Search results for: Cassava production technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10196

Search results for: Cassava production technologies

9056 Optimization of the Energy Management for a Solar System of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume

Abstract:

To improve the climatic conditions and increase production in the greenhouse during the winter season under the Mediterranean climate, this thesis project proposes a design of an integrated and autonomous solar system for heating, cooling, and conservation of production in an agricultural greenhouse. To study the effectiveness of this system, experiments are conducted in two similar agricultural greenhouses oriented north-south. The first greenhouse is equipped with an active solar system integrated into the double glazing of the greenhouse’s roof, while the second greenhouse has no system, it serves as a controlled greenhouse for comparing thermal and agronomic performance The solar system allowed for an average increase in the indoor temperature of the experimental greenhouse of 6°C compared to the outdoor environment and 4°C compared to the control greenhouse. This improvement in temperature has a favorable effect on the plants' climate and subsequently positively affects their development, quality, and production.

Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying

Procedia PDF Downloads 83
9055 Assessment of Some Local Clay Minerals Used for the Production of Floor Tiles: Panacea for Economic Growth

Authors: Ekenyem Stan Chinweike

Abstract:

The suitability of some clay deposits in south eastern Nigeria (Unwana, Ekebedi and Nsu) as materials for the production of floor tiles was investigated. The clay samples were analyzed using wet classical method to determine their chemical composition. Floor tile test specimens were produced using standard method. The test specimens were tested for physical properties such as compressive strength and porosity at 1050◦c and 1150◦c temperature levels. The chemical analysis showed the following results: Unwana (5102 52.24%, AL2o3, 27.20%, Fe2o3 7%, T102 (1.52%), Ekebedi (S102 (58.53%), Al2o3 28.42%, Fe2o3 7%, Ti o2 (1.12%),NSU SIo2 (58.16%), Al2O3 (28.42%), Fe2O3 1.89%, T102 (0.82%) The compressive strength of Unwana, Ekebedi and Nsu clays at 1050◦c are respectively: 15MPa, 13.75MPa and 13.5MPa. At 1150◦c, the values are 16.2MPa and 16.0MPa for Ekebedi and Nsu clays respectively. The porosity of Unwana, Ekebedi and Nsu clays at 1050◦c are respectively31.57%, 23.15% and 24.21%. At 1150◦c, the values are 23.65% and 24.75% for Ekebedi and Nsu respectively. The three clays can be used for production of tiles but Ekebedi has the highest compressive strength which makes it the most suitable clay for the production of floor tiles when compared with floor tiles of the same nominal size stipulated by ASTM standard.

Keywords: feldspar, quartz, porosity, compressive strength, clay minerals

Procedia PDF Downloads 362
9054 Life Cycle Assessment of Almond Processing: Off-ground Harvesting Scenarios

Authors: Jessica Bain, Greg Thoma, Marty Matlock, Jeyam Subbiah, Ebenezer Kwofie

Abstract:

The environmental impact and particulate matter emissions (PM) associated with the production and packaging of 1 kg of almonds were evaluated using life cycle assessment (LCA). The assessment began at the point of ready to harvest with a system boundary was a cradle-to-gate assessment of almond packaging in California. The assessment included three scenarios of off-ground harvesting of almonds. The three general off-ground harvesting scenarios with variations include the harvested almonds solar dried on a paper tarp in the orchard, the harvested almonds solar dried on the floor in a separate lot, and the harvested almonds dried mechanically. The life cycle inventory (LCI) data for almond production were based on previously published literature and data provided by Almond Board of California (ABC). The ReCiPe 2016 method was used to calculate the midpoint impacts. Using consequential LCA model, the global warming potential (GWP) for the three harvesting scenarios are 2.90, 2.86, and 3.09 kg CO2 eq/ kg of packaged almond for scenarios 1, 2a, and 3a, respectively. The global warming potential for conventional harvesting method was 2.89 kg CO2 eq/ kg of packaged almond. The particulate matter emissions for each scenario per hectare for each off-ground harvesting scenario is 77.14, 9.56, 66.86, and 8.75 for conventional harvesting and scenarios 1, 2, and 3, respectively. The most significant contributions to the overall emissions were from almond production. The farm gate almond production had a global warming potential of 2.12 kg CO2 eq/ kg of packaged almond, approximately 73% of the overall emissions. Based on comparisons between the GWP and PM emissions, scenario 2a was the best tradeoff between GHG and PM production.

