure. Analysis conducted in this scientific research discloses that the aforementioned irregularities of parody and other creative content dissemination are caused by EU legislators‘ lack of assessment of value extraction conditions for parody creators in the online content-sharing service platforms. Historical and modeling research method application reveals the existence of two creative content dissemination models and their unique mechanisms of commercial value creation. Obligations to obtain licenses and liability over creative content uploaded to their platforms by users set in Article 17 of the Digital Single Market Directive represent technological replication of the proprietary dissemination model where the creator is able to restrict access to creative content apart from licensed retail channels. The online content-sharing service platforms represent an open dissemination model where the economic potential of creative content is based on the infrastructure of unrestricted access by users and partnership with advertising services offered by the platform. Balanced modeling of proprietary dissemination models in such infrastructure requires not only automated content monitoring measures but also additional regulatory monitoring solutions to separate parody and other types of creative content. An example of the Digital Single Market Directive proves that regulation can dictate not only the technological establishment of a proprietary dissemination model but also a partial reduction of the open dissemination model and cause a disbalance between the economic interests of creators relying on such models. The results of this scientific research conclude an informative role of the creative works dissemination model in the EU copyright law modernization process. A thorough understanding of the commercial prospects of the open dissemination model intrinsic to the online content-sharing service platform structure requires and encourages EU legislators to regulate safeguards for parody content dissemination. Implementing such safeguards would result in a common application of proprietary and open dissemination models in the online content-sharing service platforms and balanced protection of creators‘ economic interests explicitly based on those creative content dissemination models.Keywords: copyright law, creative works dissemination model, digital single market directive, online content-sharing services
Procedia PDF Downloads 74195 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton
Authors: komal verma, V. S. Moholkar
Abstract:
In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity
Procedia PDF Downloads 72194 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality
Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan
Abstract:
Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application
Procedia PDF Downloads 74193 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology
Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey
Abstract:
Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization
Procedia PDF Downloads 116192 Smart Mobility Planning Applications in Meeting the Needs of the Urbanization Growth
Authors: Caroline Atef Shoukry Tadros
Abstract:
Massive Urbanization growth threatens the sustainability of cities and the quality of city life. This raised the need for an alternate model of sustainability, so we need to plan the future cities in a smarter way with smarter mobility. Smart Mobility planning applications are solutions that use digital technologies and infrastructure advances to improve the efficiency, sustainability, and inclusiveness of urban transportation systems. They can contribute to meeting the needs of Urbanization growth by addressing the challenges of traffic congestion, pollution, accessibility, and safety in cities. Some example of a Smart Mobility planning application are Mobility-as-a-service: This is a service that integrates different transport modes, such as public transport, shared mobility, and active mobility, into a single platform that allows users to plan, book, and pay for their trips. This can reduce the reliance on private cars, optimize the use of existing infrastructure, and provide more choices and convenience for travelers. MaaS Global is a company that offers mobility-as-a-service solutions in several cities around the world. Traffic flow optimization: This is a solution that uses data analytics, artificial intelligence, and sensors to monitor and manage traffic conditions in real-time. This can reduce congestion, emissions, and travel time, as well as improve road safety and user satisfaction. Waycare is a platform that leverages data from various sources, such as connected vehicles, mobile applications, and road cameras, to provide traffic management agencies with insights and recommendations to optimize traffic flow. Logistics optimization: This is a solution that uses smart algorithms, blockchain, and IoT to improve the efficiency and transparency of the delivery of goods and services in urban areas. This can reduce the costs, emissions, and delays associated with logistics, as well as enhance the customer experience and trust. ShipChain is a blockchain-based platform that connects shippers, carriers, and customers and provides end-to-end visibility and traceability of the shipments. Autonomous vehicles: This is a solution that uses advanced sensors, software, and communication systems to enable vehicles to operate without human intervention. This can improve the safety, accessibility, and productivity of transportation, as well as reduce the need for parking space and infrastructure maintenance. Waymo is a company that develops and operates autonomous vehicles for various purposes, such as ride-hailing, delivery, and trucking. These are some of the ways that Smart Mobility planning applications can contribute to meeting the needs of the Urbanization growth. However, there are also various opportunities and challenges related to the implementation and adoption of these solutions, such as the regulatory, ethical, social, and technical aspects. Therefore, it is important to consider the specific context and needs of each city and its stakeholders when designing and deploying Smart Mobility planning applications.Keywords: smart mobility planning, smart mobility applications, smart mobility techniques, smart mobility tools, smart transportation, smart cities, urbanization growth, future smart cities, intelligent cities, ICT information and communications technologies, IoT internet of things, sensors, lidar, digital twin, ai artificial intelligence, AR augmented reality, VR virtual reality, robotics, cps cyber physical systems, citizens design science
Procedia PDF Downloads 73191 Post-bladder Catheter Infection
Authors: Mahla Azimi
Abstract:
