Search results for: Amirul I. Mallick
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24

Search results for: Amirul I. Mallick

24 Ion Beam Induced 2D Mesophase Patterning of Nanocrystallites in Polymer

Authors: Srutirekha Giri, Manoranjan Sahoo, Anuradha Das, Pravanjan Mallick, Biswajit Mallick

Abstract:

Ion Beam (IB) technique is a very powerful experimental technique for both material synthesis and material modifications. In this work, 3MeV proton beam was generated using the 3MV Tandem machine of the Institute of Physics, Bhubaneswar and extracted into air for the irradiation-induced modification purpose[1]. The polymeric material can be modeled for a three-phase system viz. crystalline(I), amorphous(II) and mesomorphic(III). So far, our knowledge is concerned. There are only few techniques reported for the synthesis of this third-phase(III) of polymer. The IB induced technique is one of them and has been reported very recently [2-4]. It was observed that by irradiating polyethylene terephthalate (PET) fiber at very low proton fluence, 10¹⁰ - 10¹² p/s, possess 2D mesophase structure. This was confirmed using X-ray diffraction technique. A low-intensity broad peak was observed at small angle of about 2θ =6º, when the fiber axis was mounted parallel to the X-ray direction. Such peak vanished in the diffraction spectrum when the fiber axis was mounted perpendicular to the beam direction. The appearance of this extra peak in a particular orientation confirms that the phase is 2-dimensionally oriented (mesophase). It is well known that the mesophase is a 2-dimensionally ordered structure but 3-dimensionally disordered. Again, the crystallite of the mesophase peak particle was measured about 3nm. The MeV proton-induced 2D mesophase patterning of nanocrystallites (3nm) of PET due to irradiation was observed within the above low fluence range and failed in high proton fluence. This is mainly due to the breaking of crystallites, radiation-induced thermal degradation, etc.

Keywords: Ion irradiation, mesophase, nanocrystallites, polymer

Procedia PDF Downloads 169
23 Immuno-Protective Role of Mucosal Delivery of Lactococcus lactis Expressing Functionally Active JlpA Protein on Campylobacter jejuni Colonization in Chickens

Authors: Ankita Singh, Chandan Gorain, Amirul I. Mallick

Abstract:

Successful adherence of the mucosal epithelial cells is the key early step for Campylobacter jejuni pathogenesis (C. jejuni). A set of Surface Exposed Colonization Proteins (SECPs) are among the major factors involved in host cell adherence and invasion of C. jejuni. Among them, constitutively expressed surface-exposed lipoprotein adhesin of C. jejuni, JlpA, interacts with intestinal heat shock protein 90 (hsp90α) and contributes in disease progression by triggering pro-inflammatory response via activation of NF-κB and p38 MAP kinase pathway. Together with its ability to express in the bacterial surface, higher sequence conservation and predicted predominance of several B cells epitopes, JlpA protein reserves its potential to become an effective vaccine candidate against wide range of Campylobacter sps including C. jejuni. Given that chickens are the primary sources for C. jejuni and persistent gut colonization remain as major cause for foodborne pathogenesis to humans, present study explicitly used chickens as model to test the immune-protective efficacy of JlpA protein. Taking into account that gastrointestinal tract is the focal site for C. jejuni colonization, to extrapolate the benefit of mucosal (intragastric) delivery of JlpA protein, a food grade Nisin inducible Lactic acid producing bacteria, Lactococcus lactis (L. lactis) was engineered to express recombinant JlpA protein (rJlpA) in the surface of the bacteria. Following evaluation of optimal surface expression and functionality of recombinant JlpA protein expressed by recombinant L. lactis (rL. lactis), the immune-protective role of intragastric administration of live rL. lactis was assessed in commercial broiler chickens. In addition to the significant elevation of antigen specific mucosal immune responses in the intestine of chickens that received three doses of rL. lactis, marked upregulation of Toll-like receptor 2 (TLR2) gene expression in association with mixed pro-inflammatory responses (both Th1 and Th17 type) was observed. Furthermore, intragastric delivery of rJlpA expressed by rL. lactis, but not the injectable form, resulted in a significant reduction in C. jejuni colonization in chickens suggesting that mucosal delivery of live rL. lactis expressing JlpA serves as a promising vaccine platform to induce strong immune-protective responses against C. jejuni in chickens.

