Search results for: maritime security intelligence
3278 An Efficient Encryption Scheme Using DWT and Arnold Transforms
Authors: Ali Abdrhman M. Ukasha
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. The color image is decomposed into red, green, and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using a key image that has same original size and is generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours of color image recovery can be obtained with accepted level of distortion using Canny edge detector. Experiments have demonstrated that proposed algorithm can fully encrypt 2D color image and completely reconstructed without any distortion. It has shown that the color image can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: color image, wavelet transform, edge detector, Arnold transform, lossy image encryption
Procedia PDF Downloads 4823277 Relationship between Perceived Level of Emotional Intelligence and Organizational Role Stress of Fire Fighters in Mumbai
Authors: Payal Maheshwari, Bansari Shah
Abstract:
The research aimed to study the level of emotional intelligence (EI) and organizational role stress (ORS) of fire-fighters and the relationship between the two variables. Hundred and twenty fire-fighters were selected from different fire stations of Mumbai by purposive sampling. The firefighters who had the basic training, a minimum experience of 2 years and had been on the field during a crisis situation were selected for the study. The firefighters selected ranged from 23-58 years of age, and the number of years of experience ranged from 2 to 33 years. The findings of the study revealed that majority of the firefighters perceived themselves to be at an above average (57) and high (58) level of EI (M=429.35, SD=38.712). Domain-wise analysis disclosed that compared to self-awareness (92) and relationship management (93), more number of participants perceived themselves in the high category in the domains of self-management (108) and social management (106). Further, examination of the subdomain scores conveyed that a large number of participants rated themselves in the average level of these skills of accurate self-assessment (50), emotional self-control (50), adaptability (56) initiative (41), influence (66), change catalyst (53), and conflict management (50). With relation to the stress variable, it was found that almost half the number of the participants (59) rated themselves as having an average level of stress (M=137.44, SD=28.800). In most of the domains, majority of the participants perceived themselves as having an average level of stress, while in the domain of role isolation, self-role distance, and role ambiguity, majority of the firefighters rated themselves as having a low level of stress. A strong negative correlation (r=-.360**, p=.000) was found between EI and ORS. This study is a contribution to the literature and has implications for fire-fighters at the personal level, for the policymakers, and the fire department.Keywords: emotional intelligence, organizational role stress, firefighters, relationship
Procedia PDF Downloads 1143276 Cooperative Agents to Prevent and Mitigate Distributed Denial of Service Attacks of Internet of Things Devices in Transportation Systems
Authors: Borhan Marzougui
Abstract:
Road and Transport Authority (RTA) is moving ahead with the implementation of the leader’s vision in exploring all avenues that may bring better security and safety services to the community. Smart transport means using smart technologies such as IoT (Internet of Things). This technology continues to affirm its important role in the context of Information and Transportation Systems. In fact, IoT is a network of Internet-connected objects able to collect and exchange different data using embedded sensors. With the growth of IoT, Distributed Denial of Service (DDoS) attacks is also growing exponentially. DDoS attacks are the major and a real threat to various transportation services. Currently, the defense mechanisms are mainly passive in nature, and there is a need to develop a smart technique to handle them. In fact, new IoT devices are being used into a botnet for DDoS attackers to accumulate for attacker purposes. The aim of this paper is to provide a relevant understanding of dangerous types of DDoS attack related to IoT and to provide valuable guidance for the future IoT security method. Our methodology is based on development of the distributed algorithm. This algorithm manipulates dedicated intelligent and cooperative agents to prevent and to mitigate DDOS attacks. The proposed technique ensure a preventive action when a malicious packets start to be distributed through the connected node (Network of IoT devices). In addition, the devices such as camera and radio frequency identification (RFID) are connected within the secured network, and the data generated by it are analyzed in real time by intelligent and cooperative agents. The proposed security system is based on a multi-agent system. The obtained result has shown a significant reduction of a number of infected devices and enhanced the capabilities of different security dispositives.Keywords: IoT, DDoS, attacks, botnet, security, agents
Procedia PDF Downloads 1433275 Automated Driving Deep Neural Networks Model Accuracy and Performance Assessment in a Simulated Environment
Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang
Abstract:
The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of the Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling human behavior. However, the exclusive use of this technology still seems insufficient to control vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.Keywords: accuracy assessment, AI-driven mobility, artificial intelligence, automated vehicles
Procedia PDF Downloads 1133274 Evaluating the Use of Manned and Unmanned Aerial Vehicles in Strategic Offensive Tasks
Authors: Yildiray Korkmaz, Mehmet Aksoy
Abstract:
In today's operations, countries want to reach their aims in the shortest way due to economical, political and humanitarian aspects. The most effective way of achieving this goal is to be able to penetrate strategic targets. Strategic targets are generally located deep inside of the countries and are defended by modern and efficient surface to air missiles (SAM) platforms which are operated as integrated with Intelligence, Surveillance and Reconnaissance (ISR) systems. On the other hand, these high valued targets are buried deep underground and hardened with strong materials against attacks. Therefore, to penetrate these targets requires very detailed intelligence. This intelligence process should include a wide range that is from weaponry to threat assessment. Accordingly, the framework of the attack package will be determined. This mission package has to execute missions in a high threat environment. The way to minimize the risk which depends on loss of life is to use packages which are formed by UAVs. However, some limitations arising from the characteristics of UAVs restricts the performance of the mission package consisted of UAVs. So, the mission package should be formed with UAVs under the leadership of a fifth generation manned aircraft. Thus, we can minimize the limitations, easily penetrate in the deep inside of the enemy territory with minimum risk, make a decision according to ever-changing conditions and finally destroy the strategic targets. In this article, the strengthens and weakness aspects of UAVs are examined by SWOT analysis. And also, it revealed features of a mission package and presented as an example what kind of a mission package we should form in order to get marginal benefit and penetrate into strategic targets with the development of autonomous mission execution capability in the near future.Keywords: UAV, autonomy, mission package, strategic attack, mission planning
Procedia PDF Downloads 5503273 Glycemic Control in Rice Consumption among Households with Diabetes Patients: The Role of Food Security
Authors: Chandanee Wasana Kalansooriya
Abstract:
Dietary behaviour is a crucial factor affecting diabetes control. With increasing rates of diabetes prevalence in Asian countries, examining their dietary patterns, which are largely based on rice, is timely required. It has been identified that higher consumption of some rice varieties is associated with increased risk of type 2 diabetes. Although diabetes patients are advised to consume healthier rice varieties, which contains low glycemic, several conditions, one of which food insecurity, make them difficult to preserve those healthy dietary guidelines. Hence this study tries to investigate how food security affects on making right decisions of rice consumption within diabetes affected households using a sample from Sri Lanka, a country which rice considered as the staple food and records the highest diabetes prevalence rate in South Asia. The study uses data from the Household Income and Expenditure Survey 2016, a nationally representative sample conducted by the Department of Census and Statistics, Sri Lanka. The survey used a two-stage stratified sampling method to cover different sectors and districts of the country and collected micro-data on demographics, health, income and expenditures of different categories. The study uses data from 2547 households which consist of one or more diabetes patients, based on the self-recorded health status. The Household Dietary Diversity Score (HDDS), which constructed based on twelve food groups, is used to measure the level of food security. Rice is categorized into three groups according to their Glycemic Index (GI), high GI, medium GI and low GI, and the likelihood and impact made by food security on each rice consumption categories are estimated using a Two-part Model. The shares of each rice categories out of total rice consumption is considered as the dependent variable to exclude the endogeneity issue between rice consumption and the HDDS. The results indicate that the consumption of medium GI rice is likely to increase with the increasing household food security, but low GI varieties are not. Households in rural and estate sectors are less likely and Tamil ethnic group is more likely to consume low GI rice varieties. Further, an increase in food security significantly decreases the consumption share of low GI rice, while it increases the share of medium GI varieties. The consumption share of low GI rice is largely affected by the ethnic variability. The effects of food security on the likelihood of consuming high GI rice varieties and changing its shares are statistically insignificant. Accordingly, the study concludes that a higher level of food security does not ensure diabetes patients are consuming healthy rice varieties or reducing consumption of unhealthy varieties. Hence policy attention must be directed towards educating people for making healthy dietary choices. Further, the study provides a room for further studies as it reveals considerable ethnic and sectorial differences in making healthy dietary decisions.Keywords: diabetes, food security, glycemic index, rice consumption