Introduction: Post-bladder catheter infection is a common and significant healthcare-associated infection that affects individuals with indwelling urinary catheters. These infections can lead to various complications, including urinary tract infections (UTIs), bacteremia, sepsis, and increased morbidity and mortality rates. This article aims to provide a comprehensive review of post-bladder catheter infections, including their causes, risk factors, clinical presentation, diagnosis, treatment options, and preventive measures. Causes and Risk Factors: Post-bladder catheter infections primarily occur due to the colonization of microorganisms on the surface of the urinary catheter. The most common pathogens involved are Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus species. Several risk factors contribute to the development of these infections, such as prolonged catheterization duration, improper insertion technique, poor hygiene practices during catheter care, compromised immune system function in patients with underlying conditions or immunosuppressive therapy. Clinical Presentation: Patients with post-bladder catheter infections may present with symptoms such as fever, chills, malaise, suprapubic pain or tenderness, and cloudy or foul-smelling urine. In severe cases or when left untreated for an extended period of time, patients may develop more severe symptoms like hematuria or signs of systemic infection. Diagnosis: The diagnosis of post-bladder catheter infection involves a combination of clinical evaluation and laboratory investigations. Urinalysis is crucial in identifying pyuria (presence of white blood cells) and bacteriuria (presence of bacteria). A urine culture is performed to identify the causative organism(s) and determine its antibiotic susceptibility profile. Treatment Options: Prompt initiation of appropriate antibiotic therapy is essential in managing post-bladder catheter infections. Empirical treatment should cover common pathogens until culture results are available. The choice of antibiotics should be guided by local antibiogram data to ensure optimal therapy. In some cases, catheter removal may be necessary, especially if the infection is recurrent or associated with severe complications. Preventive Measures: Prevention plays a vital role in reducing the incidence of post-bladder catheter infections. Strategies include proper hand hygiene, aseptic technique during catheter insertion and care, regular catheter maintenance, and timely removal of unnecessary catheters. Healthcare professionals should also promote patient education regarding self-care practices and signs of infection. Conclusion: Post-bladder catheter infections are a significant healthcare concern that can lead to severe complications and increased healthcare costs. Early recognition, appropriate diagnosis, and prompt treatment are crucial in managing these infections effectively. Implementing preventive measures can significantly reduce the incidence of post-bladder catheter infections and improve patient outcomes. Further research is needed to explore novel strategies for prevention and management in this field.Keywords: post-bladder catheter infection, urinary tract infection, bacteriuria, indwelling urinary catheters, prevention
Procedia PDF Downloads 81190 Promotion of Healthy Food Choices in School Children through Nutrition Education
Authors: Vinti Davar
Abstract:
Introduction: Childhood overweight increases the risk for certain medical and psychological conditions. Millions of school-age children worldwide are affected by serious yet easily treatable and preventable illnesses that inhibit their ability to learn. Healthier children stay in school longer, attend more regularly, learn more and become healthier and more productive adults. Schools are an important setting for nutrition education because one can reach most children, teachers and parents. These years offer a key window for shaping their lifetime habits, which have an impact on their health throughout life. Against this background, an attempt was made to impart nutrition education to school children in Haryana state of India to promote healthy food choices and assess the effectiveness of this program. Methodology: This study was completed in two phases. During the first phase, pre-intervention anthropometric and dietary survey was conducted; the teaching materials for nutrition intervention program were developed and tested; and the questionnaire was validated. In the second phase, an intervention was implemented in two schools of Kurukshetra, Haryana for six months by personal visits once a week. A total of 350 children in the age group of 6-12 years were selected. Out of these, 279 children, 153 boys and 126 girls completed the study. The subjects were divided into four groups namely: underweight, normal, overweight and obese based on body mass index-for-age categories. A power point colorful presentation to improve the quality of tiffin, snacks and meals emphasizing inclusion of all food groups especially vegetables every day and fruits at least 3-4 days per week was used. An extra 20 minutes of aerobic exercise daily was likewise organized and a healthy school environment created. Provision of clean drinking water by school authorities was ensured. Selling of soft drinks and energy-dense snacks in the school canteen as well as advertisements about soft drink and snacks on the school walls were banned. Post intervention, anthropometric indices and food selections were reassessed. Results: The results of this study reiterate the critical role of nutrition education and promotion in improving the healthier food choices by school children. It was observed that normal, overweight and obese children participating in nutrition education intervention program significantly (p≤0.05) increased their daily seasonal fruit and vegetable consumption. Fat and oil consumption was significantly reduced by overweight and obese subjects. Fast food intake was controlled by obese children. The nutrition knowledge of school children significantly improved (p≤0.05) from pre to post intervention. A highly significant increase (p≤0.00) was noted in the nutrition attitude score after intervention in all four groups. Conclusion: This study has shown that a well-planned nutrition education program could improve nutrition knowledge and promote positive changes in healthy food choices. A nutrition program inculcates wholesome eating and active life style habits in children and adolescents that could not only prevent them from chronic diseases and early death but also reduce healthcare cost and enhance the quality of life of citizens and thereby nations.Keywords: children, eating habits healthy food, obesity, school going, fast foods
