Search results for: nano silver
403 Spectroscopy Investigation of Ni0.5Zn0.5Fe2O4 Nano Ferrite Prepared by Soft Mechanochemical Synthesis
Authors: Z. Ž. Lazarević, Č. Jovalekić, V. N. Ivanovski, N. Ž. Romčević
Abstract:
Nickel-zinc ferrite, Ni0.5Zn0.5Fe2O4 was prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2, Zn(OH)2 and Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni0.5Zn0.5Fe2O4 samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra alows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.Keywords: ferrite, X-ray diffraction, infrared spectroscopy, Raman spectroscopy, Mössbauer spectroscopy
Procedia PDF Downloads 506402 Phytotechnologies for Use and Reconstitution of Contaminated Sites
Authors: Olga Shuvaeva, Tamara Romanova, Sergey Volynkin, Valentina Podolinnaya
Abstract:
Green chemistry concept is focused on the prevention of environmental pollution caused by human activity. However, there are a lot of contaminated areas in the world which pose a serious threat to ecosystems in terms of their conservation. Therefore in accordance with the principles of green chemistry, it should not be forgotten about the need to clean these areas. Furthermore, the waste material often contains the valuable components, the extraction of which by traditional wet chemical technologies is inefficient both from the economic and environmental protection standpoint. Wherein, the plants may be successfully used to ‘scavenge’ a range of metals from polluted land sites in an approach allowing to carry out both of these processes – phytoremediation and phytomining in conjunction. The goal of the present work was to study bioaccumulation ability of floating macrophytes such as water hyacinth and pondweed toward Hg, Ba, Cd, Mo and Pb as pollutants in aquatic medium and terrestrial plants (birch, reed, and cane) towards gold and silver as valuable components. The peculiarity of ongoing research was that the plants grew under extreme conditions (pH of drainage and pore waters was about 2.5). The study was conducted at the territory of Ursk tailings (Southwestern Siberia, Russia) formed as a result of primary polymetallic ores cyanidation. The waste material is mainly presented (~80%) by pyrite (FeS₂) and barite (BaSO₄), the raw minerals included FeAsS, HgS, PbS, Ag₂S as minor ones. It has been shown that water hyacinth demonstrates high ability to accumulate different metals, and what is especially important – to remove mercury from polluted waters with BCF value more than 1000. As for the gold, its concentrations in reed and cane growing near the waste material were estimated as 500 and 900 μg∙kg⁻¹ respectively. It was also found that the plants can survive under extreme conditions of acidic environment and hence we can assume that there is a principal opportunity to use them for the valuable substances extraction from an area of the mining waste dumps burial.Keywords: bioaccumulation, gold, heavy metals, mine tailing
Procedia PDF Downloads 173401 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall
Authors: Sanjib Kr Pal, S. Bhattacharyya
Abstract:
Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.Keywords: conjugate heat transfer, mixed convection, nano fluid, wall waviness
Procedia PDF Downloads 254400 Understanding Children’s Visual Attention to Personal Protective Equipment Using Eye-Tracking
Authors: Vanessa Cho, Janet Hsiao, Nigel King, Robert Anthonappa
Abstract:
Background: The personal protective equipment (PPE) requirements for health care workers (HCWs) have changed significantly during the COVID-19 pandemic. Aim: To ascertain, using eye-tracking technology, what children notice the most when seeing HCWs in various PPE. Design: A Tobii nano pro-eye-tracking camera tracked 156 children's visual attention while they viewed photographs of HCWs in various PPEs. Eye Movement analysis with Hidden Markov Models (EMHMM) was employed to analyse 624 recordings using two approaches, namely (i) data-driven where children's fixation determined the regions of interest (ROIs), and (ii) fixed ROIs where the investigators predefined the ROIs. Results: Two significant eye movement patterns, namely distributed(85.2%) and selective(14.7%), were identified(P<0.05). Most children fixated primarily on the face regardless of the different PPEs. Children fixated equally on all PPE images in the distributed pattern, while a strong preference for unmasked faces was evident in the selective pattern (P<0.01). Conclusion: Children as young as 2.5 years used a top-down visual search behaviour and demonstrated their face processing ability. Most children did not show a strong visual preference for a specific PPE, while a minority preferred PPE with distinct facial features, namely without masks and loupes.Keywords: COVID-19, PPE, dentistry, pediatric
Procedia PDF Downloads 91399 Viscoelastic Response of the Human Corneal Stroma Induced by Riboflavin/UVA Cross-Linking
Authors: C. Labate, M. P. De Santo, G. Lombardo, R. Barberi, M. Lombardo, N. M. Ziebarth
Abstract:
In the past decades, the importance of corneal biomechanics in the normal and pathological functions of the eye has gained its credibility. In fact, the mechanical properties of biological tissues are essential to their physiological function. We are convinced that an improved understanding of the nanomechanics of corneal tissue is important to understand the basic molecular interactions between collagen fibrils. Ultimately, this information will help in the development of new techniques to cure ocular diseases and in the development of biomimetic materials. Therefore, nanotechnology techniques are powerful tools and, in particular, Atomic Force Microscopy has demonstrated its ability to reliably characterize the biomechanics of biological tissues either at the micro- or nano-level. In the last years, we have investigated the mechanical anisotropy of the human corneal stroma at both the tissue and molecular levels. In particular, we have focused on corneal cross-linking, an established procedure aimed at slowing down or halting the progression of the disease known as keratoconus. We have obtained the first evidence that riboflavin/UV-A corneal cross-linking induces both an increase of the elastic response and a decrease of the viscous response of the most anterior stroma at the scale of stromal molecular interactions.Keywords: atomic force spectroscopy, corneal stroma, cross-linking, viscoelasticity