Keywords: life cycle assessment, low moisture foods, sustainability, LCA

Procedia PDF Downloads 67
9053 Increase Productivity by Using Work Measurement Technique

Authors: Mohammed Al Awadh

Abstract:

In order for businesses to take advantage of the opportunities for expanded production and trade that have arisen as a result of globalization and increased levels of competition, productivity growth is required. The number of available sources is decreasing with each passing day, which results in an ever-increasing demand. In response to this, there will be an increased demand placed on firms to improve the efficiency with which they utilise their resources. As a scientific method, work and time research techniques have been employed in all manufacturing and service industries to raise the efficiency of use of the factors of production. These approaches focus on work and time. The goal of this research is to improve the productivity of a manufacturing industry's production system by looking at ways to measure work. The work cycles were broken down into more manageable and quantifiable components. On the observation sheet, these aspects were noted down. The operation has been properly analysed in order to identify value-added and non-value-added components, and observations have been recorded for each of the different trails.

Keywords: time study, work measurement, work study, efficiency

Procedia PDF Downloads 59
9052 How Does Improving the Existing DSL Infrastructure Influences the Expansion of Fiber Technology?

Authors: Peter Winzer, Erik Massarczyk

Abstract:

Experts, enterprises and operators expect that the bandwidth request will increase up to rates of 100 to 1,000 Mbps within several years. Therefore the most important question is, which technology shall satisfy the future consumer broadband demands. Currently the consensus is, that the fiber technology has the best technical characteristics to achieve such the high bandwidth rates. But fiber technology is so far very cost-intensive and resource consuming. To avoid these investments, operators are concentrating to upgrade the existing copper and hybrid fiber coax infrastructures. This work presents a comparison of the copper and fiber technologies including an overview about the current German broadband market. Both technologies are reviewed in the terms of demand, willingness to pay and economic efficiency in connection with the technical characteristics.

Keywords: broadband customer demand, fiber development, g.fast, vectoring, willingness to pay for broadband services

Procedia PDF Downloads 455
9051 High Power Thermal Energy Storage for Industrial Applications Using Phase Change Material Slurry

Authors: Anastasia Stamatiou, Markus Odermatt, Dominic Leemann, Ludger J. Fischer, Joerg Worlitschek

Abstract:

The successful integration of thermal energy storage in industrial processes is expected to play an important role in the energy turnaround. Latent heat storage technologies can offer more compact thermal storage at a constant temperature level, in comparison to conventional, sensible thermal storage technologies. The focus of this study is the development of latent heat storage solutions based on the Phase Change Slurry (PCS) concept. Such systems promise higher energy densities both as refrigerants and as storage media while presenting better heat transfer characteristics than conventional latent heat storage technologies. This technology is expected to deliver high thermal power and high-temperature stability which makes it ideal for storage of process heat. An evaluation of important batch processes in industrial applications set the focus on materials with a melting point in the range of 55 - 90 °C. Aluminium ammonium sulfate dodecahydrate (NH₄Al(SO₄)₂·12H₂O) was chosen as the first interesting PCM for the next steps of this study. The ability of this material to produce slurries at the relevant temperatures was demonstrated in a continuous mode in a laboratory test-rig. Critical operational and design parameters were identified.

Keywords: esters, latent heat storage, phase change materials, thermal properties

Procedia PDF Downloads 280
9050 Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses

Authors: Laura Rodriguez Amaya

Abstract:

Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used.

Keywords: engineering education, geospatial technology, geovisualization, STEM

Procedia PDF Downloads 231
9049 The Influence of Absorptive Capacity on Process Innovation: An Exploratory Study in Seven Leading and Emerging Countries

Authors: Raphael M. Rettig, Tessa C. Flatten

Abstract:

This empirical study answer calls for research on Absorptive Capacity and Process Innovation. Due to the fourth industrial revolution, manufacturing companies face the biggest disruption of their production processes since the rise of advanced manufacturing technologies in the last century. Therefore, process innovation will become a critical task to master in the future for many manufacturing firms around the world. The general ability of organizations to acquire, assimilate, transform, and exploit external knowledge, known as Absorptive Capacity, was proven to positively influence product innovation and is already conceptually associated with process innovation. The presented research provides empirical evidence for this influence. The findings are based on an empirical analysis of 732 companies from seven leading and emerging countries: Brazil, China, France, Germany, India, Japan, and the United States of America. The answers to the survey were collected in February and March 2018 and addressed senior- and top-level management with a focus on operations departments. The statistical analysis reveals the positive influence of potential and Realized Absorptive Capacity on successful process innovation taking the implementation of new digital manufacturing processes as an example. Potential Absorptive Capacity covering the acquisition and assimilation capabilities of an organization showed a significant positive influence (β = .304, p < .05) on digital manufacturing implementation success and therefore on process innovation. Realized Absorptive Capacity proved to have significant positive influence on process innovation as well (β = .461, p < .01). The presented study builds on prior conceptual work in the field of Absorptive Capacity and process innovation and contributes theoretically to ongoing research in two dimensions. First, the already conceptually associated influence of Absorptive Capacity on process innovation is backed by empirical evidence in a broad international context. Second, since Absorptive Capacity was measured with a focus on new product development, prior empirical research on Absorptive Capacity was tailored to the research and development departments of organizations. The results of this study highlight the importance of Absorptive Capacity as a capability in mechanical engineering and operations departments of organizations. The findings give managers an indication of the importance of implementing new innovative processes into their production system and fostering the right mindset of employees to identify new external knowledge. Through the ability to transform and exploit external knowledge, own production processes can be innovated successfully and therefore have a positive influence on firm performance and the competitive position of their organizations.