Procedia PDF Downloads 204189 Role of Functional Divergence in Specific Inhibitor Design: Using γ-Glutamyltranspeptidase (GGT) as a Model Protein
Authors: Ved Vrat Verma, Rani Gupta, Manisha Goel
Abstract:
γ-glutamyltranspeptidase (GGT: EC 2.3.2.2) is an N-terminal nucleophile hydrolase conserved in all three domains of life. GGT plays a key role in glutathione metabolism where it catalyzes the breakage of the γ-glutamyl bonds and transfer of γ-glutamyl group to water (hydrolytic activity) or amino acids or short peptides (transpeptidase activity). GGTs from bacteria, archaea, and eukaryotes (human, rat and mouse) are homologous proteins sharing >50% sequence similarity and conserved four layered αββα sandwich like three dimensional structural fold. These proteins though similar in their structure to each other, are quite diverse in their enzyme activity: some GGTs are better at hydrolysis reactions but poor in transpeptidase activity, whereas many others may show opposite behaviour. GGT is known to be involved in various diseases like asthma, parkinson, arthritis, and gastric cancer. Its inhibition prior to chemotherapy treatments has been shown to sensitize tumours to the treatment. Microbial GGT is known to be a virulence factor too, important for the colonization of bacteria in host. However, all known inhibitors (mimics of its native substrate, glutamate) are highly toxic because they interfere with other enzyme pathways. However, a few successful efforts have been reported previously in designing species specific inhibitors. We aim to leverage the diversity seen in GGT family (pathogen vs. eukaryotes) for designing specific inhibitors. Thus, in the present study, we have used DIVERGE software to identify sites in GGT proteins, which are crucial for the functional and structural divergence of these proteins. Since, type II divergence sites vary in clade specific manner, so type II divergent sites were our focus of interest throughout the study. Type II divergent sites were identified for pathogen vs. eukaryotes clusters and sites were marked on clade specific representative structures HpGGT (2QM6) and HmGGT (4ZCG) of pathogen and eukaryotes clade respectively. The crucial divergent sites within 15 A radii of the binding cavity were highlighted, and in-silico mutations were performed on these sites to delineate the role of these sites on the mechanism of catalysis and protein folding. Further, the amino acid network (AAN) analysis was also performed by Cytoscape to delineate assortative mixing for cavity divergent sites which could strengthen our hypothesis. Additionally, molecular dynamics simulations were performed for wild complexes and mutant complexes close to physiological conditions (pH 7.0, 0.1 M ionic strength and 1 atm pressure) and the role of putative divergence sites and structural integrities of the homologous proteins have been analysed. The dynamics data were scrutinized in terms of RMSD, RMSF, non-native H-bonds and salt bridges. The RMSD, RMSF fluctuations of proteins complexes are compared, and the changes at protein ligand binding sites were highlighted. The outcomes of our study highlighted some crucial divergent sites which could be used for novel inhibitors designing in a species-specific manner. Since, for drug development, it is challenging to design novel drug by targeting similar protein which exists in eukaryotes, so this study could set up an initial platform to overcome this challenge and help to deduce the more effective targets for novel drug discovery.Keywords: γ-glutamyltranspeptidase, divergence, species-specific, drug design
Procedia PDF Downloads 268188 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method
Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez
Abstract:
Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics
Procedia PDF Downloads 92187 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods
Authors: Dario Milani, Guido Morgenthal
Abstract:
Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method
Procedia PDF Downloads 262186 Deconstructing Reintegration Services for Survivors of Human Trafficking: A Feminist Analysis of Australian and Thai Government and Non-Government Responses
Authors: Jessica J. Gillies
Abstract:
Awareness of the tragedy that is human trafficking has increased exponentially over the past two decades. The four pillars widely recognised as global solutions to the problem are prevention, prosecution, protection, and partnership between government and non-government organisations. While ‘sex-trafficking’ initially received major attention, this focus has shifted to other industries that conceal broader experiences of exploitation. However, within the regions of focus for this study, namely Australia and Thailand, trafficking for the purpose of sexual exploitation remains the commonly uncovered narrative of criminal justice investigations. In these regions anti-trafficking action is characterised by government-led prevention and prosecution efforts; whereas protection and reintegration practices have received criticism. Typically, non-government organisations straddle the critical chasm between policy and practice; therefore, they are perfectly positioned to contribute valuable experiential knowledge toward understanding how both sectors can support survivors in the post-trafficking experience. The aim of this research is to inform improved partnerships throughout government and non-government post-trafficking services by illuminating gaps in protection and reintegration initiatives. This research will explore government and non-government responses to human trafficking in Thailand and Australia, in order to understand how meaning is constructed in this context and how the construction of meaning effects survivors in the post-trafficking experience. A qualitative, three-stage methodology was adopted for this study. The initial stage of enquiry consisted of a discursive analysis, in order to deconstruct the broader discourses surrounding human trafficking. The data included empirical papers, grey literature such as publicly available government and non-government reports, and anti-trafficking policy documents. The second and third stages of enquiry will attempt to further explore the findings of the discourse analysis and will focus more specifically on protection and reintegration in Australia and Thailand. Stages two and three will incorporate process observations in government and non-government survivor support services, and semi-structured interviews with employees and volunteers within these settings. Two key findings emerged from the discursive analysis. The first exposed conflicting feminist arguments embedded throughout anti-trafficking discourse. Informed by conflicting feminist discourses on sex-work, a discursive relationship has been constructed