Procedia PDF Downloads 1023272 The Use of Information and Communication Technologies in Electoral Procedures: Comments on Electronic Voting Security
Authors: Magdalena Musiał-Karg
Abstract:
The expansion of telecommunication and progress of electronic media constitute important elements of our times. The recent worldwide convergence of information and communication technologies (ICT) and dynamic development of the mass media is leading to noticeable changes in the functioning of contemporary states and societies. Currently, modern technologies play more and more important roles and filter down to almost every field of contemporary human life. It results in the growth of online interactions that can be observed by the inconceivable increase in the number of people with home PCs and Internet access. The proof of it is undoubtedly the emergence and use of concepts such as e-society, e-banking, e-services, e-government, e-government, e-participation and e-democracy. The newly coined word e-democracy evidences that modern technologies have also been widely used in politics. Without any doubt in most countries all actors of political market (politicians, political parties, servants in political/public sector, media) use modern forms of communication with the society. Most of these modern technologies progress the processes of getting and sending information to the citizens, communication with the electorate, and also – which seems to be the biggest advantage – electoral procedures. Thanks to implementation of ICT the interaction between politicians and electorate are improved. The main goal of this text is to analyze electronic voting (e-voting) as one of the important forms of electronic democracy in terms of security aspects. The author of this paper aimed at answering the questions of security of electronic voting as an additional form of participation in elections and referenda.Keywords: electronic democracy, electronic voting, security of e-voting, information and communication technology (ICT)
Procedia PDF Downloads 2393271 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm
Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima
Abstract:
In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.Keywords: cloud space, AES, FTP, NetBeans IDE
Procedia PDF Downloads 2063270 Digitalization in Aggregate Quarries
Authors: José Eugenio Ortiz, Pierre Plaza, Josefa Herrero, Iván Cabria, José Luis Blanco, Javier Gavilanes, José Ignacio Escavy, Ignacio López-Cilla, Virginia Yagüe, César Pérez, Silvia Rodríguez, Jorge Rico, Cecilia Serrano, Jesús Bernat
Abstract:
The development of Artificial Intelligence services in mining processes, specifically in aggregate quarries, is facilitating automation and improving numerous aspects of operations. Ultimately, AI is transforming the mining industry by improving efficiency, safety and sustainability. With the ability to analyze large amounts of data and make autonomous decisions, AI offers great opportunities to optimize mining operations and maximize the economic and social benefits of this vital industry. Within the framework of the European DIGIECOQUARRY project, various services were developed for the identification of material quality, production estimation, detection of anomalies and prediction of consumption and production automatically with good results.Keywords: aggregates, artificial intelligence, automatization, mining operations
Procedia PDF Downloads 883269 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows
Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham
Abstract:
In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis
Procedia PDF Downloads 653268 Color Image Compression/Encryption/Contour Extraction using 3L-DWT and SSPCE Method
Authors: Ali A. Ukasha, Majdi F. Elbireki, Mohammad F. Abdullah
Abstract:
Data security needed in data transmission, storage, and communication to ensure the security. This paper is divided into two parts. This work interests with the color image which is decomposed into red, green and blue channels. The blue and green channels are compressed using 3-levels discrete wavelet transform. The Arnold transform uses to changes the locations of red image channel pixels as image scrambling process. Then all these channels are encrypted separately using the key image that has same original size and are generating using private keys and modulo operations. Performing the X-OR and modulo operations between the encrypted channels images for image pixel values change purpose. The extracted contours from color images recovery can be obtained with accepted level of distortion using single step parallel contour extraction (SSPCE) method. Experiments have demonstrated that proposed algorithm can fully encrypt 2D Color images and completely reconstructed without any distortion. Also shown that the analyzed algorithm has extremely large security against some attacks like salt and pepper and Jpeg compression. Its proof that the color images can be protected with a higher security level. The presented method has easy hardware implementation and suitable for multimedia protection in real time applications such as wireless networks and mobile phone services.Keywords: SSPCE method, image compression and salt and peppers attacks, bitplanes decomposition, Arnold transform, color image, wavelet transform, lossless image encryption