Keywords: chickens, lipoprotein adhesion of Campylobacter jejuni, immuno-protection, Lactococcus lactis, mucosal delivery

Procedia PDF Downloads 104
22 Separation and Purification of Oligostilbenes Using HPLC with Dereplication Strategy

Authors: Nurhuda Manshoor, Mohd Fazirulrahman Fathil, Muhammad Hakim Jaafar, Mohd Amirul S. A. Jalil

Abstract:

The leaves of Neobalanocarpus heimii were investigated for their oligostilbene contents. Prior to isolation process, the determinations of compounds were based on mass spectrometric fragmentation patterns. Three compounds, heimiol B, hopeaphenol, and vaticaphenol A were identified directly from the crude extract. Preparative high-performance liquid chromatography (HPLC) was used to isolate and purify the other compounds. The purified compounds were then analyzed using NMR spectroscopy to identify the compound structure and stereochemistry. The method employed for the research modified to comply with different HPLC techniques such as preparative and analytical techniques. The crude sample was injected into preparative HPLC to obtain several fractions which consist of oligostilbene mixture. The fractions were further isolated using analytical HPLC to obtain four pure compounds. The compounds then were characterized using nuclear magnetic resonance (NMR). The result shows that the leaves extract of Neobalanocarpus heimii contain three oligostilbenes, namely vaticanol A, balanocarpol, and vaticaphenol A, and a galactopyranose.

Keywords: balanocarpol, hemiol B, hopeaphenol, vaticanol A, vaticaphenol A

Procedia PDF Downloads 457
21 Effect of Confinement on Flexural Tensile Strength of Concrete

Authors: M. Ahmed, Javed Mallick, Mohammad Abul Hasan

Abstract:

The flexural tensile strength of concrete is an important parameter for determining cracking behavior of concrete structure and to compute deflection under flexure. Many factors have been shown to influence the flexural tensile strength, particularly the level of concrete strength, size of member, age of concrete and confinement to flexure member etc. Empirical equations have been suggested to relate the flexural tensile strength and compressive strength. Limited literature is available for relationship between flexural tensile strength and compressive strength giving consideration to the factors affecting the flexural tensile strength specially the concrete confinement factor. The concrete member such as slabs, beams and columns critical locations are under confinement effects. The paper presents the experimental study to predict the flexural tensile strength and compressive strength empirical relations using statistical procedures considering the effect of confinement and age of concrete for wide range of concrete strength (from 35 to about 100 MPa). It is concluded from study that due consideration of confinement should be given in deriving the flexural tensile strength and compressive strength proportionality equations.

Keywords: compressive strength, flexural tensile strength, modulus of rupture, statistical procedures, concrete confinement

Procedia PDF Downloads 422
20 Host-Assisted Delivery of a Model Drug to Genomic DNA: Key Information From Ultrafast Spectroscopy and in Silico Study

Authors: Ria Ghosh, Soumendra Singh, Dipanjan Mukherjee, Susmita Mondal, Monojit Das, Uttam Pal, Aniruddha Adhikari, Aman Bhushan, Surajit Bose, Siddharth Sankar Bhattacharyya, Debasish Pal, Tanusri Saha-Dasgupta, Maitree Bhattacharyya, Debasis Bhattacharyya, Asim Kumar Mallick, Ranjan Das, Samir Kumar Pal

Abstract:

Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ~652 s 1. However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.

Keywords: DNA, drug delivery, micelle, pre-micelle, SDS, toluidine blue

Procedia PDF Downloads 66
19 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.

Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret

Procedia PDF Downloads 624
18 Influence of Electrode Assembly on Catalytic Activation and Deactivation of a PT Film Immobilized H+ Conducting Solid Electrolyte in Electrocatalytic Reduction Reactions

Authors: M. A. Hasnat, M. Amirul Islam, M. A. Rashed, Jamil. Safwan, M. Mahabubul Alam

Abstract:

Symmetric (Cu–Pt|Nafion|Pt–Cu) and asymmetric(Pt|Nafion|Pt–Cu) assemblies were fabricated to study the nitrate reduction processes at the cathode. The electrocatalytic nitrate reduction reactions were performed in these assemblies in order to investigate the prerequisite for the enhanced catalytic activity, electrochemical cell durability as well as preferable product selectivity resulting from the reduction of nitrate at the cathode. It has been observed for the symmetric assembly that Cu particles were oxidized on the anode surface under an applied potential and the resulting copper ions migrated to the cathode surface through the Nafion membrane, which deposited as copper oxide on the cathode surface. The formation of this copper oxide covering layer on the Pt–Cu cathode surface is attributed as the reason for the deactivation of the cathode that governed the reduced nitrate reduction along with increasing nitrite selectivity. These problems were addressed and resolved with the asymmetric design of the electrocatalytic reactor, where enhanced hydrogen evolution activates the surface by eroding the CuO over layer as well as speeding up the slow rate determining hydrogenation reactions.

Keywords: membrane, nitrate, electrocatalysis, voltammetry, electrolysis

Procedia PDF Downloads 233
17 Establishment of a Thermostable Newcastle Disease Vaccine Candidate Strain and Its Adaptation to Vero Cells

Authors: Humayun Kabir, Amirul Hasan, Yu Miyaoka, Makiko Yamaguchi, Chisaki Kadota, Kazuaki Takehara

Abstract:

From field isolates of Newcastle disease virus (NDV) in Japan, one avirulent strain, APMV/northern pintail/Japan/Aomori/2003 (dk-Aomori/03, NDV 261), was selected for its excellent thermostability, and the strain was heat-treated at 56℃ temperatures for 30 min with each passage into Vero cells to maintain thermostability and to adapt Vero cells. After serial 20 passages in Vero cells, it was named NDV Vero20. When growth curves were tested in Vero cells, NDV Vero20 grew well to compare the original NDV261. The HN gene was sequenced, and found motifs that show thermostability. The intracerebral pathogenicity index (ICPI) test score was 0. The thermostability of the virus was confirmed by storing it at different temperatures, including at 37°C. When susceptible chicks were inoculated with NDV Vero20 through eye drops, induced adequate levels of antibody were measured using a serum neutralization test. The results showed that NDV Vero20, a vaccine candidate strain is thermostable, Vero cell adapted, and has immunogenic potential, which would make as an alternative to the traditional embryonated chicken eggs-based vaccine.

Keywords: Newcastle disease virus, thermostability, vaccine, Vero cell adaptability

Procedia PDF Downloads 100
16 The Effects of Electrical Muscle Stimulation (EMS) towards Male Skeletal Muscle Mass

Authors: Mohd Faridz Ahmad, Amirul Hakim Hasbullah

Abstract:

Electrical Muscle Stimulation (EMS) has been introduced to the world in the 19th and 20th centuries and has globally gained increasing attention on its usefulness. EMS is known as the application of electrical current transcutaneous to muscles through electrodes to induce involuntary contractions that can lead to the increment of muscle mass and strength. This study can be used as an alternative to help people especially those living a sedentary lifestyle to improve their muscle activity without having to go through a heavy workout session. Therefore, this study intended to investigate the effectiveness of EMS training in 5 weeks interventions towards male body composition. It was a quasi-experimental design, held at the Impulse Studio Bangsar, which examined the effects of EMS training towards skeletal muscle mass among the subjects. Fifteen subjects (n = 15) were selected to assist in this study. The demographic data showed that, the average age of the subjects was 43.07 years old ± 9.90, height (173.4 cm ± 9.09) and weight was (85.79 kg ± 18.07). Results showed that there was a significant difference on the skeletal muscle mass (p = 0.01 < 0.05), upper body (p = 0.01 < 0.05) and lower body (p = 0.00 < 0.05). Therefore, the null hypothesis has been rejected in this study. As a conclusion, the application of EMS towards body composition can increase the muscle size and strength. This method has been proven to be able to improve athlete strength and thus, may be implemented in the sports science area of knowledge.