between sex-industry policy and anti-trafficking policy. In response to this finding, data emerging from the process observations and semi-structured interviews will be interpreted using a feminist theoretical framework. The second finding progresses from the construction in the first. The discursive construction of sex-trafficking appears to have had influence over perceptions of the legitimacy of survivors, and therefore the support they receive in the post-trafficking experience. For example; women who willingly migrate for employment in the sex-industry, and on arrival are faced with exploitative conditions, are not perceived to be deserving of the same support as a woman who is not coerced, but rather physically forced, into such circumstances, yet both meet the criteria for a victim of human trafficking. The forthcoming study is intended to contribute toward building knowledge and understanding around the implications of the construction of legitimacy; and contextualise this in reference to government led protection and reintegration support services for survivors in the post-trafficking experience.Keywords: Australia, government, human trafficking, non-government, reintegration, Thailand
Procedia PDF Downloads 112185 Baseline Data for Insecticide Resistance Monitoring in Tobacco Caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) on Cole Crops
Authors: Prabhjot Kaur, B.K. Kang, Balwinder Singh
Abstract:
The tobacco caterpillar, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is an agricultural important pest species. S. litura has a wide host range of approximately recorded 150 plant species worldwide. In Punjab, this pest attains sporadic status primarily on cauliflower, Brassica oleracea (L.). This pest destroys vegetable crop and particularly prefers the cruciferae family. However, it is also observed feeding on other crops such as arbi, Colocasia esculenta (L.), mung bean, Vigna radiata (L.), sunflower, Helianthus annuus (L.), cotton, Gossypium hirsutum (L.), castor, Ricinus communis (L.), etc. Larvae of this pest completely devour the leaves of infested plant resulting in huge crop losses which ranges from 50 to 70 per cent. Indiscriminate and continuous use of insecticides has contributed in development of insecticide resistance in insects and caused the environmental degradation as well. Moreover, a base line data regarding the toxicity of the newer insecticides would help in understanding the level of resistance developed in this pest and any possible cross-resistance there in, which could be assessed in advance. Therefore, present studies on development of resistance in S. litura against four new chemistry insecticides (emamectin benzoate, chlorantraniliprole, indoxacarb and spinosad) were carried out in the Toxicology laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab, India during the year 2011-12. Various stages of S. litura (eggs, larvae) were collected from four different locations (Malerkotla, Hoshiarpur, Amritsar and Samrala) of Punjab. Resistance is developed in third instars of lepidopterous pests. Therefore, larval bioassays were conducted to estimate the response of field populations of thirty third-instar larvae of S. litura under laboratory conditions at 25±2°C and 65±5 per cent relative humidity. Leaf dip bioassay technique with diluted insecticide formulations recommended by Insecticide Resistance Action Committee (IRAC) was performed in the laboratory with seven to ten treatments depending on the insecticide class, respectively. LC50 values were estimated by probit analysis after correction to record control mortality data which was used to calculate the resistance ratios (RR). The LC50 values worked out for emamectin benzoate, chlorantraniliprole, indoxacarb, spinosad are 0.081, 0.088, 0.380, 4.00 parts per million (ppm) against pest populations collected from Malerkotla; 0.051, 0.060, 0.250, 3.00 (ppm) of Amritsar; 0.002, 0.001, 0.0076, 0.10 ppm for Samrala and 0.000014, 0.00001, 0.00056, 0.003 ppm against pest population of Hoshiarpur, respectively. The LC50 values for populations collected from these four locations were in the order Malerkotla>Amritsar>Samrala>Hoshiarpur for the insecticides (emamectin benzoate, chlorantraniliprole, indoxacarb and spinosad) tested. Based on LC50 values obtained, emamectin benzoate (0.000014 ppm) was found to be the most toxic among all the tested populations, followed by chlorantraniliprole (0.00001 ppm), indoxacarb (0.00056 ppm) and spinosad (0.003 ppm), respectively. The pairwise correlation coefficients of LC50 values indicated that there was lack of cross resistance for emamectin benzoate, chlorantraniliprole, spinosad, indoxacarb in populations of S. litura from Punjab. These insecticides may prove to be promising substitutes for the effective control of insecticide resistant populations of S. litura in Punjab state, India.Keywords: Spodoptera litura, insecticides, toxicity, resistance
Procedia PDF Downloads 342184 Slipping Through the Net: Women’s Experiences of Maternity Services and Social Support in the UK During the COVID-19 Pandemic
Authors: Freya Harding, Anne Gatuguta, Chi Eziefula
Abstract:
Introduction Research shows the quality of experiences of pregnancy, birth, and postpartum impacts the health and well-being of the mother and baby. This is recognised by the WHO in their recommendations ‘Intrapartum care for a positive childbirth experience’. The COVID-19 pandemic saw the transformation of the NHS Maternity services to prevent the transmission of COVID-19. Physical and social isolation may have affected women’s experiences of pregnancy, birth and postpartum; especially those of healthcare. Examples of such changes made to the NHS include both the reduction in volume of face-to-face consultations and restrictions to visitor time in hospitals. One notable detriment due to these changes was the absence of a partner during certain stages of birth. The aim of this study was to explore women’s experiences of pregnancy, birth, and postnatal period during the COVID-19 pandemic in the UK. Methods We collected qualitative data from women who had given birth during the COVID-19 pandemic. In-depth, semi-structured interviews were conducted with twelve participants recruited from mother and baby groups in Southeast England. Data were audio-recorded, transcribed verbatim, and analysed thematically using both inductive and deductive approaches. Ethics permission was granted from Brighton and Sussex Medical School (ER/BSMS9A83/1). Results Interviews were conducted with 12 women who gave birth between May 2020 and February 2021. Ages of the participants ranged between 28 and 42 years, most of which were white British, with one being Asian British. All participants were heterosexual and either married or co-habiting with