Keywords: absorptive capacity, digital manufacturing, dynamic capabilities, process innovation

Procedia PDF Downloads 131
9048 Human Connection over Technology: Evidence, Pitfalls, and Promise of Collaboration Technologies in Promoting Full Spectrum Participation of the Virtual Workforce

Authors: Michelle Marquard

Abstract:

The evidence for collaboration technologies (CTs) as a source of business productivity has never been stronger, and grows each day. At the same time, paradoxically, there is an increasingly greater concern about the challenge CTs present to the unity and well-being of the virtual workforce than ever before, but nowhere in the literature has an empirical understanding of these linkages been set out. This study attempted to address by using virtual distance as a measure of the efficacy of CTs to reduce the psychological distance among people. Data from 350 managers and 101 individual contributors across twelve functions in six major industries showed that business value is related to collaboration (r=.84, p < .01), which, in turn, is associated with full spectrum participation (r=.60, p < .01), a summative function of inclusion, integration, and we-intention. Further, virtual distance is negatively related to both collaboration (r=-.54, p < .01) and full spectrum participation (r=-.26, p < .01). Additionally, CIO-CDO relationship is a factor in the degree to which virtual distance is managed in the organization (r=-.26, p < .01). Overall, the results support the positive relationship between business value and collaboration. They also suggest that the extent to which collaboration can be fostered may depend on the degree of full spectrum participation or the level of inclusion, integration, and we-intention among members. Finally, the results indicate that CTs, when managed wisely to lower virtual distance, are a compelling concomitant to collaboration and full spectrum participation. A strategic outcome of this study is an instrumental blueprint of CTs and virtual distance in relation to full spectrum participation that should serve as a shared dashboard for CIOs, CHROs, and CDOs.

Keywords: business value, collaboration, inclusion, integration, we-intention, full spectrum participation, collaboration technologies, virtual distance

Procedia PDF Downloads 329
9047 Agriroofs and Agriwalls: Applications of Food Production in Green Roofs and Green Walls

Authors: Eman M. Elmazek

Abstract:

Green roofs and walls are a rising technology in the global sustainable architectural industry. The idea takes great steps towards the future of sustainable design due to its many benefits. However, there are many barriers and constraints. Economical, structural, and knowledge barriers prevent the spread of the usage of green roofs and living walls. Understanding the benefits and expanding them will spread the idea. Benefits provided by these green spots interrupt and maintain the current urban cover. Food production is one of the benefits of green roofs. It can save money and energy spent in food transportation. The goal of this paper is to put a better understanding of implementing green systems. The paper aims to identify gains versus challenges facing the technology. It surveys with case studies buildings with green roofs and walls used for food production.

Keywords: green roof, green walls, urban farming, roof herb garden

Procedia PDF Downloads 504
9046 Transitioning Towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges

Authors: Atefeh Salehipoor

Abstract:

Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: 1. Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. 2. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. 3. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. 4. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. 5. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. 6. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.

Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension

Procedia PDF Downloads 62
9045 Optimal Evaluation of Weather Risk Insurance for Wheat

Authors: Slim Amami

Abstract:

A model is developed to prevent the risks related to climate conditions in the agricultural sector. It will determine the yearly optimum premium to be paid by a farmer in order to reach his required turnover. The model is mainly based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, main ones of which are daily average sunlight, rainfall and temperature. By a simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is deduced from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. Optimal premium is then deduced, and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect their harvest. The application to wheat production in the French Oise department illustrates the reliability of the present model with as low as 6% difference between predicted and real data. The model can be adapted to almost every agricultural field by changing state parameters and calibrating their associated coefficients.

Keywords: agriculture, database, meteorological factors, production model, optimal price

Procedia PDF Downloads 206
9044 The Use of Additives to Prevent Fouling in Polyethylene and Polypropylene Gas and Slurry Phase Processes

Authors: L. Shafiq, A. Rigby

Abstract:

All polyethylene processes are highly exothermic, and the safe removal of the heat of reaction is a fundamental issue in the process design. In slurry and gas processes, the velocity of the polymer particles in the reactor and external coolers can be very high, and under certain conditions, this can lead to static charging of these particles. Such static charged polymer particles may start building up on the reactor wall, limiting heat transfer, and ultimately leading to severe reactor fouling and forced reactor shut down. Statsafe™ is an FDA approved anti-fouling additive currently used around the world for polyolefin production as an anti-fouling additive. The unique polymer chemistry aids static discharge, which prevents the build-up of charged polyolefin particles, which could lead to fouling. Statsafe™ is being used and trailed in gas, slurry, and a combination of these technologies around the world. We will share data to demonstrate how the use of Statsafe™ allows more stable operation at higher solids level by eliminating static, which would otherwise prevent closer packing of particles in the hydrocarbon slurry. Because static charge generation depends also on the concentration of polymer particles in the slurry, the maximum slurry concentration can be higher when using Statsafe™, leading to higher production rates. The elimination of fouling also leads to less downtime. Special focus will be made on the impact anti-static additives have on catalyst performance within the polymerization process and how this has been measured. Lab-scale studies have investigated the effect on the activity of Ziegler Natta catalysts when anti-static additives are used at various concentrations in gas and slurry, polyethylene and polypropylene processes. An in-depth gas phase study investigated the effect of additives on the final polyethylene properties such as particle size, morphology, fines, bulk density, melt flow index, gradient density, and melting point.

Keywords: anti-static additives, catalyst performance, FDA approved anti-fouling additive, polymerisation

Procedia PDF Downloads 180
9043 Utilization of Treated Spend Pot Lining by Product from the Primary Aluminum Production in Cement and Concrete

Authors: Hang Tran, Victor Brial, Luca Sorelli, Claudiane Ouellet-Plamondon, David Conciatori, Laurent Birry

Abstract:

Spend pot lining (SPL) is a by-product generated from primary aluminum production. SPL consists of two parts, the first cut is rich in carbonaceous materials, and the second cut is rich in aluminum and silicon oxides. After treating by the hydrometallurgical Low Caustic Leaching and Liming process, the refractory part of SPL becomes an inert material, called LCLL ash in this project. LCLL ash was calcined at different temperatures (800 and 1000°C) and Calcined LCLL ash ground as fines of cement and replacement a part of cement in concrete production. The effect of LCLL ash on the chemical properties, mechanical properties and fresh behavior of concrete was evaluated by isothermal calorimetry, compressive test, and slump test. These results were compared to the reference mixture.

Keywords: spend pot lining, concrete, cement, compressive strength, calorimetry

Procedia PDF Downloads 201
9042 An Exploration of Cyberspace Security, Strategy for a New Era

Authors: Laxmi R. Kasaraneni

Abstract:

The Internet connects all the networks, including the nation’s critical infrastructure that are used extensively by not only a nation’s government and military to protect sensitive information and execute missions, but also the primary infrastructure that provides services that enable modern conveniences such as education, potable water, electricity, natural gas, and financial transactions. It has become the central nervous system for the government, the citizens, and the industries. When it is attacked, the effects can ripple far and wide impacts not only to citizens’ well-being but nation’s economy, civil infrastructure, and national security. As such, these critical services may be targeted by malicious hackers during cyber warfare, it is imperative to not only protect them and mitigate any immediate or potential threats, but to also understand the current or potential impacts beyond the IT networks or the organization. The Nation’s IT infrastructure which is now vital for communication, commerce, and control of our physical infrastructure, is highly vulnerable to attack. While existing technologies can address some vulnerabilities, fundamentally new architectures and technologies are needed to address the larger structural insecurities of an infrastructure developed in a more trusting time when mass cyber attacks were not foreseen. This research is intended to improve the core functions of the Internet and critical-sector information systems by providing a clear path to create a safe, secure, and resilient cyber environment that help stakeholders at all levels of government, and the private sector work together to develop the cybersecurity capabilities that are key to our economy, national security, and public health and safety. This research paper also emphasizes the present and future cyber security threats, the capabilities and goals of cyber attackers, a strategic concept and steps to implement cybersecurity for maximum effectiveness, enabling technologies, some strategic assumptions and critical challenges, and the future of cyberspace.

Keywords: critical challenges, critical infrastructure, cyber security, enabling technologies, national security

Procedia PDF Downloads 277
9041 Exploring Unexplored Horizons: Innovative Applications of Applied Fluid Mechanics in Sustainable Energy

Authors: Elvira S. Castillo, Surupa Shaw

Abstract:

This paper delves into the uncharted territories of innovative applications of applied fluid mechanics in sustainable energy. By exploring the intersection of fluid mechanics principles with renewable energy technologies, the study uncovers untapped potential and novel solutions. Through theoretical analyses, the research investigates how fluid dynamics can be strategically leveraged to enhance the efficiency and sustainability of renewable energy systems. The findings contribute to expanding the discourse on sustainable energy by presenting innovative perspectives and practical insights. This paper serves as a guide for future research endeavors and offers valuable insights for implementing advanced methodologies and technologies to address global energy challenges.