Procedia PDF Downloads 313398 Hybrid Treatment Method for Decolorization of Mixed Dyes: Rhodamine-B, Brilliant Green and Congo Red
Authors: D. Naresh Yadav, K. Anand Kishore, Bhaskar Bethi, Shirish H. Sonawane, D. Bhagawan
Abstract:
The untreated industrial wastewater discharged into the environment causes the contamination of soil, water and air. Advanced treatment methods for enhanced wastewater treatment are attracting substantial interest among the currently employed unit processes in wastewater treatment. The textile industry is one of the predominant in wastewater production at current industrialized situation. The refused dyes at textile industry need to be treated in proper manner before its discharge into water bodies. In the present investigation, hybrid treatment process has been developed for the treatment of synthetic mixed dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial semiconducting powders (TiO2 and ZnO) has used as a nano photocatalyst for the degradation of mixed dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis with catalyst has shown the average of 34% of decolorization (RB-32%, BG-34% and CR-36%), whereas ceramic nanofiltration has shown the 56% (RB-54%, BG-56% and CR-58%) of decolorization. Integration of photocatalysis and ceramic nanofiltration has shown 96% (RB-94%, BG-96% and CR-98%) of dye decolorization over 90 min of operation.Keywords: photocatalysis, ceramic nanoporous membrane, wastewater treatment, advanced oxidation process, process integration
Procedia PDF Downloads 264397 Preliminary Studies of MWCNT/PVDF Polymer Composites
Authors: Esther Lorrayne M. Pereira, Adriana Souza M. Batista, Fabíola A. S. Ribeiro, Adelina P. Santos, Clascídia A. Furtado, Luiz O. Faria
Abstract:
The combination of multi–walled carbon nanotubes (MWCNTs) with polymers offers an attractive route to reinforce the macromolecular compounds as well as the introduction of new properties based on morphological modifications or electronic interactions between the two constituents. As they are only a few nanometers in dimension, it offers ultra-large interfacial area per volume between the nano-element and polymer matrix. Nevertheless, the use of MWCNTs as a rough material in different applications has been largely limited by their poor processability, insolubility, and infusibility. Studies concerning the nanofiller reinforced polymer composites are justified in an attempt to overcome these limitations. This work presents one preliminary study of MWCNTs dispersion into the PVDF homopolymer. For preparation, the composite components were diluted in n,n-dimethylacetamide (DMAc) with mechanical agitation assistance. After complete dilution, followed by slow evaporation of the solvent at 60°C, the samples were dried. Films of about 80 μm were obtained. FTIR and UV-Vis spectroscopic techniques were used to characterize the nanocomposites. The appearance of absorption bands in the FTIR spectra of nanofilled samples, when compared to the spectrum of pristine PVDF samples, are discussed and compared with the UV-Vis measurements.Keywords: composites materials, FTIR, MWNTs, PVDF, UV-vis
Procedia PDF Downloads 449396 Freshwater Recovering and Water Pollution Controlling Technology
Authors: Habtamu Abdisa
Abstract:
In nature, water may not be free from contaminants due to its polar nature. But, more than this, the environmental water is highly polluted by manmade activities from industrial, agricultural, recreation, shipping, and domestic sites, thereby increasing the shortage of freshwater for designated purposes. Therefore, in the face of water scarcity, human beings are enforced to look at all the existing opportunities to get an adequate amount of freshwater resources. The most probable water resource is wastewater, from which the water can be recovered to serve designated purposes (for industrial, agricultural, drinking, and other domestic uses). Present-day, the most preferable method for recovering water from different wastewater streams for re-use is membrane technology. This paper looks at the progressive development of membrane technology in wastewater treatment. The applications of pressure-driven membrane separation technology (microfiltration, ultrafiltration, nano-filtration, reverse osmosis, and tissue purification) and no pressure membrane separation technology (semipermeable membrane, liquefiedfilm, and electro-dialysis) and also ion-exchange were reviewed. More than all, the technology for converting environmental water pollutants into energy is of considerable attention. Finally, recommendations for future research relating to the application of membrane technology in wastewater treatment were made. Also, further research recommendation about membrane fouling and cleaning was made.Keywords: environmental pollution, membrane technology, water quality, wastewater
Procedia PDF Downloads 97395 Protein Derived Biodegradable Food Packaging Material from Poultry By-Product
Authors: Muhammad Zubair, Aman Ullah, Jianping Wu
Abstract:
During the last decades, petroleum derived synthetic polymers like polyethylene terephthalate, polyvinylchloride, polyethylene, polypropylene and polystyrene has extensively been used in the field of food packaging and mostly are non-degradable. Biopolymers are a good fit for single-use or short-lived products such as food packaging. Spent hens, a poultry by-product which is of little economic value and their disposal are environmentally harmful. Through current study, we have explored the possibility to transform proteins from spent fowl into green food packaging material. Proteins from spent fowl were extracted within 1 hour using pH shift method with recovery of about 74%. Different plasticizers were tried like glycerol, sorbitol, glutaraldehyde, 1,2 ethylene glycol and 1,2 butanediol. Glycerol was the best plasticizer among all these plasticizers. A naturally occurring and non-toxic cross-linking agent, chitosan, was used to form the chitosan/glycerol/protein blend by casting and compression molding techniques. The mechanical properties were characterized using tensile strength analyzer. The nano-reinforcements with homogeneous dispersion of nanoparticles lead to improved physical properties suggesting that these materials have great potential for food packaging applications.Keywords: differential scanning calorimetry, dynamic mechanical analysis, scanning electron microscopy, spent hen
Procedia PDF Downloads 276394 Development of Wear Resistant Ceramic Coating on Steel Using High Velocity Oxygen Flame Thermal Spray
Authors: Abhijit Pattnayak, Abhijith N.V, Deepak Kumar, Jayant Jain, Vijay Chaudhry
Abstract:
Hard and dense ceramic coatings deposited on the surface provide the ideal solution to the poor tribological properties exhibited by some popular stainless steels like EN-36, 17-4PH, etc. These steels are widely used in nuclear, fertilizer, food processing, and marine industries under extreme environmental conditions. The present study focuses on the development of Al₂O₃-CeO₂-rGO-based coatings on the surface of 17-4PH steel using High-Velocity Oxygen Flame (HVOF) thermal spray process. The coating is developed using an oxyacetylene flame. Further, we report the physical (Density, Surface roughness, Surface energetics), Metallurgical (Scanning electron microscopy, X-ray diffraction, Raman), Mechanical (Hardness(Vickers and Nano Hard-ness)), Tribological (Wear, Scratch hardness) and Chemical (corrosion) characterization of both As-sprayed coating and the Substrate (17-4 PH steel). The comparison of the properties will help us to understand the microstructure-property relationship of the coating and reveal the necessity and challenges of such coatings.Keywords: thermal spray process, HVOF, ceramic coating, hardness, wear, corrosion
Procedia PDF Downloads 97393 Poly (L-Lysine)-Coated Liquid Crystal Droplets for Sensitive Detection of DNA and Its Applications in Controlled Release of Drug Molecules
Authors: Indu Verma, Santanu Kumar Pal
Abstract:
Interactions between DNA and adsorbed Poly (L-lysine) (PLL) on liquid crystal (LC) droplets were investigated using polarizing optical microcopy (POM) and epi-fluorescence microscopy. Earlier, we demonstrated that adsorption of PLL to the LC/aqueous interface resulted in homeotropic orientation of the LC and thus exhibited a radial configuration of the LC confined within the droplets. Subsequent adsorption of DNA (single stranded DNA/double stranded DNA) at PLL coated LC droplets was found to trigger a LC reorientation within the droplets leading to pre-radial/bipolar configuration of those droplets. To our surprise, subsequent exposure of complementary ssDNA (c-ssDNA) to ssDNA/ adsorbed PLL modified LC droplets did not cause the LC reorientation. This is likely due to the formation of polyplexes (DNA-PLL complex) as confirmed by fluorescence microscopy and atomic force microscopy. In addition, dsDNA adsorbed PLL droplets have been found to be effectively used to displace (controlled release) propidium iodide (a model drug) encapsulated within dsDNA over time. These observations suggest the potential for a label free droplet based LC detection system that can respond to DNA and may provide a simple method to develop DNA-based drug nano-carriers.Keywords: DNA biosensor, drug delivery, interfaces, liquid crystal droplets
Procedia PDF Downloads 299392 Study Of Cu Doped Zns Thin Films Nanocrystalline by Chemical Bath Deposition Method
Authors: H. Merzouka, D. T. Talantikitea, S. Fettouchib, L. Nessarkb
Abstract:
Recently New nanosized materials studies are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made in design and control fabrication of nano-structured semiconductors such as zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work preparation and characterization of ZnS and Cu doped ZnS thin films. Nanoparticles ZnS and Cu doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and copper acetate as Cu ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuK radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1. The transmittance is more than 70 % is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Cu doping.Keywords: Cu doped ZnS, nanostructured, thin films, CBD, XRD, FTIR
Procedia PDF Downloads 444391 Dynamic Response of Magnetorheological Fluid Tapered Laminated Beams Reinforced with Nano-Particles
Authors: Saman Momeni, Abolghassem Zabihollah, Mehdi Behzad
Abstract:
Non-uniform laminated composite structures are being used in many engineering applications where the structures are subjected to unpredicted vibration. To mitigate the vibration response of these structures, recently, magnetorheological fluid (MR), is added to non-uniform (tapered) thickness laminated composite structures to achieve a new generation of the smart composite as MR tapered beam. However, due to the nature of MR fluid, especially the low stiffness, MR tapered beam exhibit lower stiffness and in turn, lower natural frequencies. To achieve the basic design requirements of the structure without MR fluid, one may need to apply a predefined magnetic energy to the structures, requiring a constant source of energy. In the present work, a passive initial stiffness control of MR tapered beam has been studied. The effects of adding nanoparticles on the dynamic response of MR tapered beam has been investigated. It is observed that adding nanoparticles up to 3% may significantly modify the natural frequencies of the structures and achieve dynamic behavior of the structures before addition of MR fluid. Two Models of tapered structures have been taken into consideration. It is observed that adding only 3% of nanoparticles backs the structures to its initial dynamic behavior.Keywords: non uniform laminated structures, MR fluid, nanoparticles, vibration, stiffness
Procedia PDF Downloads 240390 Progressive Loading Effect of Co Over SiO2/Al2O3 Catalyst for Cox Free Hydrogen and Carbon Nanotubes Production via Catalytic Decomposition of Methane
Authors: Sushil Kumar Saraswat, K. K. Pant
Abstract:
Co metal supported on SiO2 and Al2O3 catalysts with a metal loading varied from 30 of 70 wt.% were evaluated for decomposition of methane to CO/CO2 free hydrogen and carbon nano materials. The catalytic runs were carried out from 550-800 oC under atmospheric pressure using fixed bed vertical flow reactor. The fresh and spent catalysts were characterized by BET surface area analyzer, TPR, XRD, SEM, TEM, and TG analysis. The data showed that 50% Co/Al2O3 catalyst exhibited remarkable higher activity and stability up to 10 h time-on-stream at 750 oC with respect to H2 production compared to rest of the catalysts. However, the catalytic activity and durability was greatly declined at a higher temperature. The main reason for the catalytic inhibition of Co containing SiO2 catalysts is the higher reduction temperature of Co2SiO4. TEM images illustrate that the carbon materials with various morphologies, carbon nanofibers (CNFs), helical-shaped CNFs, and branched CNFs depending on the catalyst composition and reaction temperature, were obtained. The TG data showed that a higher yield of MWCNTs was achieved over 50% Co/Al2O3 catalyst compared to other catalysts.Keywords: carbon nanotubes, cobalt, hydrogen production, methane decomposition
Procedia PDF Downloads 323389 Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment
Authors: Beena Sethi
Abstract:
This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource.Keywords: degradation, differential scanning calorimetry, feedstock recycling, gas chromatography, thermogravimetric analysis
Procedia PDF Downloads 422388 Nano-Texturing of Single Crystalline Silicon via Cu-Catalyzed Chemical Etching
Authors: A. A. Abaker Omer, H. B. Mohamed Balh, W. Liu, A. Abas, J. Yu, S. Li, W. Ma, W. El Kolaly, Y. Y. Ahmed Abuker
Abstract:
We have discovered an important technical solution that could make new approaches in the processing of wet silicon etching, especially in the production of photovoltaic cells. During its inferior light-trapping and structural properties, the inverted pyramid structure outperforms the conventional pyramid textures and black silicone. The traditional pyramid textures and black silicon can only be accomplished with more advanced lithography, laser processing, etc. Importantly, our data demonstrate the feasibility of an inverted pyramidal structure of silicon via one-step Cu-catalyzed chemical etching (CCCE) in Cu (NO3)2/HF/H2O2/H2O solutions. The effects of etching time and reaction temperature on surface geometry and light trapping were systematically investigated. The conclusion shows that the inverted pyramid structure has ultra-low reflectivity of ~4.2% in the wavelength of 300~1000 nm; introduce of Cu particles can significantly accelerate the dissolution of the silicon wafer. The etching and the inverted pyramid structure formation mechanism are discussed. Inverted pyramid structure with outstanding anti-reflectivity includes useful applications throughout the manufacture of semi-conductive industry-compatible solar cells, and can have significant impacts on industry colleagues and populations.Keywords: Cu-catalyzed chemical etching, inverted pyramid nanostructured, reflection, solar cells
Procedia PDF Downloads 154387 Utilization of Functionalized Biochar from Water Hyacinth (Eichhornia crassipes) as Green Nano-Fertilizers
Authors: Adewale Tolulope Irewale, Elias Emeka Elemike, Christian O. Dimkpa, Emeka Emmanuel Oguzie
Abstract:
As the global population steadily approaches the 10billion mark, the world is currently faced with two major challenges among others – accessing sustainable and clean energy, and food security. Accessing cleaner and sustainable energy sources to drive global economy and technological advancement, and feeding the teeming human population require sustainable, innovative, and smart solutions. To solve the food production problem, producers have relied on fertilizers as a way of improving crop productivity. Commercial inorganic fertilizers, which is employed to boost agricultural food production, however, pose significant ecological sustainability and economic problems including soil and water pollution, reduced input efficiency, development of highly resistant weeds, micronutrient deficiency, soil degradation, and increased soil toxicity. These ecological and sustainability concerns have raised uncertainties about the continued effectiveness of conventional fertilizers. With the application of nanotechnology, plant biomass upcycling