their partner. Five participants worked in the NHS, and all participants had professional occupations. Women felt inadequately supported both socially and medically. An appropriate sense of control over their own birthing experience was lacking. Safety mechanisms, such as in-person visits from the midwife, had no suitable alternatives in place. Serious health issues were able to “slip through the net.” Mental health conditions in some of those interviewed worsened or developed. Similarly, reduced support from partners during birth and during the immediate postpartum period at the hospital, coupled with reduced ward staffing, resulted in some traumatic experiences; particularly for women who had undergone caesarean section. However, some unexpected positive effects were reported; one example being that partners were able to spend more time with their baby due to furlough schemes and working from home. Similarly, emergency care was not felt to have been compromised. Overall, six themes emerged: (1) Self-reported traumatic experiences, (2) Challenges of caring for a baby with reduced medical and social support, (3) Unexpected benefits to the parenting experience, (4) The effects of a sudden change in medical management (5) Poor communication from healthcare professionals (6) Social change; with subthemes of support accessing medical care, the workplace, family and friends, and antenatal & baby groups. Conclusions The results indicate that the healthcare system was unable to adequately deliver maternity care to facilitate positive pregnancy, birth, and postnatal experiences during the heights of the pandemic. The poor quality of such experiences has been linked an increased risk of long-term health complications in both the mother and child.Keywords: pregnancy, birth, postpartum, postnatal, COVID-19, maternity, social support, qualitative, pandemic
Procedia PDF Downloads 138183 Scalable CI/CD and Scalable Automation: Assisting in Optimizing Productivity and Fostering Delivery Expansion
Authors: Solanki Ravirajsinh, Kudo Kuniaki, Sharma Ankit, Devi Sherine, Kuboshima Misaki, Tachi Shuntaro
Abstract:
In software development life cycles, the absence of scalable CI/CD significantly impacts organizations, leading to increased overall maintenance costs, prolonged release delivery times, heightened manual efforts, and difficulties in meeting tight deadlines. Implementing CI/CD with standard serverless technologies using cloud services overcomes all the above-mentioned issues and helps organizations improve efficiency and faster delivery without the need to manage server maintenance and capacity. By integrating scalable CI/CD with scalable automation testing, productivity, quality, and agility are enhanced while reducing the need for repetitive work and manual efforts. Implementing scalable CI/CD for development using cloud services like ECS (Container Management Service), AWS Fargate, ECR (to store Docker images with all dependencies), Serverless Computing (serverless virtual machines), Cloud Log (for monitoring errors and logs), Security Groups (for inside/outside access to the application), Docker Containerization (Docker-based images and container techniques), Jenkins (CI/CD build management tool), and code management tools (GitHub, Bitbucket, AWS CodeCommit) can efficiently handle the demands of diverse development environments and are capable of accommodating dynamic workloads, increasing efficiency for faster delivery with good quality. CI/CD pipelines encourage collaboration among development, operations, and quality assurance teams by providing a centralized platform for automated testing, deployment, and monitoring. Scalable CI/CD streamlines the development process by automatically fetching the latest code from the repository every time the process starts, building the application based on the branches, testing the application using a scalable automation testing framework, and deploying the builds. Developers can focus more on writing code and less on managing infrastructure as it scales based on the need. Serverless CI/CD eliminates the need to manage and maintain traditional CI/CD infrastructure, such as servers and build agents, reducing operational overhead and allowing teams to allocate resources more efficiently. Scalable CI/CD adjusts the application's scale according to usage, thereby alleviating concerns about scalability, maintenance costs, and resource needs. Creating scalable automation testing using cloud services (ECR, ECS Fargate, Docker, EFS, Serverless Computing) helps organizations run more than 500 test cases in parallel, aiding in the detection of race conditions, performance issues, and reducing execution time. Scalable CI/CD offers flexibility, dynamically adjusting to varying workloads and demands, allowing teams to scale resources up or down as needed. It optimizes costs by only paying for the resources as they are used and increases reliability. Scalable CI/CD pipelines employ automated testing and validation processes to detect and prevent errors early in the development cycle.Keywords: achieve parallel execution, cloud services, scalable automation testing, scalable continuous integration and deployment
Procedia PDF Downloads 44182 Influence of Water Physicochemical Properties and Vegetation Type on the Distribution of Schistosomiasis Intermediate Host Snails in Nelson Mandela Bay
Authors: Prince S. Campbell, Janine B. Adams, Melusi Thwala, Opeoluwa Oyedele, Paula E. Melariri
Abstract:
Schistosomiasis is an infectious water-borne disease that holds substantial medical and veterinary importance and is transmitted by Schistosoma flatworms. The transmission and spread of the disease are geographically and temporally confined to water bodies (rivers, lakes, lagoons, dams, etc.) inhabited by its obligate intermediate host snails and human water contact. Human infection with the parasite occurs via skin penetration subsequent to exposure to water infested with schistosome cercariae. Environmental factors play a crucial role in the spread of the disease, as the survival of intermediate host snails is dependent on favourable conditions. These factors include physical and chemical components of water, including pH, salinity, temperature, electrical conductivity, dissolved oxygen, turbidity, water hardness, total dissolved solids, and velocity, as well as biological factors such as predator-prey interactions, competition, food availability, and the presence and density of aquatic vegetation. This study evaluated the physicochemical properties of the water bodies, vegetation type, distribution, and habitat presence of the snail intermediate host. A quantitative cross-sectional research design approach was employed in this study. Eight sampling sites were selected based on their proximity to