Search results for: intestinal absorption
778 Application of FT-NIR Spectroscopy and Electronic Nose in On-line Monitoring of Dough Proofing
Authors: Madhuresh Dwivedi, Navneet Singh Deora, Aastha Deswal, H. N. Mishra
Abstract:
FT-NIR spectroscopy and electronic nose was used to study the kinetics of dough proofing. Spectroscopy was conducted with an optic probe in the diffuse reflectance mode. The dough leavening was carried out at different temperatures (25 and 35°C) and constant RH (80%). Spectra were collected in the range of wave numbers from 12,000 to 4,000 cm-1 directly on the samples, every 5 min during proofing, up to 2 hours. NIR spectra were corrected for scatter effect and second order derivatization was done to transform the spectra. Principal component analysis (PCA) was applied for the leavening process and process kinetics was calculated. PCA was performed on data set and loadings were calculated. For leavening, four absorption zones (8,950-8,850, 7,200-6,800, 5,250-5,150 and 4,700-4,250 cm-1) were involved in describing the process. Simultaneously electronic nose was also used for understanding the development of odour compounds during fermentation. The electronic nose was able to differential the sample on the basis of aroma generation at different time during fermentation. In order to rapidly differentiate samples based on odor, a Principal component analysis is performed and successfully demonstrated in this study. The result suggests that electronic nose and FT-NIR spectroscopy can be utilized for the online quality control of the fermentation process during leavening of bread dough.Keywords: FT-NIR, dough, e-nose, proofing, principal component analysis
Procedia PDF Downloads 392777 Optimization of the Flexural Strength of Biocomposites Samples Reinforced with Resin for Engineering Applications
Authors: Stephen Akong Takim
Abstract:
This study focused on the optimization of the flexural strength of bio-composite samples of palm kernel, whelks, clams, periwinkles shells and bamboo fiber reinforced with resin for engineering applications. The aim of the study was to formulate different samples of bio-composite reinforced with resin for engineering applications and to evaluate the flexural strength of the fabricated composite. The hand lay-up technique was used for the composites produced by incorporating different percentage compositions of the shells/fiber (10%, 15%, 20%, 25% and 30%) into varied proportions of epoxy resin and catalyst. The cured samples, after 24 hours, were subjected to tensile, impact, flexural and water absorption tests. The experiments were conducted using the Taguchi optimization method L25 (5x5) with five design parameters and five level combinations in Minitab 18 statistical software. The results showed that the average value of flexural was 114.87MPa when compared to the unreinforced 72.33MPa bio-composite. The study recommended that agricultural waste, like palm kernel shells, whelk shells, clams, periwinkle shells and bamboo fiber, should be converted into important engineering applications.Keywords: bio-composite, resin, palm kernel shells, welk shells, periwinkle shells, bamboo fiber, Taguchi techniques and engineering application
Procedia PDF Downloads 77776 Formulation Design and Optimization of Orodispersible Tablets of Diphenhydramine Hydrochloride Having Adequate Mechanical Strength
Authors: Jiwan P. Lavande, A. V. Chandewar
Abstract:
In the present study, orodispersible tablets of diphenhydramine hydrochloride were prepared using croscarmellose sodium, crospovidone and camphor, menthol (as subliming agents) in different ratios and ODTs prepared with superdisintegrants were compared with ODTs prepared with camphor and menthol (subliming agents) for the following evaluation of in vitro disintegration time, dispersion time, wetting time, hardness and water absorption ratio. Results revealed that the tablets of all formulations have acceptable physical parameters. The drug and excipients compatibility study was evaluated using FTIR technique and has not detected any incompatibility. The in vitro release of drug from DC6 formulation was quick when compared to other formulations. Stability study was carried out as per ICH guidelines for three months and results revealed that upon storage disintegration time of tablets had not shown any significant difference. Microscopic study of different formulations of sublimed tablets showed formation of pores for the tablets prepared by sublimation method. Thus, conclusion can be made that the stable orodispersible tablets of diphenhydramine hydrochloride can be developed for the rapid release of diphenhydramine hydrochloride.Keywords: orodispersible tablet, subliming agent, super disintegrants, diphenhydramine hydrochloride
Procedia PDF Downloads 236775 Central Solar Tower Model
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
It is presented a model of two subsystems of Central Solar Tower to produce steam in applications to help in energy consumption. The first subsystem consists of 24 heliostats constructed of adaptive and mobile metal structures to track the apparent movement of the sun on its focus and covered by 96 layers of mirror of 150 mm at width and 220 mm at length, totaling an area of concentration of 3.2 m². Thereby obtaining optical parameters essential to reflection of sunlight by the reflector surface and absorption of this light by focus located in the light receiver, which is inserted in the second subsystem, which is at the top of a tower. The tower was built in galvanized iron able to support the absorber, and a gas cylinder to cool the equipment. The area illuminated by the sun was 9 x 10-2m2, yielding a concentration factor of 35.22. It will be shown the processes of manufacture and assembly of the Mini-Central Tower proposal, which has as main characteristics the construction and assembly facilities, in addition to reduced cost. Data of tests to produce water vapor parameters are presented and determined to diagnose the efficiency of the mini-solar central tower. It will be demonstrated the thermal, economic and material viability of the proposed system.Keywords: solar oven, solar cooker, composite material, low cost, sustainable development