offers several advantages in greener energy production and sustainable agriculture through reduction of environmental pollution, increasing soil microbial activity, recycling carbon thereby reducing GHG emission, and so forth. This innovative technology has the potential for a circular economy and creating a sustainable agricultural practice. Nanomaterials have the potential to greatly enhance the quality and nutrient composition of organic biomass which in turn, allows for the conversion of biomass into nanofertilizers that are potentially more efficient. Water hyacinth plant harvested from an inland water at Warri, Delta State Nigeria were air-dried and milled into powder form. The dry biomass were used to prepare biochar at a pre-determined temperature in an oxygen deficient atmosphere. Physicochemical analysis of the resulting biochar was carried out to determine its porosity and general morphology using the Scanning Transmission Electron Microscopy (STEM). The functional groups (-COOH, -OH, -NH2, -CN, -C=O) were assessed using the Fourier Transform InfraRed Spectroscopy (FTIR) while the heavy metals (Cr, Cu, Fe, Pb, Mg, Mn) were analyzed using Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES). Impregnation of the biochar with nanonutrients were achieved under varied conditions of pH, temperature, nanonutrient concentrations and resident time to achieve optimum adsorption. Adsorption and desorption studies were carried out on the resulting nanofertilizer to determine kinetics for the potential nutrients’ bio-availability to plants when used as green fertilizers. Water hyacinth (Eichhornia crassipes) which is an aggressively invasive aquatic plant known for its rapid growth and profusion is being examined in this research to harness its biomass as a sustainable feedstock to formulate functionalized nano-biochar fertilizers, offering various benefits including water hyacinth biomass upcycling, improved nutrient delivery to crops and aquatic ecosystem remediation. Altogether, this work aims to create output values in the three dimensions of environmental, economic, and social benefits.Keywords: biochar-based nanofertilizers, eichhornia crassipes, greener agriculture, sustainable ecosystem, water hyacinth
Procedia PDF Downloads 65386 Evaluation of Neonicotinoids Against Sucking Insect Pests of Cotton in Laboratory and Field Conditions
Authors: Muhammad Sufyan, Muhammad D. Gogi, Muhammad Arshad, Ahmad Nawaz, Muhammad Usman
Abstract:
Cotton (Gossypium hirsutum) universally known as silver fiber and is one of the most important cash crop of Pakistan. A wide array of pests constraints cotton production among which sucking insect pests cause serious losses. Mostly new chemistry insecticides used to control a wide variety of insect pests including sucking insect pests. In the present study efficacy of different neonicotinoids was evaluated against sucking insect pests of cotton in the field and in laboratory for red and dusky cotton bug. The experiment was conducted at Entomology Research Station, University of Agriculture Faisalabad, in a Randomized Complete Block Design (RCBD). Field trial was conducted to evaluate the efficacy of Confidence Ultra (Imidacloprid) 70% SL, Confidor (Imidacloprid) 20% SL, Kendo (Lambda cyhalothrin) 24.7 SC, Actara (Thiamethoxam) 25% WG, Forcast (Tebufenozide+ Emamectin benzoate) 8.8 EW and Timer (Emamectin benzoate) 1.9 EC at their recommended doses. The data was collected on per leaf basis of thrips, aphid, jassid and whitefly before 24 hours of spray. The post treatment data was recorded after 24, 48 and 72 hours. The fresh, non-infested and untreated cotton leaves was collected from the field and brought to the laboratory to assess the efficacy of neonicotinoids against red and dusky cotton bug. After data analysis all the insecticides were found effective against sucking pests. Confidence Ultra was highly effective against the aphid, jassid, and whitefly and gave maximum mortality, while showed non-significant results against thrips. In case of aphid plot which was treated with Kando 24.7 SC showed significant mortality after 72 hours of pesticide application. Similar trends were found in laboratory conditions with all these treatments by making different concentrations and had significant impact on dusky cotton bug and red cotton bug population after 24, 48 and 72 hours after application.Keywords: cotton, laboratory and field conditions, neonicotinoids, sucking insect pests
Procedia PDF Downloads 244385 Contemplating Charge Transport by Modeling of DNA Nucleobases Based Nano Structures
Authors: Rajan Vohra, Ravinder Singh Sawhney, Kunwar Partap Singh
Abstract:
Electrical charge transport through two basic strands thymine and adenine of DNA have been investigated and analyzed using the jellium model approach. The FFT-2D computations have been performed for semi-empirical Extended Huckel Theory using atomistic tool kit to contemplate the charge transport metrics like current and conductance. The envisaged data is further evaluated in terms of transmission spectrum, HOMO-LUMO Gap and number of electrons. We have scrutinized the behavior of the devices in the range of -2V to 2V for a step size of 0.2V. We observe that both thymine and adenine can act as molecular devices when sandwiched between two gold probes. A prominent observation is a drop in HLGs of adenine and thymine when working as a device as compared to their intrinsic values and this is comparative more visible in case of adenine. The current in the thymine based device exhibit linear increase with voltage in spite of having low conductance. Further, the broader transmission peaks represent the strong coupling of electrodes to the scattering molecule (thymine). Moreover, the observed current in case of thymine is almost 3-4 times than that of observed for adenine. The NDR effect has been perceived in case of adenine based device for higher bias voltages and can be utilized in various future electronics applications.Keywords: adenine, DNA, extended Huckel, thymine, transmission spectra