residential areas. Snails and water physicochemical properties were collected over different seasons for 9 months. A simple dip method was used for surface water samples and measurements were done using multiparameter meters. Snails captured using a 300 µm mesh scoop net and predominant plant species were gathered and transported to experts for identification. Vegetation composition and cover were visually estimated and recorded at each sampling point. Data was analysed using R software (version 4.3.1). A total of 844 freshwater snails were collected, with Physa genera accounting for 95.9% of the snails. Bulinus and Biomphalaria snails, which serve as intermediate hosts for the disease, accounted for (0.9%) and (0.6%) respectively. Indicator macrophytes such as Eicchornia crassipes, Stuckenia pectinate, Typha capensis, and floating macroalgae were found in several water bodies. A negative and weak correlation existed between the number of snails and physicochemical properties such as electrical conductivity (r=-0.240), dissolved oxygen (r=-0.185), hardness (r=-0.210), pH (r=-0.235), salinity (r=-0.242), temperature (r=-0.273), and total dissolved solids (r=-0.236). There was no correlation between the number of snails and turbidity (r=-0.070). Moreover, there was a negative and weak correlation between snails and vegetation coverage (r=-0.127). Findings indicated that snail abundance marginally declined with rising physicochemical concentrations, and the majority of snails were located in regions with less vegetation cover. The reduction in Bulinus and Biomphalaria snail populations may also be attributed to other factors, such as competition among the snails. Snails of the Physa genus were abundant due to their noteworthy resilience in difficult environments. These snails have the potential to function as biological control agents in areas where the disease is endemic, as they outcompete other snails, including schistosomiasis intermediate host snails.Keywords: intermediate host snails, physicochemical properties, schistosomiasis, vegetation type
Procedia PDF Downloads 21181 Decision Making on Smart Energy Grid Development for Availability and Security of Supply Achievement Using Reliability Merits
Authors: F. Iberraken, R. Medjoudj, D. Aissani
Abstract:
The development of the smart grids concept is built around two separate definitions, namely: The European one oriented towards sustainable development and the American one oriented towards reliability and security of supply. In this paper, we have investigated reliability merits enabling decision-makers to provide a high quality of service. It is based on system behavior using interruptions and failures modeling and forecasting from one hand and on the contribution of information and communication technologies (ICT) to mitigate catastrophic ones such as blackouts from the other hand. It was found that this concept has been adopted by developing and emerging countries in short and medium terms followed by sustainability concept at long term planning. This work has highlighted the reliability merits such as: Benefits, opportunities, costs and risks considered as consistent units of measuring power customer satisfaction. From the decision making point of view, we have used the analytic hierarchy process (AHP) to achieve customer satisfaction, based on the reliability merits and the contribution of such energy resources. Certainly nowadays, fossil and nuclear ones are dominating energy production but great advances are already made to jump into cleaner ones. It was demonstrated that theses resources are not only environmentally but also economically and socially sustainable. The paper is organized as follows: Section one is devoted to the introduction, where an implicit review of smart grids development is given for the two main concepts (for USA and Europeans countries). The AHP method and the BOCR developments of reliability merits against power customer satisfaction are developed in section two. The benefits where expressed by the high level of availability, maintenance actions applicability and power quality. Opportunities were highlighted by the implementation of ICT in data transfer and processing, the mastering of peak demand control, the decentralization of the production and the power system management in default conditions. Costs were evaluated using cost-benefit analysis, including the investment expenditures in network security, becoming a target to hackers and terrorists, and the profits of operating as decentralized systems, with a reduced energy not supplied, thanks to the availability of storage units issued from renewable resources and to the current power lines (CPL) enabling the power dispatcher to manage optimally the load shedding. For risks, we have razed the adhesion of citizens to contribute financially to the system and to the utility restructuring. What is the degree of their agreement compared to the guarantees proposed by the managers about the information integrity? From technical point of view, have they sufficient information and knowledge to meet a smart home and a smart system? In section three, an application of AHP method is made to achieve power customer satisfaction based on the main energy resources as alternatives, using knowledge issued from a country that has a great advance in energy mutation. Results and discussions are given in section four. It was given us to conclude that the option to a given resource depends on the attitude of the decision maker (prudent, optimistic or pessimistic), and that status quo is neither sustainable nor satisfactory.Keywords: reliability, AHP, renewable energy resources, smart grids
Procedia PDF Downloads 442180 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 20179 Ragging and Sludging Measurement in Membrane Bioreactors
Authors: Pompilia Buzatu, Hazim Qiblawey, Albert Odai, Jana Jamaleddin, Mustafa Nasser, Simon J. Judd
Abstract:
Membrane bioreactor (MBR) technology is challenged by the tendency for the membrane permeability to decrease due to ‘clogging’. Clogging includes ‘sludging’, the filling of the membrane channels with sludge solids, and ‘ragging’, the aggregation of short filaments to form long rag-like particles. Both sludging and ragging demand manual intervention to clear out the solids, which is time-consuming, labour-intensive and potentially damaging to the membranes. These factors impact on costs more significantly than membrane surface fouling which, unlike clogging, is largely mitigated by the chemical clean. However, practical evaluation of MBR clogging has thus far been limited. This paper presents the results of recent work attempting to quantify sludging and clogging based on simple bench-scale tests. Results from a novel ragging simulation trial indicated that rags can be formed within 24-36 hours from dispersed < 5 mm-long filaments at concentrations of 5-10 mg/L under gently agitated conditions. Rag formation occurred for both a cotton wool standard and samples taken from an operating municipal MBR, with between 15% and 75% of the added fibrous material forming a single rag. The extent of rag formation depended both on the material type or origin – lint from laundering operations forming zero rags – and the filament length. Sludging rates were quantified using a bespoke parallel-channel test cell representing the membrane channels of an immersed flat sheet MBR. Sludge samples were provided from two local MBRs, one treating municipal and the other industrial effluent. Bulk sludge properties measured comprised mixed liquor suspended solids (MLSS) concentration, capillary suction time (CST), particle size, soluble COD (sCOD) and rheology (apparent viscosity μₐ vs shear rate γ). The fouling and sludging propensity of the sludge was determined using the test cell, ‘fouling’ being quantified as the pressure incline rate against flux via the flux step test (for which clogging was absent) and sludging by photographing the channel and processing the image to determine the ratio of the clogged to unclogged regions. A substantial difference in rheological and fouling behaviour was evident between the two sludge sources, the industrial sludge having a higher viscosity but less shear-thinning than the municipal. Fouling, as manifested by the pressure increase Δp/Δt, as a function of flux from classic flux-step experiments (where no clogging was evident), was more rapid for the industrial sludge. Across all samples of both sludge origins the expected trend of increased fouling propensity with increased CST and sCOD was demonstrated, whereas no correlation was observed between clogging rate and these parameters. The relative contribution of fouling and clogging was appraised by adjusting the clogging propensity via increasing the MLSS both with and without a commensurate increase in the COD. Results indicated that whereas for the municipal sludge the fouling propensity was affected by the increased sCOD, there was no associated increased in the sludging propensity (or cake formation). The clogging rate actually decreased on increasing the MLSS. Against this, for the industrial sludge the clogging rate dramatically increased with solids concentration despite a decrease in the soluble COD. From this was surmised that sludging did not relate to fouling.Keywords: clogging, membrane bioreactors, ragging, sludge
Procedia PDF Downloads 178178 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 65177 Flood Early Warning and Management System
Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare
Abstract:
The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.Keywords: flood, modeling, HPC, FOSS
Procedia PDF Downloads 89176 Mineralized Nanoparticles as a Contrast Agent for Ultrasound and Magnetic Resonance Imaging
Authors: Jae Won Lee, Kyung Hyun Min, Hong Jae Lee, Sang Cheon Lee
Abstract:
To date, imaging techniques have attracted much attention in medicine because the detection of diseases at an early stage provides greater opportunities for successful treatment. Consequently, over the past few decades, diverse imaging modalities including magnetic resonance (MR), positron emission tomography, computed tomography, and ultrasound (US) have been developed and applied widely in the field of clinical diagnosis. However, each of the above-mentioned imaging modalities possesses unique strengths and intrinsic weaknesses, which limit their abilities to provide accurate information. Therefore, multimodal imaging systems may be a solution that can provide improved diagnostic performance. Among the current medical imaging modalities, US is a widely available real-time imaging modality. It has many advantages including safety, low cost and easy access for patients. However, its low spatial resolution precludes accurate discrimination of diseased region such as cancer sites. In contrast, MR has no tissue-penetrating limit and can provide images possessing exquisite soft tissue contrast and high spatial resolution. However, it cannot offer real-time images and needs a comparatively long imaging time. The characteristics of these imaging modalities may be considered complementary, and the modalities have been frequently combined for the clinical diagnostic process. Biominerals such as calcium carbonate (CaCO3) and calcium phosphate (CaP) exhibit pH-dependent dissolution behavior. They demonstrate pH-controlled drug release due to the dissolution of minerals in acidic pH conditions. In particular, the application of this mineralization technique to a US contrast agent has been reported recently. The CaCO3 mineral reacts with acids and decomposes to generate calcium dioxide (CO2) gas in an acidic environment. These gas-generating mineralized nanoparticles generated CO2 bubbles in the acidic environment of the tumor, thereby allowing for strong echogenic US imaging of tumor tissues. On the basis of this previous work, it was hypothesized that the loading of MR contrast agents into the CaCO3 mineralized nanoparticles may be a novel strategy in designing a contrast agent for dual imaging. Herein, CaCO3 mineralized nanoparticles that were capable of generating CO2 bubbles to trigger the release of entrapped MR contrast agents in response to tumoral acidic pH were developed for the purposes of US and MR dual-modality imaging of tumors. Gd2O3 nanoparticles were selected as an MR contrast agent. A key strategy employed in this study was to prepare Gd2O3 nanoparticle-loaded mineralized nanoparticles (Gd2O3-MNPs) using block copolymer-templated CaCO3 mineralization in the presence of calcium cations (Ca2+), carbonate anions (CO32-) and positively charged Gd2O3 nanoparticles. The CaCO3 core was considered suitable because it may effectively shield Gd2O3 nanoparticles from water molecules in the blood (pH 7.4) before decomposing to generate CO2 gas, triggering the release of Gd2O3 nanoparticles in tumor tissues (pH 6.4~7.4). The kinetics of CaCO3 dissolution and CO2 generation from the Gd2O3-MNPs were examined as a function of pH and pH-dependent in vitro magnetic relaxation; additionally, the echogenic properties were estimated to demonstrate the potential of the particles for the tumor-specific US and MR imaging.Keywords: calcium carbonate, mineralization, ultrasound imaging, magnetic resonance imaging
Procedia PDF Downloads 236175 Molecular Characterization of Chicken B Cell Marker (ChB6) in Native Chicken of Poonch Region from International Borders of India and Pakistan
Authors: Mandeep Singh Azad.Dibyendu Chakraborty, Vikas Vohra
Abstract:
Introduction: Poonch is one of the remotest districts of the Jammu and Kashmir (UT) and situated on international borders. This native poultry population in these areas is quite hardy and thrives well in adverse climatic conditions. Till date, no local breed from this area (Jammu Province) has been characterized thus present study was undertaken with the main objectives of molecular characterization of ChB6 gene in local native chicken of Poonch region located at international borders between India and Pakistan. The chicken B-cell marker (ChB6) gene has been proposed as a candidate gene in regulating B-cell development. Material and Method: RNA was isolated by Blood RNA Purification Kit (HiPura) and Trizol method from whole blood samples. Positive PCR products with size 1110 bp were selected for further purification, sequencing and analysis. The amplified PCR product was sequenced by Sangers dideoxy chain termination method. The obtained sequence of ChB6 gene of Poonchi chicken were compared by MEGAX software. BioEdit software was used to construct phylogenic tree, and Neighbor Joining method was used to infer evolutionary history. In order to compute evolutionary distance Maximum Composite Likelihood method was used. Results: The positively amplified samples of ChB6 genes were then subjected to Sanger sequencing with “Primer Walking. The sequences were then analyzed using MEGA X and BioEdit software. The sequence results were compared with other reported sequence from different breed of chicken and with other species obtained from the NCBI (National Center for Biotechnology Information). ClustalW method using MEGA X software was used for multiple sequence alignment. The sequence results of ChB6 gene of Poonchi chicken was compared with Centrocercus urophasianus, G. gallus mRNA for B6.1 protein, G. gallus mRNA for B6.2, G. gallus mRNA for B6.3, Gallus gallus B6.1, Halichoeres bivittatus, Miniopterus fuliginosus Ferringtonia patagonica, Tympanuchus phasianellus. The genetic distances were 0.2720, 0.0000, 0.0245, 0.0212, 0.0147, 1.6461, 2.2394, 2.0070 and 0.2363 for ChB6 gene of Poonchi chicken sequence with other sequences in the present study respectively. Sequencing results showed variations between different species. It was observed that AT content were higher then GC content for ChB6 gene. The lower AT content suggests less thermostable. It was observed that there was no sequence difference within the Poonchi population for ChB6 gene. The high homology within chicken population indicates the conservation of ChB6 gene. The maximum difference was observed with Miniopterus fuliginosus (Eastern bent-wing bat) followed by Ferringtonia patagonica and Halichoeres bivittatus. Conclusion: Genetic variation is the essential component for genetic improvement. The results of immune related gene Chb6 shows between population genetic variability. Therefore, further association studies of this gene with some prevalent diseases in large population would be helpful to identify disease resistant/ susceptible genotypes in the indigenous chicken population.Keywords: ChB6, sequencing, ClustalW, genetic distance, poonchi chicken, SNP
Procedia PDF Downloads 70174 Tip-Enhanced Raman Spectroscopy with Plasmonic Lens Focused Longitudinal Electric Field Excitation
Authors: Mingqian Zhang
Abstract:
Tip-enhanced Raman spectroscopy (TERS) is a scanning probe technique for individual objects and structured surfaces investigation that provides a wealth of enhanced spectral information with nanoscale spatial resolution and high detection sensitivity. It has become a powerful and promising chemical and physical information detection method in the nanometer scale. The TERS technique uses a sharp metallic tip regulated in the near-field of a sample surface, which is illuminated with a certain incident beam meeting the excitation conditions of the wave-vector matching. The local electric field, and, consequently, the Raman scattering, from the sample in the vicinity of the tip apex are both greatly tip-enhanced owning to the excitation of localized surface plasmons and the lightning-rod effect. Typically, a TERS setup is composed of a scanning probe microscope, excitation and collection optical configurations, and a Raman spectroscope. In the illumination configuration, an objective lens or a parabolic mirror is always used as the most important component, in order to focus the incident beam on the tip apex for excitation. In this research, a novel TERS setup was built up by introducing a plasmonic lens to the excitation optics as a focusing device. A plasmonic lens with symmetry breaking semi-annular slits corrugated on gold film was designed for the purpose of generating concentrated sub-wavelength light spots with strong longitudinal electric field. Compared to conventional far-field optical components, the designed plasmonic lens not only focuses an incident beam to a sub-wavelength light spot, but also realizes a strong z-component that dominants the electric field illumination, which is ideal for the excitation of tip-enhancement. Therefore, using a PL in the illumination configuration of TERS contributes to improve the detection sensitivity by both reducing the far-field background and effectively exciting the localized electric field enhancement. The FDTD method was employed to investigate the optical near-field distribution resulting from the light-nanostructure interaction. And the optical field distribution was characterized using an scattering-type scanning near-field optical microscope to demonstrate the focusing performance of the lens. The experimental result is in agreement with the theoretically calculated one. It verifies the focusing performance of the plasmonic lens. The optical field distribution shows a bright elliptic spot in the lens center and several arc-like side-lobes on both sides. After the focusing performance was experimentally verified, the designed plasmonic lens was used as a focusing component in the excitation configuration of TERS setup to concentrate incident energy and generate a longitudinal optical field. A collimated linearly polarized laser beam, with along x-axis polarization, was incident from the bottom glass side on the plasmonic lens. The incident light focused by the plasmonic lens interacted with the silver-coated tip apex and enhanced the Raman signal of the sample locally. The scattered Raman signal was gathered by a parabolic mirror and detected with a Raman spectroscopy. Then, the plasmonic lens based setup was employed to investigate carbon nanotubes and TERS experiment was performed. Experimental results indicate that the Raman signal is considerably enhanced which proves that the novel TERS configuration is feasible and promising.Keywords: longitudinal electric field, plasmonics, raman spectroscopy, tip-enhancement
Procedia PDF Downloads 373