Keywords: fluid mechanics, sustainable energy, sustainble practices, renewable energy

Procedia PDF Downloads 30
9040 Lightweight Synergy IoT Framework for Smart Home Healthcare for the Elderly

Authors: Huawei Ma, Wencai Du, Shengbin Liang

Abstract:

Smart Home Healthcare technologies for the elderly represent a transformative paradigm that leverages emerging technologies to provide the elderly’ health indicators and daily life monitoring, emergency calls, environmental monitoring, behavior perception, and other services to ensure the health and safety of the elderly who are aging in their own home. However, the excessive complexity in the main adopted framework has affected the acceptance and adoption of the elderly. Therefore, this paper proposes a lightweight synergy architecture of IoT data and service for elderly home smart health environment. It includes the modeling of IoT applications and their workflows, data interoperability, interaction, and storage paradigms to meet the growing needs of older people so that they can lead an active, fulfilling, and quality life.

Keywords: smart home healthcare, IoT, independent living, lightweight framework

Procedia PDF Downloads 34
9039 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells

Authors: Ross Lee, Pritpal Singh, Andrew Jester

Abstract:

As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, new battery technology is necessary for grid applications to curtail these risks. Biological cells, such as human neurons and electrolytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell, akin to the charging/discharging of a battery cell. This work serves as the first step to developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na⁺-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior similar to human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.

Keywords: battery, biomimetic, electrolytes, human neurons, ion-selective membranes, membrane potential

Procedia PDF Downloads 98
9038 NLRP3-Inflammassome Participates in the Inflammatory Response Induced by Paracoccidioides brasiliensis

Authors: Eduardo Kanagushiku Pereira, Frank Gregory Cavalcante da Silva, Barbara Soares Gonçalves, Ana Lúcia Bergamasco Galastri, Ronei Luciano Mamoni

Abstract:

The inflammatory response initiates after the recognition of pathogens by receptors expressed by innate immune cells. Among these receptors, the NLRP3 was associated with the recognition of pathogenic fungi in experimental models. NLRP3 operates forming a multiproteic complex called inflammasome, which actives caspase-1, responsible for the production of the inflammatory cytokines IL-1beta and IL-18. In this study, we aimed to investigate the involvement of NLRP3 in the inflammatory response elicited in macrophages against Paracoccidioides brasiliensis (Pb), the etiologic agent of PCM. Macrophages were differentiated from THP-1 cells by treatment with phorbol-myristate-acetate. Following differentiation, macrophages were stimulated by Pb yeast cells for 24 hours, after previous treatment with specific NLRP3 (3,4-methylenedioxy-beta-nitrostyrene) and/or caspase-1 (VX-765) inhibitors, or specific inhibitors of pathways involved in NLRP3 activation such as: Reactive Oxigen Species (ROS) production (N-Acetyl-L-cysteine), K+ efflux (Glibenclamide) or phagossome acidification (Bafilomycin). Quantification of IL-1beta and IL-18 in supernatants was performed by ELISA. Our results showed that the production of IL-1beta and IL-18 by THP-1-derived-macrophages stimulated with Pb yeast cells was dependent on NLRP3 and caspase-1 activation, once the presence of their specific inhibitors diminished the production of these cytokines. Furthermore, we found that the major pathways involved in NLRP3 activation, after Pb recognition, were dependent on ROS production and K+ efflux. In conclusion, our results showed that NLRP3 participates in the recognition of Pb yeast cells by macrophages, leading to the activation of the NLRP3-inflammasome and production of IL-1beta and IL-18. Together, these cytokines can induce an inflammatory response against P. brasiliensis, essential for the establishment of the initial inflammatory response and for the development of the subsequent acquired immune response.

Keywords: inflammation, IL-1beta, IL-18, NLRP3, Paracoccidioidomycosis

Procedia PDF Downloads 252
9037 Energy Use and Econometric Models of Soybean Production in Mazandaran Province of Iran

Authors: Majid AghaAlikhani, Mostafa Hojati, Saeid Satari-Yuzbashkandi

Abstract:

This paper studies energy use patterns and relationship between energy input and yield for soybean (Glycine max (L.) Merrill) in Mazandaran province of Iran. In this study, data were collected by administering a questionnaire in face-to-face interviews. Results revealed that the highest share of energy consumption belongs to chemical fertilizers (29.29%) followed by diesel (23.42%) and electricity (22.80%). Our investigations showed that a total energy input of 23404.1 MJ.ha-1 was consumed for soybean production. The energy productivity, specific energy, and net energy values were estimated as 0.12 kg MJ-1, 8.03 MJ kg-1, and 49412.71 MJ.ha-1, respectively. The ratio of energy outputs to energy inputs was 3.11. Obtained results indicated that direct, indirect, renewable and non-renewable energies were (56.83%), (43.17%), (15.78%) and (84.22%), respectively. Three econometric models were also developed to estimate the impact of energy inputs on yield. The results of econometric models revealed that impact of chemical, fertilizer, and water on yield were significant at 1% probability level. Also, direct and non-renewable energies were found to be rather high. Cost analysis revealed that total cost of soybean production per ha was around 518.43$. Accordingly, the benefit-cost ratio was estimated as 2.58. The energy use efficiency in soybean production was found as 3.11. This reveals that the inputs used in soybean production are used efficiently. However, due to higher rate of nitrogen fertilizer consumption, sustainable agriculture should be extended and extension staff could be proposed substitution of chemical fertilizer by biological fertilizer or green manure.