Procedia PDF Downloads 157384 Preparation of Polylactide Nanoparticles by Supercritical Fluid Technology
Authors: Jakub Zágora, Daniela Plachá, Karla Čech Barabaszová, Sylva Holešová, Roman Gábor, Alexandra Muñoz Bonilla, Marta Fernández García
Abstract:
The development of new antimicrobial materials that are not toxic to higher living organisms is a major challenge today. Newly developed materials can have high application potential in biomedicine, coatings, packaging, etc. A combination of commonly used biopolymer polylactide with cationic polymers seems to be very successful in the fight against antimicrobial resistance [1].PLA will play a key role in fulfilling the intention set out in the New Deal announced by the EU commission, as it is a bioplastic that is easily degradable, recyclable, and mass-produced. Also, the development of 3D printing in the context of this initiative, and the actual use of PLA as one of the main materials used for this printing, make the technology around the preparation and modification of PLA quite logical. Moreover, theenvironmentally friendly and energy saving technology like supercritical fluid process (SFP) will be used for their preparation. In a first approach, polylactide nano- and microparticles and structures were prepared by supercritical fluid extraction. The RESS (rapid expansion supercritical fluid solution) method is easier to optimize and shows better particle size control. On the contrary, a highly porous structure was obtained using the SAS (supercritical antisolvent) method. In a second part, the antimicrobial biobased polymer was introduced by SFP.Keywords: polylactide, antimicrobial polymers, supercritical fluid technology, micronization
Procedia PDF Downloads 188383 Effect of Multi Walled Carbon Nanotubes on Pyrolysis Behavior of Unsaturated Polyester Resin
Authors: Rosli Mohd Yunus, A. K. M. Moshiul Alam, Mohammad Dalour Beg
Abstract:
In the case of advance polymeric materials reinforcement and thermal stability of matrix is a focused arena of researchers. The distribution of carbon nanotubes (CNTs) in polymer matrix influences material properties. In this study, multi-walled carbon nanotubes (MWCNTs) have been dispersed in unsaturated polyester resin (UPR) through solution mixing and sonication techniques using tetra hydro furan (THF) solvent. Nanocomposites have been fabricated with solution mixing and without solution mixing. Viscosity, Fourier-transform infrared spectroscopy, Field emission scanning electron microscopy (FESEM) investigations have been conducted to study the distribution as well as interaction between matrix and MWCNT. The differential scanning calorimetry (DSC), thermogravimetric analyses (TGA) and pyrolysis behavior have been conducted to study the thermal degradation and stability of nanocomposites. In addition, the SEM micrographs of nanocomposite residual chars were exhibited more packed together. Incorporation of CNT enhances crystallinity and mechanical and thermal properties of the nanocomposites. Correlations among MWCNTs dispersion, nucleation, fracture morphology and various properties have been made.Keywords: char, multiwall carbon nanotubes, nano composite, pyrolysis
Procedia PDF Downloads 361382 Preparation and Application of Biocompatible Nanobioactive Glass as Therapeutic Agents for Bone Tissue Engineering
Authors: P. Shrivastava, S. Vijayalakshmi, A. K. Singh, S. Dalai, R. Teotia, P. Sharma, J. Bellare
Abstract:
This paper focuses on the synthesis and application of nanobioactive glass for bone regeneration studies. Nanobioactive glass has been synthesized by sol gel method having a combination of silicon, calcium and phosphorous in the molar ratio of 75:21:4. The prepared particles were analyzed for surface morphology by FEG SEM and FEG TEM. Physiochemical properties were investigated using ICP AES, FTIR spectroscopy and X-ray diffraction (XRD) techniques. To ascertain their use for therapeutic use, biocompatibility evaluation of the particles was done by performing soaking studies in SBF and in vitro cell culture studies on MG63 cell lines. Cell morphology was observed by FE SEM and phase contrast microscopy. Nanobioactive glasses (NBG) thus prepared were of 30-200 nm in size, which makes them suitable for nano-biomedical applications. The spherical shape of the particles imparts high surface to volume ratio, promoting fast growth of hydroxyapatite (HA), which is the mineral component of bone. As evaluated by in vitro cell culture studies the NBG was found to enhance the surface activation which enhances osteoblast adhesion. This is an essential parameter to improve bone tissue integration, thereby making nanobioactive glass therapeutically suitable for correcting bone defects.Keywords: biocompatibility, bone tissue engineering, hydroxyapatite, nanobioactive glass
Procedia PDF Downloads 457381 Role of Nano-Technology on Remediation of Poly- and Perfluoroalkyl Substances Contaminated Soil and Ground Water
Authors: Leila Alidokht
Abstract:
PFAS (poly- and perfluoroalkyl substances) are a large collection of environmentally persistent organic chemicals of industrial origin that have a negative influence on human health and ecosystems. Many distinct PFAS are being utilized in a wide range of applications (on the order of thousands), and there is no comprehensive source of information on the many different compounds and their roles in diverse applications. Facilities are increasingly looking into ways to reduce waste from cleanup projects. PFAS are widespread in the environment, have been found in a wide range of human biomonitoring investigations, and are a rising source of regulatory concern for federal, state, and local governments. Nanotechnology has the potential to contribute considerably to the creation of a cleaner, greener technologies with considerable environmental and health benefits. Nanotechnology approaches are being studied for their potential to provide pollution management and mitigation options, as well as to increase the effectiveness of standard environmental cleanup procedures. Diversified nanoparticles have shown useful in removing certain pollutants from their original environment, such as sewage spills and landmines. Furthermore, they have a low hazardous effect during production rates and can thus be thoroughly explored in the future to make them more compatible with lower production costs.Keywords: PFOS, PFOA, PFAS, soil remediation
Procedia PDF Downloads 112380 Solubility Measurements in the Context of Nanoregulation
Authors: Ratna Tantra
Abstract:
From a risk assessment point of view, solubility is a property that has been identified as being important. If nanomaterial is completely soluble, then its disposal can be treated much in the same way as ‘ordinary’ chemicals, which subsequently will simplify testing and characterization regimes. The measurement of solubility has been highlighted as important in a pan-European project, Framework Programme (FP) 7 NANoREG. Some of the project outputs surrounding this topic will be presented here, in which there are two parts. First, a review on existing methods capable of measuring nanomaterial solubility will be discussed. Second, a case study will be presented based on using colorimetry methods to quantify dissolve zinc from ZnO nanomaterial upon exposure to digestive juices. The main findings are as follows: a) there is no universal method for nanomaterial solubility testing. The method chosen will be dependent on sample type and nano-specific application/scenario. b) The colorimetry results show a positive correlation between particle concentration and amount of [Zn2+] released; this was expected c) results indicate complete dissolution of the ZnO nanomaterial, as a result of the digestion protocol but only a fraction existing as free ions. Finally, what differentiates the F7 NANoREG project over other projects is the need for participating research laboratories to follow a set of defined protocols, necessary to establish quality control and assurance. The methods and results associated with mandatory testing that carried out by all partners in NANoREG will be discussed.Keywords: nanomaterials, nanotoxicology, solubility, zinc oxide
Procedia PDF Downloads 335379 Characterization of a Newfound Manganese Tungstate Mineral of Hübnerite in Turquoise Gemstone from Miduk Mine, Kerman, Iran
Authors: Zahra Soleimani Rad, Fariborz Masoudi, Shirin Tondkar
Abstract:
Turquoise is one of the most well-known gemstones in Iran. The mineralogy, crystallography, and gemology of Shahr-e-Babak turquoise in Kerman were investigated and the results are presented in this research. The Miduk porphyry copper deposit is positioned in the Shahr-Babak area in Kerman province, Iran. This deposit is located 85 km NW of the Sar-Cheshmeh porphyry copper deposit. Preliminary mineral exploration was carried out from 1967 to 1970. So far, more than fifty diamond drill holes, each reaching a maximum depth of 1013 meters, have provided evidence supporting the presence of significant and promising porphyry copper mineralization at the Miduk deposit. The mineral deposit harbors a quantity of 170 million metric tons of ore, characterized by a mean composition of 0.86% copper (Cu), 0.007% molybdenum (Mo), 82 parts-per-billion gold (Au), and 1.8 parts-per-million silver (Ag). The Supergene enrichment layer, which constitutes the predominant source of copper ore, exhibits an approximate thickness of 50 meters. Petrography shows that the texture is homogeneous. In terms of a gemstone, greasy luster and blue color are seen, and samples are similar to what is commonly known as turquoise. The geometric minerals were detected in XRD analysis by analyzing the data using the x-pert software. From the mineralogical point of view; the turquoise gemstones of Miduk of Kerman consist of turquoise, quartz, mica, and hübnerite. In this article, to our best knowledge, we are stating the hübnerite mineral identified and seen in the Persian turquoise. Based on the obtained spectra, the main mineral of the Miduk samples from the six members of the turquoise family is the turquoise type with identical peaks that can be used as a reference for identification of the Miduk turquoise. This mineral is structurally composed of phosphate units, units of Al, Cu, water, and hydroxyl units, and does not include a Fe unit. In terms of gemology, the quality of a gemstone depends on the quantity of the turquoise phase and the amount of Cu in it according to SEM and XRD analysis.Keywords: turquoise, hübnerite, XRD analysis, Miduk, Kerman, Iran
Procedia PDF Downloads 70378 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes
Authors: Samvel H. Sargsyan
Abstract:
Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell
Procedia PDF Downloads 160377 Enhancing the Structural, Optical, and Dielectric Properties of the Polymer Nanocomposites Based on Polymer Blend and Gold Nanoparticles for Application in Energy Storage
Authors: Mohammed Omar
Abstract:
Using Chenopodium murale leaf, gold nanoparticles (Au NP's) were biosynthesized effectively in an amicable strategy. The casting process was used to create composite layers of sodium alginate and polyvinyl pyrrolidone. Gold nanoparticles were incorporated into the polyvinyl pyrrolidone (PVP)/ sodium alginate (NaAlg) polymer blend by casting technique. Before and after exposure to different doses of gamma irradiation (2, 4, 6 Mrad), thin films of synthesized nanocomposites were analyzed. XRD revealed the amorphous nature of polymer blends (PVP/ NaAlg), which decreased by both Au NP's embedding and consecutive doses of irradiation. FT-IR spectra revealed interactions and differences within the functional groups of their respective pristine components and dopant nano-fillers. The optical properties of PVP/NaAlg – Au NP thin films (refractive index n, energy gap Eg, Urbach energy Eu) were examined before and after the irradiation procedure. Transmission electron micrographs (TEM) demonstrated a decrease in the size of Au NP’s and narrow size distribution as the gamma irradiation dose was increased. Gamma irradiation was found to influence the electrical conductivity of synthesized composite films, as well as dielectric permittivity (ɛ′) and dielectric losses (ε″).Keywords: PVP, SPR, γ-radiations, XRD
Procedia PDF Downloads 104376 Development of Transparent Nano-Structured Super-Hydrophobic Coating on Glass and Evaluation of Anti-Dust Properties
Authors: Abhilasha Mishra, Neha Bhatt
Abstract:
Super-hydrophobicity is an effect in which a surface roughness and chemical composition are combined to produce unusual water and dust repellent surface. The super-hydrophobic surface is widely used in many applications such as windshields of the automobile, aircraft, lens, solar cells, roofing, boat hull, paints, etc. Four coating solutions were prepared by varying compositions of 1,1,1,3,3,3 hexametyldisilazane (HDMS) and tetraethylorthosilicate (TEOS) sol. These solutions were coated on glass slides by a spin coating method and etched at a high temperature ranging 250 -350 oC. All the coatings were studied for its different properties like water repellent, anti-dust, and transparency and contact angle measurements. Stability of coatings was also studied with respect to temperature, external environment, and pH. It was found that all coatings impart a significant super-hydrophobicity on a glass surface with contact angle ranging from 156o to 162o and have good stability in the external environment. The results of the different coatings were observed and compared with each other. On increasing layers of coatings the super-hydrophobicity and anti-dust properties increases but after 3 coatings the transparency of coating starts decreasing.Keywords: super-hydrophobic, contact angle, coating, anti-dust
Procedia PDF Downloads 260375 A Machining Method of Cross-Shape Nano Channel and Experiments for Silicon Substrate
Authors: Zone-Ching Lin, Hao-Yuan Jheng, Zih-Wun Jhang
Abstract:
The paper innovatively proposes using the concept of specific down force energy (SDFE) and AFM machine to establish a machining method of cross-shape nanochannel on single-crystal silicon substrate. As for machining a cross-shape nanochannel by AFM machine, the paper develop a method of machining cross-shape nanochannel groove at a fixed down force by using SDFE theory and combining the planned cutting path of cross-shape nanochannel up to 5th machining layer it finally achieves a cross-shape nanochannel at a cutting depth of around 20nm. Since there may be standing burr at the machined cross-shape nanochannel edge, the paper uses a smaller down force to cut the edge of the cross-shape nanochannel in order to lower the height of standing burr and converge the height of standing burr at the edge to below 0.54nm as set by the paper. Finally, the paper conducts experiments of machining cross-shape nanochannel groove on single-crystal silicon by AFM probe, and compares the simulation and experimental results. It is proved that this proposed machining method of cross-shape nanochannel is feasible.Keywords: atomic force microscopy (AFM), cross-shape nanochannel, silicon substrate, specific down force energy (SDFE)
Procedia PDF Downloads 375374 Micropillar-Assisted Electric Field Enhancement for High-Efficiency Inactivation of Bacteria
Authors: Sanam Pudasaini, A. T. K. Perera, Ahmed Syed Shaheer Uddin, Sum Huan Ng, Chun Yang
Abstract:
Development of high-efficiency and environment friendly bacterial inactivation methods is of great importance for preventing waterborne diseases which are one of the leading causes of death in the world. Traditional bacterial inactivation methods (e.g., ultraviolet radiation and chlorination) have several limitations such as longer treatment time, formation of toxic byproducts, bacterial regrowth, etc. Recently, an electroporation-based inactivation method was introduced as a substitute. Here, an electroporation-based continuous flow microfluidic device equipped with an array of micropillars is developed, and the device achieved high bacterial inactivation performance ( > 99.9%) within a short exposure time ( < 1 s). More than 99.9% reduction of Escherichia coli bacteria was obtained for the flow rate of 1 mL/hr, and no regrowth of bacteria was observed. Images from scanning electron microscope confirmed the formation of electroporation-induced nano-pore within the cell membrane. Through numerical simulation, it has been shown that sufficiently large electric field strength (3 kV/cm), required for bacterial electroporation, were generated using PDMS micropillars for an applied voltage of 300 V. Further, in this method of inactivation, there is no involvement of chemicals and the formation of harmful by-products is also minimum.Keywords: electroporation, high-efficiency, inactivation, microfluidics, micropillar
Procedia PDF Downloads 181