Procedia PDF Downloads 5183267 Ontology for Cross-Site-Scripting (XSS) Attack in Cybersecurity
Authors: Jean Rosemond Dora, Karol Nemoga
Abstract:
In this work, we tackle a frequent problem that frequently occurs in the cybersecurity field which is the exploitation of websites by XSS attacks, which are nowadays considered a complicated attack. These types of attacks aim to execute malicious scripts in a web browser of the client by including code in a legitimate web page. A serious matter is when a website accepts the “user-input” option. Attackers can exploit the web application (if vulnerable), and then steal sensitive data (session cookies, passwords, credit cards, etc.) from the server and/or from the client. However, the difficulty of the exploitation varies from website to website. Our focus is on the usage of ontology in cybersecurity against XSS attacks, on the importance of the ontology, and its core meaning for cybersecurity. We explain how a vulnerable website can be exploited, and how different JavaScript payloads can be used to detect vulnerabilities. We also enumerate some tools to use for an efficient analysis. We present detailed reasoning on what can be done to improve the security of a website in order to resist attacks, and we provide supportive examples. Then, we apply an ontology model against XSS attacks to strengthen the protection of a web application. However, we note that the existence of ontology does not improve the security itself, but it has to be properly used and should require a maximum of security layers to be taken into account.Keywords: cybersecurity, web application vulnerabilities, cyber threats, ontology model
Procedia PDF Downloads 1723266 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 623265 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence
Authors: C. J. Rossouw, T. I. van Niekerk
Abstract:
The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring
Procedia PDF Downloads 883264 Understanding the Basics of Information Security: An Act of Defense
Authors: Sharon Q. Yang, Robert J. Congleton
Abstract:
Information security is a broad concept that covers any issues and concerns about the proper access and use of information on the Internet, including measures and procedures to protect intellectual property and private data from illegal access and online theft; the act of hacking; and any defensive technologies that contest such cybercrimes. As more research and commercial activities are conducted online, cybercrimes have increased significantly, putting sensitive information at risk. Information security has become critically important for organizations and private citizens alike. Hackers scan for network vulnerabilities on the Internet and steal data whenever they can. Cybercrimes disrupt our daily life, cause financial losses, and instigate fear in the public. Since the start of the pandemic, most data related cybercrimes targets have been either financial or health information from companies and organizations. Libraries also should have a high interest in understanding and adopting information security methods to protect their patron data and copyrighted materials. But according to information security professionals, higher education and cultural organizations, including their libraries, are the least prepared entities for cyberattacks. One recent example is that of Steven’s Institute of Technology in New Jersey in the US, which had its network hacked in 2020, with the hackers demanding a ransom. As a result, the network of the college was down for two months, causing serious financial loss. There are other cases where libraries, colleges, and universities have been targeted for data breaches. In order to build an effective defense, we need to understand the most common types of cybercrimes, including phishing, whaling, social engineering, distributed denial of service (DDoS) attacks, malware and ransomware, and hacker profiles. Our research will focus on each hacking technique and related defense measures; and the social background and reasons/purpose of hacker and hacking. Our research shows that hacking techniques will continue to evolve as new applications, housing information, and data on the Internet continue to be developed. Some cybercrimes can be stopped with effective measures, while others present challenges. It is vital that people understand what they face and the consequences when not prepared.Keywords: cybercrimes, hacking technologies, higher education, information security, libraries
Procedia PDF Downloads 1343263 Informal Governance as Response to Institutional Paralysis
Authors: Stefanie Kasparek
Abstract:
The United Nations Security Council (UNSC) is probably the most recognized international security organization. It is also profoundly misunderstood and undervalued in its effort to promote peace and security. With the rising involvement of non-state actors and the way states fight wars, international governance has become increasingly complex. However, the formal UNSC agenda has long remained static, reflecting states' unwillingness to entertain more conflicts. Nevertheless, resolutions remain the scholarly measure of states' interests and policies, neglecting the significant share of issues the Council entertains informally. This project builds on a rational institutionalism framework. It provides a systematic analysis of how and under what conditions states use informal governance instead of, or in combination with, formal rules at the agenda-setting stage of the policy process. Data for this project comes from elite interviews and a newly created dataset on governance choices. The results show that counter existing arguments, weaker states successfully circumvent formal institutional roadblocks and use informal governance mechanisms to pursue vital interests, thereby countering institutional restrictions and power asymmetries present informal governance settings.Keywords: agenda-setting, decision-making, international governance, UNSC