Keywords: Cobbe Douglas function, economical analysis, energy efficiency, energy use patterns, soybean

Procedia PDF Downloads 313
9036 Green Extraction Technologies of Flavonoids Containing Pharmaceuticals

Authors: Lamzira Ebralidze, Aleksandre Tsertsvadze, Dali Berashvili, Aliosha Bakuridze

Abstract:

Nowadays, there is an increasing demand for biologically active substances from vegetable, animal, and mineral resources. In terms of the use of natural compounds, pharmaceutical, cosmetic, and nutrition industry has big interest. The biggest drawback of conventional extraction methods is the need to use a large volume of organic extragents. The removal of the organic solvent is a multi-stage process. And their absolute removal cannot be achieved, and they still appear in the final product as impurities. A large amount of waste containing organic solvent damages not only human health but also has the harmful effects of the environment. Accordingly, researchers are focused on improving the extraction methods, which aims to minimize the use of organic solvents and energy sources, using alternate solvents and renewable raw materials. In this context, green extraction principles were formed. Green Extraction is a need of today’s environment. Green Extraction is the concept, and it totally corresponds to the challenges of the 21st century. The extraction of biologically active compounds based on green extraction principles is vital from the view of preservation and maintaining biodiversity. Novel technologies of green extraction are known, such as "cold methods" because during the extraction process, the temperature is relatively lower, and it doesn’t have a negative impact on the stability of plant compounds. Novel technologies provide great opportunities to reduce or replace the use of organic toxic solvents, the efficiency of the process, enhance excretion yield, and improve the quality of the final product. The objective of the research is the development of green technologies of flavonoids containing preparations. Methodology: At the first stage of the research, flavonoids containing preparations (Tincture Herba Leonuri, flamine, rutine) were prepared based on conventional extraction methods: maceration, bismaceration, percolation, repercolation. At the same time, the same preparations were prepared based on green technologies, microwave-assisted, UV extraction methods. Product quality characteristics were evaluated by pharmacopeia methods. At the next stage of the research technological - economic characteristics and cost efficiency of products prepared based on conventional and novel technologies were determined. For the extraction of flavonoids, water is used as extragent. Surface-active substances are used as co-solvent in order to reduce surface tension, which significantly increases the solubility of polyphenols in water. Different concentrations of water-glycerol mixture, cyclodextrin, ionic solvent were used for the extraction process. In vitro antioxidant activity will be studied by the spectrophotometric method, using DPPH (2,2-diphenyl-1- picrylhydrazyl) as an antioxidant assay. The advantage of green extraction methods is also the possibility of obtaining higher yield in case of low temperature, limitation extraction process of undesirable compounds. That is especially important for the extraction of thermosensitive compounds and maintaining their stability.

Keywords: extraction, green technologies, natural resources, flavonoids

Procedia PDF Downloads 112
9035 The Emergence of Information and Communication Technologies Acting as a Challenge for Media Literacy

Authors: Geetu Gahlawat, Manisha Singh

Abstract:

In the recent years, the concept of media literacy is being extended from its traditional focus on print and audio-visual media to encompass the internet and other new media within academic and policy discourses. This article throws revolves around three significant queries which are to be dealt by the academia, general public and the policy-makers: What is media literacy? How is it changing? And what is the significance of media literacy? At the beginning of the article, the definition 'media literacy' is the ability to access, analyse, evaluate and create messages across a variety of contexts are given and then this is further being tested in connection with the internet and other information and communication technologies.Having advocated this skills-based approach to media literacy in relation to the internet, the article identifies some outstanding issues for new media literacy crucial to any policy of promoting media literacy among the population. The outcome is better understanding of media literacy and also the impact of ICT on media literacy by the public as well as media literate people.