Procedia PDF Downloads 418774 Content of Trace Elements in Agricultural Soils from Central and Eastern Europe
Authors: S. Krustev, V. Angelova, K. Ivanov, P. Zaprjanova
Abstract:
Approximately a dozen trace elements are vital for the development of all plants and some other elements are significant for some species. Heavy metals do not belong to this group of elements that are essential to plants, but some of them such as copper and zinc, have a dual effect on their growth. Concentration levels of these elements in the different regions of the world vary considerably. Their high concentrations in some parts of Central and Eastern Europe cause concern for human health and degrade the quality of agricultural produce from these areas. This study aims to compare the prevalence and levels of the major trace elements in some rural areas of Central and Eastern Europe. Soil samples from different regions of the Czech Republic, Slovakia, Austria, Hungary, Serbia, Romania, Bulgaria and Greece far from large industrial centers have been studied. The main methods for their determination are the atomic spectral techniques – atomic absorption and plasma atomic emission. As a result of this study, data on microelements levels in soils of 17 points from the main grain-producing regions of Central and Eastern Europe are presented and systematized. The content of trace elements was in the range of 5.0-84.1 mg.kg⁻¹ for Cu, 0.3-1.4 mg.kg⁻¹ for Cd, 26.1-225.5 mg.kg⁻¹ for Zn, 235.5-788.6 mg.kg⁻¹ for Mn and 4.1-25.8 mg.kg⁻¹ for Pb.Keywords: trace elements, heavy metals, agricultural soils, Central and Eastern Europe
Procedia PDF Downloads 170773 Influence of Metakaolin and Cements Types on Compressive Strength and Transport Properties of Self-Consolidating Concrete
Authors: Kianoosh Samimi, Farhad Estakhr, Mahdi Mahdikhani, Faramaz Moodi
Abstract:
The self-consolidating concrete (SCC) performance over ordinary concrete is generally related to the ingredients used. The metakaolin can modify various properties of concrete, due to high pozzolanic reactions and also makes a denser microstructure. The objective of this paper is to examine the influence of three types of Portland cement and metakaolin on compressive strength and transport properties of SCC at early ages and up to 90 days. Six concrete mixtures were prepared with three types of different cements and substitution of 15% metakaolin. The results show that the highest value of compressive strength was achieved for Portland Slag Cement (PSC) and without any metakaolin at age of 90 days. Conversely, the lowest level of compressive strength at all ages of conservation was obtained for Pozzolanic Portland Cement (PPC) and containing 15% metakaolin. As can be seen in the results, compressive strength in SCC containing Portland cement type II with metakaolin is higher compared to that relative to SCC without metakaolin from 28 days of age. On the other hand, the samples containing PSC and PPC with metakaolin had a lower compressive strength than the plain samples. Therefore, it can be concluded that metakaolin has a negative effect on the compressive strength of SCC containing PSC and PPC. In addition, results show that metakaolin has enhanced chloride durability of SCCs and reduced capillary water absorption at 28, 90 days.Keywords: SCC, metakaolin, cement type, compressive strength, chloride diffusion
Procedia PDF Downloads 222772 The Bioaccumulation of Lead (Pb), Cadmium (Cd), and Chromium (Cr) in Relation to Personal and Social Habits in Electronic Repair Technicians in Kaduna Metropolis, Nigeria: A Pilot Study
Authors: M. A. Lawal, A. Uzairu, M. S. Sallau
Abstract:
The presence and bioaccumulation of lead (Pb), cadmium (Cd), and chromium (Cr) in blood, urine, nail, and hair samples of electronic repair technicians in Kaduna-Nigeria were assessed using Fast Sequential Atomic Absorption Spectrophotometry. 10 electronic repair technicians from within Kaduna Metropolis volunteered for the pilot study. The mean blood concentrations of Pb, Cd, and Cr in the subjects were 29.33 ± 4.80, 7.78 ± 10.57, and 24.78 ± 21.77 µg/dL, respectively. The mean urine concentrations of Pb, Cd, and Cr were 24.18 ± 2.98, 6.81 ± 10.05, and 14.78 ± 14.20 µg/dL, respectively. Mean nail metal values of 37.13 ± 4.08, 1.00 ± 1.21, and 18.49 ± 12.71 µg/g were obtained for Pb, Cd, and Cr, respectively while mean hair metal values of 39.41 ± 5.63, 1.09 ± 1.14, and 19.13 ± 11.61 µg/g for Pb, Cd, and Cr, respectively. Positive Pearson correlation coefficients were observed between Pb/Cd, Pb/Cr, and Cd/Cr in all samples and they indicate the metals are likely from the same pollution source. The mean concentrations of the metals in all samples were higher than the WHO, ILO, and ACGIH standards, implying the repairers are likely occupationally exposed and are subject to serious health concerns. Social habits like smoking were found to significantly affect the concentrations of these metals. The level of education, use of safety devices, period of exposure, the nature of electronics and the age of the repairers were also found to remarkably affect the concentrations of the metals.Keywords: bioaccumulation, electronic repair technicians, heavy metals, occupational hazard
Procedia PDF Downloads 371771 Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel
Authors: Behzad Panahirad, UğUr Atikol
Abstract:
The current study is based on a combined heat and power system with multi-objectives, driven by biomass. The system consists of a combustion chamber (CC), a single effect absorption cooling system (SEACS), an air conditioning unit (AC), a reheat steam Rankine cycle (RRC), an organic Rankine cycle (ORC) and an electrolyzer. The purpose of this system is to produce hydrogen, electricity, heat, cooling, and air conditioning. All the simulations had been performed by Engineering Equation Solver (EES) software. Pine sawdust is the selected biofuel for the combustion process. The overall utilization factor (εₑₙ) and exergetic efficiency (ψₑₓ) were calculated to be 2.096 and 24.03% respectively. The performed renewable and environmental impact analysis indicated a sustainability index of 1.316 (SI) and a specific CO2 emission of 353.8 kg/MWh. The parametric study is conducted based on the variation of ambient (sink) temperature, biofuel mass flow rate, and boilers outlet temperatures. The parametric simulation showed that the increase in biofuel mass flow rate has a positive effect on the sustainability of the system.Keywords: biomass, exergy assessment, multi-objective plant, CO₂ emission, irreversibility
Procedia PDF Downloads 171770 Simple and Scalable Thermal-Assisted Bar-Coating Process for Perovskite Solar Cell Fabrication in Open Atmosphere
Authors: Gizachew Belay Adugna
Abstract:
Perovskite solar cells (PSCs) shows rapid development as an emerging photovoltaic material; however, the fast device degradation due to the organic nature, mainly hole transporting material (HTM) and lack of robust and reliable upscaling process for photovoltaic module hindered its commercialization. Herein, HTM molecules with/without fluorine-substituted cyclopenta[2,1-b;3,4-b’]dithiophene derivatives (HYC-oF, HYC-mF, and HYC-H) were developed for PSCs application. The fluorinated HTM molecules exhibited better hole mobility and overall charge extraction in the devices mainly due to strong molecular interaction and packing in the film. Thus, the highest power conversion efficiency (PCE) of 19.64% with improved long stability was achieved for PSCs based on HYC-oF HTM. Moreover, the fluorinated HYC-oF demonstrated excellent film processability in a larger-area substrate (10 cm×10 cm) prepared sequentially with the absorption perovskite underlayer via a scalable bar coating process in ambient air and owned a higher PCE of 18.49% compared to the conventional spiro-OMeTAD (17.51%). The result demonstrates a facile development of HTM towards stable and efficient PSCs for future industrial-scale PV modules.Keywords: perovskite solar cells, upscaling film coating, power conversion efficiency, solution processing
Procedia PDF Downloads 75769 Traditional Dyeing of Silk with Natural Dyes by Eco-Friendly Method
Authors: Samera Salimpour Abkenar
Abstract:
In traditional dyeing of natural fibers with natural dyes, metal salts are commonly used to increase color stability. This method always carries the risk of environmental pollution (contamination of arable soils and fresh groundwater) due to the release of dyeing effluents containing large amounts of metal. Therefore, researchers are always looking for new methods to obtain a green dyeing system. In this research, the use of the enzymatic dyeing method to prevent environmental pollution with metals and reduce production costs has been proposed. After degumming and bleaching, raw silk fabrics were dyed with natural dyes (Madder and Sumac) by three methods (pre-mordanting with a metal salt, one-step enzymatic dyeing, and two-step enzymatic dyeing). Results show that silk dyed with natural dyes by the enzymatic method has higher color strength and colorfastness than the pretreated with a metal salt. Also, the amount of remained dyes in the dyeing wastewater is significantly reduced by the enzymatic method. It is found that the enzymatic dyeing method leads to improvement of dye absorption, color strength, soft hand, no change in color shade, low production costs (due to low dyeing temperature), and a significant reduction in environmental pollution.Keywords: eco-friendly, natural dyes, silk, traditional dyeing
Procedia PDF Downloads 192768 Levels of Selected Heavy Metals in Varieties of Vegetable oils Consumed in Kingdom of Saudi Arabia and Health Risk Assessment of Local Population
Authors: Muhammad Waqar Ashraf
Abstract:
Selected heavy metals, namely Cu, Zn, Fe, Mn, Cd, Pb, and As, in seven popular varieties of edible vegetable oils collected from Saudi Arabia, were determined by graphite furnace atomic absorption spectrometry (GF-AAS) using microwave digestion. The accuracy of procedure was confirmed by certified reference materials (NIST 1577b). The concentrations for copper, zinc, iron, manganese, lead and arsenic were observed in the range of 0.035 - 0.286, 0.955 - 3.10, 17.3 - 57.8, 0.178 - 0.586, 0.011 - 0.017 and 0.011 - 0.018 µg/g, respectively. Cadmium was found to be in the range of 2.36 - 6.34 ng/g. The results are compared internationally and with standards laid down by world health agencies. A risk assessment study has been carried out to assess exposure to these metals via consumption of vegetable oils. A comparison has been made with safety intake levels for these heavy metals recommended by Institute of Medicine of the National Academies (IOM), US Environmental Protection Agency (US EPA) and Joint FAO/WHO Expert Committee on Food Additives (JECFA). The results indicated that the dietary intakes of the selected heavy metals from daily consumption of 25 g of edible vegetable oils for a 70 kg individual should pose no significant health risk to local population.Keywords: vegetable oils, heavy metals, contamination, health risk assessment
Procedia PDF Downloads 454767 Photo-Induced Reversible Surface Wettability Analysis of GLAD Synthesized In2O3/TiO2 Heterostructure Nanocolumn
Authors: Pheiroijam Pooja, P. Chinnamuthu
Abstract:
A novel vertical 1D In2O3/TiO2 nanocolumn (NC) axial heterostructure has been successfully synthesized using Glancing Angle Deposition (GLAD) technique inside E-Beam Evaporator chamber. Field emission scanning electron microscope (FESEM) has been used to evaluate the morphology of the structure grown. The estimated length of In2O3/TiO2 NC is ~250 nm and ~300nm for In2O3 and TiO2 respectively with diameter ~60-90 nm. The surface of the heterostructure is porous in nature which can affect the interfacial wettability properties. The grown structure has been further characterized using X-ray Diffraction (XRD) and UV-Visible absorption measurement. The polycrystalline nature of the sample has been examined using XRD with prominent peaks obtained with phase (101) for anatase TiO2 and (211) for In2O3. Here, 1D axial heterostructure NC thus favors efficient segregation of photo-excited carriers due to their type II band alignment between the constituent materials. Moreover, the 1D nanostructure is known for their large surface area and excellent ionic charge transport property. On exposure to UV light illumination, the surface properties of In2O3/TiO2 NC changes whereby the hydrophobic nature of the heterostructure changes to hydrophilic. As a result, the reversible surface wettability of heterostructure on interaction with UV light can give potential applications as antifogging and self-cleaning surfaces.Keywords: GLAD, heterostructure, In2O3/TiO2 NC, surface wettability
Procedia PDF Downloads 164766 The Comparison of Chromium Ions Release Stainless Steel 18-8 between Artificial Saliva and Black Tea Leaves Extracts
Authors: Nety Trisnawaty, Mirna Febriani
Abstract:
The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is black tea leaves extracts. To explain the comparison of chromium ions release for stainlees steel between artificial saliva and black tea leaves extracts. In this research we used artificial saliva, black tea leaves extracts, stainless steel wire and using Atomic Absorption Spectrophometric testing machine. The samples were soaked for 1, 3, 7 and 14 days in the artificial saliva and black tea leaves extracts. The results showed the difference of chromium ion release soaked in artificial saliva and black tea leaves extracts on days 1, 3, 7 and 14. Statistically, calculation with independent T-test with p < 0,05 showed a significant difference. The longer the duration of days, the more ion chromium were released. The conclusion of this study shows that black tea leaves extracts can inhibit the corrosion rate of stainless steel wires.Keywords: chromium ion, stainless steel, artificial saliva, black tea leaves extracts
Procedia PDF Downloads 281765 Noninvasive Continuous Glucose Monitoring Device Using a Photon-Assisted Tunneling Photodetector Based on a Quantum Metal-Oxide-Semiconductor
Authors: Wannakorn Sangthongngam, Melissa Huerta, Jaewoo Kim, Doyeon Kim
Abstract:
Continuous glucose monitoring systems are essential for diabetics to avoid health complications but come at a costly price, especially when insurance does not fully cover the diabetic testing kits needed. This paper proposes a noninvasive continuous glucose monitoring system to provide an accessible, low-cost, and painless alternative method of accurate glucose measurements to help improve quality of life. Using a light source with a wavelength of 850nm illuminates the fingertip for the photodetector to detect the transmitted light. Utilizing SeeDevice’s photon-assisted tunneling photodetector (PAT-PD)-based QMOS™ sensor, fluctuations of voltage based on photon absorption in blood cells are comparable to traditional glucose measurements. The performance of the proposed method was validated using 4 test participants’ transmitted voltage readings compared with measurements obtained from the Accu-Chek glucometer. The proposed method was able to successfully measure concentrations from linear regression calculations.Keywords: continuous glucose monitoring, non-invasive continuous glucose monitoring, NIR, photon-assisted tunneling photodetector, QMOS™, wearable device
Procedia PDF Downloads 100764 A Study on Leaching of Toxic Elements of High Strength Concrete Containing Waste Cathode Ray Tube Glass as Coarse Aggregate
Authors: Nurul Noraziemah Mohd Pauzi, Muhammad Fauzi Mohd Zain
Abstract:
The rapid advance in the electronic industry has led to the increase amount of the waste cathode ray tube (CRT) devices. The management of CRT waste upon disposal haves become a major issue of environmental concern as it contains toxic elements (i.e. lead, barium, zinc, etc.) which has a risk of leaching if it is not managed appropriately. Past studies have reported regarding the possible use of CRT glass as a part of aggregate in concrete production. However, incorporating waste CRT glass may present an environmental risk via leachability of toxic elements. Accordingly, the preventive measures for reducing the risk was proposed. The current work presented the experimental results regarding potential leaching of toxic elements from four types of concrete mixed, each compromising waste CRT glass as coarse aggregate with different shape and properties. Concentrations of detected elements are measure in the leachates by using atomic absorption spectrometry (AAS). Results indicate that the concentration of detected elements were found to be below applicable risk, despite the higher content of toxic elements in CRT glass. Therefore, the used of waste CRT glass as coarse aggregate in hardened concrete does not pose any risk of leachate of heavy metals to the environment.Keywords: recycled CRT glass, coarse aggregate, physical properties, leaching, toxic elements
Procedia PDF Downloads 359763 Using Finite Element to Predict Failure of Light Weight Bridges Due to Vehicles Impact: Case Study
Authors: Amin H. Almasria, Rajai Z. Alrousanb, Al-Harith Manasrah
Abstract:
The collapse of a light weight pedestrian bridges due to vehicle collision is investigated and studied in detail using a dynamic nonlinear finite element analysis. Typical bridge widely used in Jordan is studied and modeled under truck collision using one dimensional beam finite element in order to minimize analysis time due to the dynamic nature of the problem. Truck collision with the bridge is simulated at different speeds and locations of collisions using dynamic explicit finite element scheme with material nonlinearity taken into account. Energy absorption of bridge is investigated through principle of energy conservation, where truck kinetic energy is assumed to be stored in the bridge as strain energy. Weak failure points in the bridges were identified, and modifications are proposed in order to strengthen the bridge structure and prevent total collapse. The proposed design modifications on bridge structure were successful in allowing the bridge to fail locally rather than globally and expected to help in saving lives.Keywords: finite element method, dynamic impact, pedestrian bridges, strain energy, collapse failure
Procedia PDF Downloads 624762 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance
Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif
Abstract:
The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant
Procedia PDF Downloads 298761 Coagulation-Flocculation of Palm Oil Mill Effluent from Pertubuhan Peladang Negeri Johor, Malaysia
Authors: A. H. Jagaba, Musa Babayo, Ab Aziz Abdul Latiff, Sule Abubakar, I. M. Lawal, Isa Zubairu, M. A. Nasara
Abstract:
Wastewater containing heavy metals is of extreme importance globally because of its potential threat to both the aquatic ecosystem and the soil environment. Heavy metal is hazardous even at low concentration and thereby causing various forms of diseases. One method which has been tested and found to be effective for heavy metals removal is coagulation-flocculation. For the coagulation process of POME obtained from Pertubuhan Peladang Negeri Johor (PPNJ), Oil Palm Mill Company located in Kahang area of Kluang, Johor Darul Takzim, Malaysia, diffèrent coagulants would be used to absorb and then separate the metals from wastewater. The determination of heavy metals concentration in POME was carried out using an inductively coupled plasma (ICP) and an Atomic Absorption Spectrometer (AAS). Results of the study showed that alum coagulant was successful in effectively reducing Cu, Cd, and Mn from 0.840 mg/l, 0.00509 mg/l and 8.191 mg/l to as low as 0.107 mg/l, 0.000270 mg/l and 0.612 mg/l respectively. All were obtained at a dose of 1000 mg/l. 1000 mg/l dose of ferric chloride reduced Pb concentration from 0.0248 mg/l to 0.00151 mg/l. Chitosan was best at reducing Fe and Zn from 62.91 mg/l and 3.616 mg/l to 6.003 mg/l and 0.595 mg/l all at a dose of 400 mg/l.Keywords: palm oil mill effluent, coagulation, heavy metals, Pertubuhan Peladang Negeri Johor, Malaysia
Procedia PDF Downloads 228760 Antiulcer Potential of Heme Oxygenase-1 Inducers
Authors: Gaweł Magdalena, Lipkowska Anna, Olbert Magdalena, Frąckiewicz Ewelina, Librowski Tadeusz, Nowak Gabriel, Pilc Andrzej
Abstract:
Heme oxygenase-1 (HO-1), also known as heat shock protein 32 (HSP32), has been shown to be implicated in cytoprotection in various organs. Its activation plays a significant role in acute and chronic inflammation, protecting cells from oxidative injury and apoptosis. This inducible isoform of HO catalyzes the first and rate-limiting step in heme degradation to produce equimolar quantities of biologically active products: carbon monoxide (CO), free iron and biliverdin. CO has been reported to possess anti-apoptotic properties. Moreover, it inhibits the production of proinflammatory cytokines and stimulates the synthesis of the anti-inflammatory interleukin-10 (IL-10), as well as promotes vasodilatation at sites of inflammation. The second product of catalytic HO-1 activity, free cytotoxic iron, is promptly sequestered into the iron storage protein ferritin, which lowers the pro-oxidant state of the cell. The third product, biliverdin, is subsequently converted by biliverdin reductase into the bile pigment bilirubin, the most potent endogenous antioxidant among the constituents of human serum, which modulates immune effector functions and suppresses inflammatory response. Furthermore, being one of the so-called stress proteins, HO-1 adaptively responds to different stressors, such as reactive oxygen species (ROS), inflammatory cytokines and heavy metals and thus protects cells against such conditions as ischemia, hemorrhagic shock, heat shock or hypoxia. It is suggested that pharmacologic modulation of HO-1 may represent an effective strategy for prevention of stress and drug-induced gastrointestinal toxicity. HO-1 is constitutively expressed in normal gastric, intestinal and colonic mucosa and up-regulated during inflammation. It has been proven that HO-1 up-regulated by hemin, heme and cobalt-protoporphyrin ameliorates experimental colitis. In addition, the up-regulation of HO-1 partially explains the mechanism of action of 5-aminosalicylic acid (5-ASA), which is used clinically as an anti-colitis agent. In 2009 Ueda et al. has reported for the first time that mucosal protection by Polaprezinc, a chelate compound of zinc and L-carnosine used as an anti-ulcer drug in Japan, is also attributed to induction of HO-1 in the stomach. Since then, inducers of HO-1 are desired subject of research, as they may constitute therapeutically effective anti-ulcer drugs.Keywords: heme oxygenase-1, gastric lesions, gastroprotection, Polaprezinc
Procedia PDF Downloads 504759 Evaluation of Vine Stem Waste as a Filler Material for High Density Polyethylene
Authors: Y. Seki, A. Ç. Kılıç, M. Atagür, O. Özdemir, İ. Şen, K. Sever, Ö. Seydibeyoğlu, M. Sarikanat, N. Küçükdoğan
Abstract:
Cheap and abundant waste materials have been investigated as filler materials in thermoplastic polymers instead of wood- based materials because of deforestation. Vine stem, as an agricultural waste, was used as a filler material for a thermoplastic polymer, high-density polyethylene (HDPE) in this study. Agricultural waste of vine stem was collected from Manisa region, Turkey. Vine stem at different rations was used to reinforce HDPE. The effect of vine stem loading on tensile strength and Young’s modulus of composites were obtained. It was clearly observed that tensile strength and Young’s modulus of HDPE was increased by vine stem loading. Thermal stabilities of composites were obtained by using thermogravimetric analysis. Water absorption behavior of HDPE was improved by loading vine stem into HDPE. The crystallinity index values of neat HDPE and vine stem loaded HDPE composites were investigated byX-ray diffraction analysis. From this study, it was inferred that vine stem, as an agricultural waste, can be used as a filler material for HDPE.Keywords: waste filler, high density polyethylene, composite, composite materials
Procedia PDF Downloads 517758 An Evaluation of the Impact of Epoxidized Neem Seed Azadirachta indica Oil on the Mechanical Properties of Polystyrene
Authors: Salihu Takuma
Abstract:
Neem seed oil has high contents of unsaturated fatty acids which can be converted to epoxy fatty acids. The vegetable oil – based epoxy material are sustainable, renewable and biodegradable materials replacing petrochemical – based epoxy materials in some applications. Polystyrene is highly brittle with limited mechanical applications. Raw neem seed oil was obtained from National Research Institute for Chemical Technology (NARICT), Zaria, Nigeria. The oil was epoxidized at 60 0C for three (3) hours using formic acid generated in situ. The epoxidized oil was characterized using Fourier Transform Infrared spectroscopy (FTIR). The disappearance of C = C stretching peak around 3011.7 cm-1and formation of a new absorption peak around 943 cm-1 indicate the success of epoxidation. The epoxidized oil was blended with pure polystyrene in different weight percent compositions using solution casting in chloroform. The tensile properties of the blends demonstrated that the addition of 5 wt % ENO to PS led to an increase in elongation at break, but a decrease in tensile strength and modulus. This is in accordance with the common rule that plasticizers can decrease the tensile strength of the polymer.Keywords: biodegradable, elongation at break, epoxidation, epoxy fatty acids, sustainable, tensile strength and modulus
Procedia PDF Downloads 235757 Immuno-Protective Role of Mucosal Delivery of Lactococcus lactis Expressing Functionally Active JlpA Protein on Campylobacter jejuni Colonization in Chickens
Authors: Ankita Singh, Chandan Gorain, Amirul I. Mallick
Abstract:
Successful adherence of the mucosal epithelial cells is the key early step for Campylobacter jejuni pathogenesis (C. jejuni). A set of Surface Exposed Colonization Proteins (SECPs) are among the major factors involved in host cell adherence and invasion of C. jejuni. Among them, constitutively expressed surface-exposed lipoprotein adhesin of C. jejuni, JlpA, interacts with intestinal heat shock protein 90 (hsp90α) and contributes in disease progression by triggering pro-inflammatory response via activation of NF-κB and p38 MAP kinase pathway. Together with its ability to express in the bacterial surface, higher sequence conservation and predicted predominance of several B cells epitopes, JlpA protein reserves its potential to become an effective vaccine candidate against wide range of Campylobacter sps including C. jejuni. Given that chickens are the primary sources for C. jejuni and persistent gut colonization remain as major cause for foodborne pathogenesis to humans, present study explicitly used chickens as model to test the immune-protective efficacy of JlpA protein. Taking into account that gastrointestinal tract is the focal site for C. jejuni colonization, to extrapolate the benefit of mucosal (intragastric) delivery of JlpA protein, a food grade Nisin inducible Lactic acid producing bacteria, Lactococcus lactis (L. lactis) was engineered to express recombinant JlpA protein (rJlpA) in the surface of the bacteria. Following evaluation of optimal surface expression and functionality of recombinant JlpA protein expressed by recombinant L. lactis (rL. lactis), the immune-protective role of intragastric administration of live rL. lactis was assessed in commercial broiler chickens. In addition to the significant elevation of antigen specific mucosal immune responses in the intestine of chickens that received three doses of rL. lactis, marked upregulation of Toll-like receptor 2 (TLR2) gene expression in association with mixed pro-inflammatory responses (both Th1 and Th17 type) was observed. Furthermore, intragastric delivery of rJlpA expressed by rL. lactis, but not the injectable form, resulted in a significant reduction in C. jejuni colonization in chickens suggesting that mucosal delivery of live rL. lactis expressing JlpA serves as a promising vaccine platform to induce strong immune-protective responses against C. jejuni in chickens.Keywords: chickens, lipoprotein adhesion of Campylobacter jejuni, immuno-protection, Lactococcus lactis, mucosal delivery
Procedia PDF Downloads 140756 Assessment of Heavy Metal Contamination in Roadside Soils along Shenyang-Dalian Highway in Liaoning Province, China
Authors: Zhang Hui, Wu Caiqiu, Yuan Xuyin, Qiu Jie, Zhang Hanpei
Abstract:
The heavy metal contaminations were determined with a detailed soil survey in roadside soils along Shenyang-Dalian Highway of Liaoning Province (China) and Pb, Cu, Cd, Ni and Zn were analyzed using the atomic absorption spectrophotometric method. The average concentration of Pb, Cu, Cd, Ni and Zn in roadside soils was determined to be 43.8, 26.5, 0.119, 32.1, 71.3 mg/kg respectively, and all of the heavy metal contents were higher than the background values. Different heavy metal distribution regularity was found in different land use type of roadside soil, there was an obvious peak of heavy concentration at 25m from road edge in the farmland, while in the forest and orchard soil, all heavy metals gradually decreased with the increase of distance from road edge and conformed to the exponential model. Furthermore, the heavy metal contents of heavy metals except Cd were markedly increased compared with those in 1999 and 2007, and the heavy metals concentrations of Shenyang- Dalian Highway were considered medium or low in comparison with those in other cities around the world. The assessment of heavy metal contamination of roadside soils illustrated a common low pollution for all heavy metal and recommended that more attention should be paid to Pb contamination in roadside soils in Shenyang-Dalian Highway.Keywords: heavy metal contamination, roadside, highway, Nemerow Pollution Index
Procedia PDF Downloads 267755 Preliminary Studies of MWCNT/PVDF Polymer Composites
Authors: Esther Lorrayne M. Pereira, Adriana Souza M. Batista, Fabíola A. S. Ribeiro, Adelina P. Santos, Clascídia A. Furtado, Luiz O. Faria
Abstract:
The combination of multi–walled carbon nanotubes (MWCNTs) with polymers offers an attractive route to reinforce the macromolecular compounds as well as the introduction of new properties based on morphological modifications or electronic interactions between the two constituents. As they are only a few nanometers in dimension, it offers ultra-large interfacial area per volume between the nano-element and polymer matrix. Nevertheless, the use of MWCNTs as a rough material in different applications has been largely limited by their poor processability, insolubility, and infusibility. Studies concerning the nanofiller reinforced polymer composites are justified in an attempt to overcome these limitations. This work presents one preliminary study of MWCNTs dispersion into the PVDF homopolymer. For preparation, the composite components were diluted in n,n-dimethylacetamide (DMAc) with mechanical agitation assistance. After complete dilution, followed by slow evaporation of the solvent at 60°C, the samples were dried. Films of about 80 μm were obtained. FTIR and UV-Vis spectroscopic techniques were used to characterize the nanocomposites. The appearance of absorption bands in the FTIR spectra of nanofilled samples, when compared to the spectrum of pristine PVDF samples, are discussed and compared with the UV-Vis measurements.Keywords: composites materials, FTIR, MWNTs, PVDF, UV-vis
Procedia PDF Downloads 449754 Development of Nanocomposite from Poly (Lactic Acid) Plasticised Epoxidised Jatropha Oil and Nanocrystalline Cellulose
Authors: Siti Hasnah Kamarudin, Luqman Chuah Abdullah, Min Min Aung, Chantara Thevy Ratnam
Abstract:
The primary objective of this work was to develop fully nanocomposite material based on poly(lactic acid), epoxidized jatropha oil (EJO) and nanocrystalline cellulose. EJO was investigated as a sustainable alternative to petrochemical-based plasticizers to reinforce the ductility and toughness of plastics, in this case, nanocellulose/poly(lactic acid) (PLA). The EJO was melt blended into nanocellulose/PLA at concentrations from 1 wt% to 5 wt%. The blends were then hot-pressed into sheets to characterize their mechanical and physical properties. Microcrystalline cellulose had been converted to nanocrystalline cellulose by acid mercerisation technique and the effects thereof on the composites’ tensile, flexural, and impact properties, as well as their water absorption and density, were studied. The impact strengths of the nanocomposites were improved with the addition of NCC up to 0.5 wt%, with a maximum over 10 times that of the neat PLA. The flexural strength and modulus increased 4% and 50%, respectively, for NCC/PLA plasticized with EJO. This increase demonstrated the nanocrystalline cellulose addition gave notable improvements to the composites’ properties. Furthermore, analysis by scanning electron microscopy (SEM) of the nanocomposites’ tensile fracture surfaces indicated better interaction adhesion of the NCC/PLA plasticized with EJO compared with the PLA/EJO composites.Keywords: nanocrystalline cellulose, nanocomposite, poly (lactic acid), epoxidised jatropha oil
Procedia PDF Downloads 148753 Tomato Quality Produced in Saline Soils Using Irrigation with Treated Electromagnetic Water
Authors: Angela Vacaro de Souza, Fernando Ferrari Putti
Abstract:
One of the main plants cultivated in protected environment is tomato crop, which presents significant growth in its demand, because it is a tasty fruit, rich in nutrients and of high added value, however, poor management of fertilizers induces the process of soil salinization, causing several consequences, from reduced productivity to even soil infertility. These facts are derived from the increased concentration of salts, which hampers the process of water absorption by the plant, resulting in a biochemical and nutritional imbalance in the plant. Thus, this study aimed to investigate the effects of untreated and electromagnetically treated water in salinized soils on physical, physicochemical, and biochemical parameters in tomato fruits. The experiment was conducted at the Faculty of Science and Engineering, Tupã Campus (FCE/UNESP). A randomized complete block design with two types of treated water was adopted, with five different levels of initial salinity (0; 1.5; 2.5; 4; 5.5; 7 dS m⁻¹) by fertigation. Although the effects of salinity on fruit quality parameters are evident, no beneficial effects on increasing or maintaining postharvest quality of fruits whose plants were treated with electromagnetized water were evidenced.Keywords: Solanum lycopersicum, soil salinization, protected environment, fertigation
Procedia PDF Downloads 119752 Effect of Alkalinity of Water on the Aggregation of Colloidal Silver Nanoparticles
Authors: Fedda Y. Alzoubi, Ihsan A. Aljarrah
Abstract:
Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in different applications, especially in biomedical applications. Samples of different alkaline water were prepared in order to study the effect of alkalinity of water on the optical properties, size, and morphology of colloidal AgNPs prepared according to the chemical reduction method using the prepared water samples. Ultraviolet-Visible spectrophotometer, Zeta-sizer, and Scanning electron microscope (SEM) have been utilized to carry out this study. Absorption spectra AgNPs in different alkaline water show a surface Plasmon resonance (SPR) peak at the wavelength of 420 nm. The position of this peak is sensitive to the shape of the particles, and in our case, it indicates that the particles are spherical. As the alkalinity increases, the intensity of the SPR peak decreases, indicating the aggregation of particles. Zeta-sizer measurements show that the average diameter for AgNPs in pure water is found to be 53.51 nm, and this value increases as the alkalinity increases. Zeta potential values of samples show that the negatively coated particles are stable in the solution. SEM images insure the spherical shape of the prepared nanoparticles and show that as the alkalinity increases the particles aggregate into larger particles.Keywords: aggregation, alkalinity, colloid, nanoparticle
Procedia PDF Downloads 127751 Development and Evaluation of Gastro Retentive Floating Tablets of Ayurvedic Vati Formulation
Authors: Imran Khan Pathan, Anil Bhandari, Peeyush K. Sharma, Rakesh K. Patel, Suresh Purohit
Abstract:
Floating tablets of Marichyadi Vati were developed with an aim to prolong its gastric residence time and increase the bioavailability of drug. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by wet granulation technique, using HPMC E50 LV act as Matrixing agent, Carbopol as floating enhancer, microcrystalline cellulose as binder, sodium bi carbonate as effervescent agent with other excipients. The simplex lattice design was used for selection of variables for tablets formulation. Formulation was optimized on the basis of floating time and in vitro drug release. The results showed that the floating lag time for optimized formulation was found to be 61 second with about 97.32 % of total drug release within 3 hours. The in vitro release profiles of drug from the formulation could be best expressed zero order with highest linearity r2 = 0.9943. It was concluded that the gastroretentive drug delivery system can be developed for Marichyadi Vati containing piperine to increase the residence time of the drug in the stomach and thereby increasing bioavailability.Keywords: piperine, Marichyadi Vati, gastroretentive drug delivery, floating tablet
Procedia PDF Downloads 457750 First Occurrence of Histopathological Assessment in Gadoid Deep-Fish Phycis blennoides from the Southwestern Mediterranean Sea
Authors: Zakia Alioua, Amira Soumia, Zerouali-Khodja Fatiha
Abstract:
In spite of a wide variety of contaminants such as heavy metals and organic compounds in addition to the importance of extended pollution, the deep-sea and its species are not in haven and being affected through contaminants exposure. This investigation is performed in order to provide data on the presence of pathological changes in the liver and gonads of the greater forkbeard. A total of 998 specimens of the teleost fish Phycis blennoides Brünnich, 1768 ranged from 5,7 to 62,7 cm in total length, were obtained from the commercial fisheries of Algerian ports. The sampling has been carried out monthly from December 2013 to June 2015 and from January to June 2016 caught by trawlers and longlines between 75 and 600 fathoms in the coast of Algeria. Individuals were sexed their gonads, and their livers were removed and processed for light microscopy and one case of atresia was identified. In whole, overall 0,002% of the specimens presented some degree of liver steatosis. For the gastric section, 442 selected stomachs contents were observed looking for parasitic infestation and enumerate 212 nematodes. A prospecting survey for metal contaminant was performed on the liver by atomic absorption spectrophotometry analysis.Keywords: atresia, coast of Algeria, histopathology, nematode, Phycis blennoides, steatosis
Procedia PDF Downloads 233749 Effect of the Deposition Time of Hydrogenated Nanocrystalline Si Grown on Porous Alumina Film on Glass Substrate by Plasma Processing Chemical Vapor Deposition
Authors: F. Laatar, S. Ktifa, H. Ezzaouia
Abstract:
Plasma Enhanced Chemical Vapor Deposition (PECVD) method is used to deposit hydrogenated nanocrystalline silicon films (nc-Si: H) on Porous Anodic Alumina Films (PAF) on glass substrate at different deposition duration. Influence of the deposition time on the physical properties of nc-Si: H grown on PAF was investigated through an extensive correlation between micro-structural and optical properties of these films. In this paper, we present an extensive study of the morphological, structural and optical properties of these films by Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) techniques and a UV-Vis-NIR spectrometer. It was found that the changes in DT can modify the films thickness, the surface roughness and eventually improve the optical properties of the composite. Optical properties (optical thicknesses, refractive indexes (n), absorption coefficients (α), extinction coefficients (k), and the values of the optical transitions EG) of this kind of samples were obtained using the data of the transmittance T and reflectance R spectra’s recorded by the UV–Vis–NIR spectrometer. We used Cauchy and Wemple–DiDomenico models for the analysis of the dispersion of the refractive index and the determination of the optical properties of these films.Keywords: hydragenated nanocrystalline silicon, plasma processing chemical vapor deposition, X-ray diffraction, optical properties
Procedia PDF Downloads 379