Procedia PDF Downloads 1993262 The Impact of Artificial Intelligence on Textiles Technology
Authors: Ramy Kamel Fekrey Gadelrab
Abstract:
Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, it come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors.Keywords: nanoparticles, enzymes, immobilization, textilesconductive yarn, e-textiles, smart textiles, thermal analysisflexible textile-based wearable sensors, contemporary advancements, conductive textiles, body conformal design
Procedia PDF Downloads 483261 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease
Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani
Abstract:
Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence
Procedia PDF Downloads 193260 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 693259 Mobile Cloud Computing: How to Improve
Authors: Abdullah Aljumah, Tariq Ahamad
Abstract:
The simplest possible human-computer interaction is mobile cloud computing as it emerges and makes the use of all modern-day human-oriented technology. The main aim of this idea is the QoS (quality of service) by using user-friendly and reliable software over the global network in order to make it economical by reducing cost, reliable, and increase the main storage. Since we studied and went through almost all the existing related work in this area and we came up with some challenges that will rise or might be rising for some basic areas in mobile cloud computing and mostly stogie and security area. In this research article, we suggest some recommendation for mobile cloud computing and for its security that will help in building more powerful tools to handle all this pressure.Keywords: Cloud Computing, MCC, SAAS, computer interaction
Procedia PDF Downloads 3803258 Design and Implementation of an AI-Enabled Task Assistance and Management System
Authors: Arun Prasad Jaganathan
Abstract:
In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper introduces an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.Keywords: artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization
Procedia PDF Downloads 593257 Climate Change and Food Security in Nigeria: The World Bank Assisted Third National Fadama Development Programme (Nfdp Iii) Approach in Rivers State, Niger Delta, Nigeria
Authors: Temple Probyne Abali
Abstract:
Port Harcourt, Rivers State in the Niger Delta region of Nigeria is bedeviled by the phenomenon of climatechange, posing threat to food security and livelihood. This study examined a 4 decadel (1980-2020) trend of climate change as well as its socio-economic impact on food security in the region. Furthermore, to achieve sustainable food security and livelihood amidst the phenomenon, the study adopted the World Bank Assisted Third National Fadama Development Programme approach. The data source for climate change involved secondary data from Nigeria Meteorological Agency (NIMET). Consequently, the results for climate change over the 4decade period were displayed in tables, charts and maps for the expected changes. Data sources on socio-economic impact of food security and livelihood were acquired through questionnairedesign. A purposive random sampling technique was used in selecting 5 coastal communities inthe region known for viable economic potentials for agricultural development and the resultswere analyzed using Analysis of Variance (ANOVA). The Participatory Rural Appraisal (PRA) technique of the World Bank for needs assessment wasadopted in selecting 5 agricultural sub-project proposals/activities based on groups’ commoneconomic interest from a total of 1,000 farmers each drawn from the 5 communities of differentage groups including men, women, youths and the vulnerable. Based on the farmers’ sub-projectinterests, the various groups’ Strength, Weakness, Opportunities and Threats (SWOT), Problem Listing Matrix, Skill Gap Analysis as well as EIAson their sub-project proposals/activities were analyzed with substantialMonitoring and Evaluation (M & E), using the Specific, Measurable, Attribute, Reliable and Time bound (SMART)approach. Based on the findings from the PRA technique, the farmers recorded considerableincreaseinincomeofover200%withinthe5yearprojectplan(2008-2013).Thestudyrecommends capacity building and advisory services on this PRA innovation. By so doing, there would be a sustainable increase in agricultural production and assured food security in an environmental friendly manner, in line with the United Nation’s Sustainable Development Goals(SDGs).Keywords: climate change, food security, fadama, world bank, agriculture, sdgs
Procedia PDF Downloads 933256 A Fast, Reliable Technique for Face Recognition Based on Hidden Markov Model
Authors: Sameh Abaza, Mohamed Ibrahim, Tarek Mahmoud
Abstract:
Due to the development in the digital image processing, its wide use in many applications such as medical, security, and others, the need for more accurate techniques that are reliable, fast and robust is vehemently demanded. In the field of security, in particular, speed is of the essence. In this paper, a pattern recognition technique that is based on the use of Hidden Markov Model (HMM), K-means and the Sobel operator method is developed. The proposed technique is proved to be fast with respect to some other techniques that are investigated for comparison. Moreover, it shows its capability of recognizing the normal face (center part) as well as face boundary.Keywords: HMM, K-Means, Sobel, accuracy, face recognition
Procedia PDF Downloads 3313255 Border Control and Human Rights Violations: Lessons Learned from the United States and Potential Solutions for the European Union
Authors: María Elena Menéndez Ibáñez
Abstract:
After the terrorist attacks of 9/11, new measures were adopted by powerful countries and regions like the United States and the European Union in order to safeguard their security. In 2002, the US created the Department of Homeland Security with one sole objective; to protect American soil and people. The US adopted new policies that made every immigrant a potential terrorist and a threat to their national security. Stronger border control became one of the key elements of the fight against organized crime and terrorism. The main objective of this paper is to compare some of the most important and radical measures adopted by the US, even those that resulted in systematic violations of human rights, with some of the European measures adopted after the 2015 Paris attacks of 2015, such as unlawful detainment of prisoners and other measures against foreigners. Through the Schengen agreement, the European Union has tried to eliminate tariffs and border controls, in order to guarantee successful economic growth. Terrorists have taken advantage of this and have made the region vulnerable to attacks. Authorities need to strengthen their surveillance methods in order to safeguard the region and its stability. Through qualitative methods applied to social sciences, this research will also try to explain why some of the mechanisms proven to be useful in the US would not be so in Europe, especially because they would result in human rights violations. Finally, solutions will be offered that would not put the whole Schengen Agreement at risk. Europe cannot reinstate border control, without making individuals vulnerable to human rights violations.Keywords: border control, immigration, international cooperation, national security
Procedia PDF Downloads 1383254 Privacy Policy Prediction for Uploaded Image on Content Sharing Sites
Authors: Pallavi Mane, Nikita Mankar, Shraddha Mazire, Rasika Pashankar
Abstract:
Content sharing sites are very useful in sharing information and images. However, with the increasing demand of content sharing sites privacy and security concern have also increased. There is need to develop a tool for controlling user access to their shared content. Therefore, we are developing an Adaptive Privacy Policy Prediction (A3P) system which is helpful for users to create privacy settings for their images. We propose the two-level framework which assigns the best available privacy policy for the users images according to users available histories on the site.Keywords: online information services, prediction, security and protection, web based services
Procedia PDF Downloads 3583253 Symmetric Key Encryption Algorithm Using Indian Traditional Musical Scale for Information Security
Authors: Aishwarya Talapuru, Sri Silpa Padmanabhuni, B. Jyoshna
Abstract:
Cryptography helps in preventing threats to information security by providing various algorithms. This study introduces a new symmetric key encryption algorithm for information security which is linked with the "raagas" which means Indian traditional scale and pattern of music notes. This algorithm takes the plain text as input and starts its encryption process. The algorithm then randomly selects a raaga from the list of raagas that is assumed to be present with both sender and the receiver. The plain text is associated with the thus selected raaga and an intermediate cipher-text is formed as the algorithm converts the plain text characters into other characters, depending upon the rules of the algorithm. This intermediate code or cipher text is arranged in various patterns in three different rounds of encryption performed. The total number of rounds in the algorithm is equal to the multiples of 3. To be more specific, the outcome or output of the sequence of first three rounds is again passed as the input to this sequence of rounds recursively, till the total number of rounds of encryption is performed. The raaga selected by the algorithm and the number of rounds performed will be specified at an arbitrary location in the key, in addition to important information regarding the rounds of encryption, embedded in the key which is known by the sender and interpreted only by the receiver, thereby making the algorithm hack proof. The key can be constructed of any number of bits without any restriction to the size. A software application is also developed to demonstrate this process of encryption, which dynamically takes the plain text as input and readily generates the cipher text as output. Therefore, this algorithm stands as one of the strongest tools for information security.Keywords: cipher text, cryptography, plaintext, raaga