Keywords: media literacy, ICT, internet, education

Procedia PDF Downloads 585
9034 Cost Valuation Method for Development Concurrent, Phase Appropriate Requirement Valuation Using the Example of Load Carrier Development in the Lithium-Ion-Battery Production

Authors: Achim Kampker, Christoph Deutskens, Heiner Hans Heimes, Mathias Ordung, Felix Optehostert

Abstract:

In the past years electric mobility became part of a public discussion. The trend to fully electrified vehicles instead of vehicles fueled with fossil energy has notably gained momentum. Today nearly every big car manufacturer produces and sells fully electrified vehicles, but electrified vehicles are still not as competitive as conventional powered vehicles. As the traction battery states the largest cost driver, lowering its price is a crucial objective. In addition to improvements in product and production processes a non-negligible, but widely underestimated cost driver of production can be found in logistics, since the production technology is not continuous yet and neither are the logistics systems. This paper presents an approach to evaluate cost factors on different designs of load carrier systems. Due to numerous interdependencies, the combination of costs factors for a particular scenario is not transparent. This is effecting actions for cost reduction negatively, but still cost reduction is one of the major goals for simultaneous engineering processes. Therefore a concurrent and phase appropriate cost valuation method is necessary to serve cost transparency. In this paper the four phases of this cost valuation method are defined and explained, which based upon a new approach integrating the logistics development process in to the integrated product and process development.

Keywords: research and development, technology and innovation, lithium-ion-battery production, load carrier development process, cost valuation method

Procedia PDF Downloads 573
9033 Exploring the Impact of Location on Urban and Peri-Urban Farming: A Case Study from Lusaka, Zambia

Authors: Cecilia Elisabeth Fåhraeus

Abstract:

In 2016, this author conducted a study on agricultural livelihoods in urban and peri-urban low-income settings in Lusaka, Zambia. The overarching aim was to determine the impact of physical space on agricultural activities, with a particular emphasis on geographical distinctions between urban and peri-urban environments. Agricultural activities among the areas’ residents were mapped through questionnaires, interviews and observations, and included variables such as type of activity and product; degree of marketization; inputs; location of production, storage and vending; labour distribution; production constraints, and associated mobility patterns, among others. The study confirmed that spatial idiosyncrasies of urban and peri-urban environments both enabled and constrained agricultural activity, but not always as anticipated. There were also cross-cutting issues on which physical space appeared to have a limited impact.

Keywords: agricultural production systems, geography, low-income settlements, Lusaka, peri-urban, urban

Procedia PDF Downloads 308
9032 Production and Mechanical Properties of Alkali–Activated Inorganic Binders Made from Wastes Solids

Authors: Sonia Vanessa Campos Moreira

Abstract:

The aim of this research is the production and mechanical properties of Alkali-Activated Inorganic Binders (AAIB) made from The Basic Oxygen Furnace Slag (BOF Slag) and Thin Film Transistor Liquid Crystal Display (TFT-LCD), glass powder (waste and industrial by-products). Many factors have an influence on the production of AAIB like the glass powder finesses, the alkaline equivalent content (AE %), water binder ratios (w/b ratios) and the differences curing process. The findings show different behavior in the AAIB related to the factors mentioned, the best results are given with a glass powder fineness of 4,500 cm²/g, w/b=0.30, a curing temperature of 70 ℃, curing duration of 4 days and an aging duration of 14 days results in the highest compressive strength of 18.51 MPa.

Keywords: alkaline activators, BOF slag, glass powder fineness, TFT-LCD, w/b ratios

Procedia PDF Downloads 140
9031 Organic Waste Valorization for Biodiesel Production: Chemical and Biological Approach

Authors: Meha Alouini, Wissem Mnif, Yasmine Souissi

Abstract:

This work will be conducted within the framework of the environmental sustainable development. It involves waste recovering into biodiesel fuel. Low cost feedstocks such as waste of frying oil and animal fats have been utilized to replace refined vegetable oil for biodiesel production. Biodiesel which refers to fatty acid methyl esters (FAME) was carried out by both chemical and enzymatic reaction of transesterification. In order to compare the two studied reactions the obtained biodiesel was characterized by determining its esters content and its fuel properties according to the European standard EN 14214. It was noted that the chemical method gave the product with the best physical property. But the biological one was found more effective for obtaining important ester content. Thus it would be interesting to optimize the enzymatic pathway of production of biodiesel to obtain a better property of biodiesel.

Keywords: biodiesel, fatty acid methyl esters, transesterification, waste frying oil, waste beef fat

Procedia PDF Downloads 484
9030 Evaluating the Effects of Rainfall and Agricultural Practices on Soil Erosion (Palapye Case Study)

Authors: Mpaphi Major

Abstract:

Soil erosion is becoming an important aspect of land degradation. Therefore it is of great consideration to note any factor that may escalate the rate of soil erosion in our arable land. There exist 3 main driving forces in soil erosion which are rainfall, wind and land use of which in this project only rainfall and land use will be looked at. With the increase in world population at an alarming rate, the demand for food production is expected to increase which will in turn lead to more land being converted from forests to agricultural use of which very few of it are now fertile. In our country Botswana, the rate of crop production is decreasing due to the wearing away of the fertile top soil and poor arable land management. As a result, some studies on the rate of soil loss and farm management practices should be conducted so that best soil and water conservation practices should be employed and hence reduce the risk of soil loss and increase the rate of crop production and yield. The Soil loss estimation model for Southern Africa (SLEMSA) will be used to estimate the rate of soil loss in some selected arable farms within the Palapye watershed and some field observations will be made to determine the management practices used and their impact on the arable land. Upon observations it have been found that many arable fields have been exposed to soil erosion, of which the affected parts are no longer suitable for any crop production unless the land areas are modified. Improper land practices such as ploughing along the slope and land cultivation practices were observed. As a result farmers need to be educated on best conservation practices that can be used to manage their arable land hence reduced risk of soil erosion and improved crop production.

Keywords: soil and water conservation, soil erosion, SLEMSA, land degradation

Procedia PDF Downloads 387
9029 Increasing Soybean (Glycine Max L) Drought Resistance with Osmolit Sorbitol

Authors: Aminah Muchdar

Abstract:

Efforts to increase soybean production have been pursued for years in Indonesia through the process of intensification and extensification. Increased production through intensification of increasing grain yield per hectare, among others includes the improvement of cultivation system such as the use of cultivars that have superior resistance to drought. Increased soybean production has been through the expansion of planting areas utilizing available idle dry land. However, one of the constraints faced in dryland agriculture was the limited water supply due to low intensity of rainfall that leads to low crop production. In order to ensure that soybeans are cultivated on dry land remains capable of high production, it is necessary to physiologically engineer the soybean with open stomata. The study was conducted in the greenhouse of Balai Penelitian Tanaman Serealia (BALITSEREAL) Maros, Sulawesi, Indonesia with a completely randomized block design h factorial pattern. The first factor was the water stress stadia while the second was the amount of sorbitol osmolit concentration application. Results indicated that there was an interaction between the plant height growth and number of leaves between the water clamping time and concentration of the osmolit sorbitol. The vegetative stage especially during flowering and pod formation was inhibited when the water was clamped, but by spraying osmolit sorbitol, soybean growth in terms of its height and number of leaves was enhanced. This study implies that the application of osmolit sorbitol may enhance the drought resistance of soybean growth. Future research suggested that more work should be done on the application of osmolit sorbital to other agriculture crops to increase their drought resistance in the drylands.

Keywords: DROUGHT, engineered physiology, osmolit sorbitol, soybean

Procedia PDF Downloads 198
9028 Removal of Phenol from Aqueous Solutions by Ferrite Catalysts

Authors: Bayan Alqasem, Israa Othman, Mohammad Abu Haija, Fawzi Banat

Abstract:

The large-scale production of wastewater containing highly toxic pollutants made it necessary to find efficient water treatment technologies. Phenolic compounds, which are known to be persistent and hazardous, are highly presented in wastewater. In this study, different ferrite catalysts CrFe₂O₄, CuFe₂O₄, MgFe₂O₄, MnFe₂O₄, NiFe₂O₄, and ZnFe₂O₄ were employed to study the catalytic degradation of phenol aqueous solutions. The catalysts were prepared via sol-gel and co-precipitation methods. All of the prepared catalysts were characterized using infrared spectroscopy (IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The ferrites catalytic activities were tested towards phenol degradation using high-performance liquid chromatography (HPLC). The photocatalytic properties of the ferrites were also investigated. The experimental results suggested that CuFe₂O₄ is an effective catalyst for the removal of phenol from wastewater. Additionally, different CuFe₂O₄composites were also prepared either by varying the metal ratios or incorporating chemically reduced graphene oxide in the ferrite cluster.

Keywords: phenol degradation, ferrite catalysts, ferrite composites, photocatalysis

Procedia PDF Downloads 184
9027 Experimental Research of Biogas Production by Using Sewage Sludge and Chicken Manure Bioloadings with Wood Biochar Additive

Authors: P. Baltrenas, D. Paliulis, V. Kolodynskij, D. Urbanas

Abstract:

Bioreactor; special device, which is used for biogas production from various organic material under anaerobic conditions. In this research, a batch bioreactor with a mechanical mixer was used for biogas production from sewage sludge and chicken manure bioloadings. The process of anaerobic digestion was mesophilic (35 °C). Produced biogas was stoted in a gasholder and the concentration of its components was measured with INCA 4000 biogas analyser. Also, a specific additive (pine wood biochar) was applied to prepare bioloadings. The application of wood biochar in bioloading increases the CH₄ concentration in the produced gas by 6-7%. The highest concentrations of CH₄ were found in biogas produced during the decomposition of sewage sludge bioloadings. The maximum CH₄ reached 77.4%. Studies have shown that the application of biochar in bioloadings also reduces average CO₂ and H₂S concentrations in biogas.

Keywords: biochar, biogas, bioreactor, sewage sludge

Procedia PDF Downloads 151