Procedia PDF Downloads 2893252 Aggression Related Trauma and Coping among University Students, Exploring Emotional Intelligence Applications on Coping with Aggression Related Trauma
Authors: Asanka Bulathwatta
Abstract:
This Study tries to figure out the role of emotional Intelligence for developing coping strategies among adolescents who face traumatic events. Late adolescence students who have enrolled into the University education (Bachelor students/first-year students) would be selected as the sample. University education is an important stage of students’ academic life. Therefore, all students need to develop their competencies to attain the goal of passing examinations and also to developing their wisdom related to the scientific knowledge they gathered through their academic life. Study to be conducted in a cross-cultural manner and it will be taking place in Germany and Sri Lanka. The sample will be consisting of 200 students from each country. Late adolescence is a critical period of the human being as it is foot step in their life which acquiring the emotional and social qualities in their social life. There are many adolescents who have affected by aggression related traumatic events during their lifespan but have not been identified or treated. More specifically, there are numerous burning issues within the first year of the university students namely, ragging done by seniors to juniors, bulling, invalidation and issues raise based on attitudes changes and orientation issues. Those factors can be traumatic for both their academic and day to day lifestyle. Identifying the students who are with emotional damages and their resiliency afterward the aggression related traumas and effective rehabilitation from the traumatic events is immensely needed in order to facilitate university students for their academic achievements and social life within the University education. Research findings in Germany show that students shows more interpersonal traumas, life-threatening illnesses and death of someone related are common in German sample.Keywords: emotional intelligence, agression, trauma, coping
Procedia PDF Downloads 4723251 Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features
Authors: Youssef R. Hassan, Mohamed S. Hasanin, Reda M. Abdelhameed
Abstract:
Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features.Keywords: 3D printing, fluorescent, packaging, security
Procedia PDF Downloads 1013250 Multiple Intelligence Theory with a View to Designing a Classroom for the Future
Authors: Phalaunnaphat Siriwongs
Abstract:
The classroom of the 21st century is an ever-changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology are not a cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pinpoint an exact number, it is clear that in this case, more does not mean better. By looking into the success and pitfalls of classroom size, the true advantages of smaller classes becomes clear. Previously, one class was comprised of 50 students. Since they were seventeen- and eighteen-year-old students, it was sometimes quite difficult for them to stay focused. To help students understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.Keywords: multiple intelligences, role play, performance assessment, formative assessment
Procedia PDF Downloads 2833249 The Role of Executive Functions and Emotional Intelligence in Leadership: A Neuropsychological Perspective
Authors: Chrysovalanto Sofia Karatosidi, Dimitra Iordanoglou
Abstract:
The overlap of leadership skills with personality traits, beliefs, values, and the integration of cognitive abilities, analytical and critical thinking skills into leadership competencies raises the need to segregate further and investigate them. Hence, the domains of cognitive functions that contribute to leadership effectiveness should also be identified. Organizational cognitive neuroscience and neuroleadership can shed light on the study of these critical leadership skills. As the first part of our research, this pilot study aims to explore the relationships between higher-order cognitive functions (executive functions), trait emotional intelligence (EI), personality, and general cognitive ability in leadership. Twenty-six graduate and postgraduate students were assessed on neuropsychological tests that measure important aspects of executive functions (EF) and completed self-reported questionnaires about trait EI, personality, leadership styles, and leadership effectiveness. Specifically, we examined four core EF—fluency (phonemic and semantic), information updating and monitoring, working memory, and inhibition of prepotent responses. Leadership effectiveness was positively associated with phonemic fluency (PF), which involves mental flexibility, in turn, an increasingly important ability for future leaders in this rapidly changing world. Transformational leadership was positively associated with trait EI, extraversion, and openness to experience, a result that is following previous findings. The relationship between specific EF constructs and leadership effectiveness emphasizes the role of higher-order cognitive functions in the field of leadership as an individual difference. EF brings a new perspective into leadership literature by providing a direct, non-invasive, scientifically-valid connection between brain function and leadership behavior.Keywords: cognitive neuroscience, emotional intelligence, executive functions, leadership
Procedia PDF Downloads 157