Keywords: body composition, EMS, skeletal muscle mass, strength

Procedia PDF Downloads 444
15 Biotransformation of Glycerine Pitch as Renewable Carbon Resource into P(3HB-co-4HB) Biopolymer

Authors: Amirul Al-Ashraf Abdullah, Hema Ramachandran, Iszatty Ismail

Abstract:

Oleochemical industry in Malaysia has been diversifying significantly due to the abundant supply of both palm and kernel oils as raw materials as well as the high demand for downstream products such as fatty acids, fatty alcohols and glycerine. However, environmental awareness is growing rapidly in Malaysia because oleochemical industry is one of the palm-oil based industries that possess risk to the environment. Glycerine pitch is one of the scheduled wastes generated from the fatty acid plants in Malaysia and its discharge may cause a serious environmental problem. Therefore, it is imperative to find alternative applications for this waste glycerine. Consequently, the aim of this research is to explore the application of glycerine pitch as direct fermentation substrate in the biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer, aiming to contribute toward the sustainable production of biopolymer in the world. Utilization of glycerine pitch (10 g/l) together with 1,4-butanediol (5 g/l) had resulted in the achievement of 40 mol% 4HB monomer with the highest PHA concentration of 2.91 g/l. Synthesis of yellow pigment which exhibited antimicrobial properties occurred simultaneously with the production of P(3HB-co-4HB) through the use of glycerine pitch as renewable carbon resource. Utilization of glycerine pitch in the biosynthesis of P(3HB-co-4HB) will not only contribute to reducing society’s dependence on non-renewable resources but also will promote the development of cost efficiency microbial fermentation towards biosustainability and green technology.

Keywords: biopolymer, glycerine pitch, natural pigment, P(3HB-co-4HB)

Procedia PDF Downloads 427
14 Electrical Transport in Bi₁Sb₁Te₁.₅Se₁.₅ /α-RuCl₃ Heterostructure Nanodevices

Authors: Shoubhik Mandal, Debarghya Mallick, Abhishek Banerjee, R. Ganesan, P. S. Anil Kumar

Abstract:

We report magnetotransport measurements in Bi₁Sb₁Te₁.₅Se₁.₅/RuCl₃ heterostructure nanodevices. Bi₁Sb₁Te₁.₅Se₁.₅ (BSTS) is a strong three-dimensional topological insulator (3D-TI) that hosts conducting topological surface states (TSS) enclosing an insulating bulk. α-RuCl₃ (namely, RuCl₃) is an anti-ferromagnet that is predicted to behave as a Kitaev-like quantum spin liquid carrying Majorana excitations. Temperature (T)-dependent resistivity measurements show the interplay between parallel bulk and surface transport channels. At T < 150 K, surface state transport dominates over bulk transport. Multi-channel weak anti-localization (WAL) is observed, as a sharp cusp in the magnetoconductivity, indicating strong spin-orbit coupling. The presence of top and bottom topological surface states (TSS), including a pair of electrically coupled Rashba surface states (RSS), are indicated. Non-linear Hall effect, explained by a two-band model, further supports this interpretation. Finally, a low-T logarithmic resistance upturn is analyzed using the Lu-Shen model, supporting the presence of gapless surface states with a π Berry phase.

Keywords: topological materials, electrical transport, Lu-Shen model, quantum spin liquid

Procedia PDF Downloads 84
13 Reduction in Hot Metal Silicon through Statistical Analysis at G-Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, Santanu Mallick, Abhiram Jha, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

The quality of hot metal at any blast furnace is judged by the silicon content in it. Lower hot metal silicon not only enhances process efficiency at steel melting shops but also reduces hot metal costs. The Hot metal produced at G-Blast furnace Tata Steel Jamshedpur has a significantly higher Si content than Benchmark Blast furnaces. The higher content of hot metal Si is mainly due to inferior raw material quality than those used in benchmark blast furnaces. With minimum control over raw material quality, the only option left to control hot metal Si is via optimizing the furnace parameters. Therefore, in order to identify the levers to reduce hot metal Si, Data mining was carried out, and multiple regression models were developed. The statistical analysis revealed that Slag B3{(CaO+MgO)/SiO2}, Slag Alumina and Hot metal temperature are key controllable parameters affecting hot metal silicon. Contour Plots were used to determine the optimum range of levels identified through statistical analysis. A trial plan was formulated to operate relevant parameters, at G blast furnace, in the identified range to reduce hot metal silicon. This paper details out the process followed and subsequent reduction in hot metal silicon by 15% at G blast furnace.

Keywords: blast furnace, optimization, silicon, statistical tools

Procedia PDF Downloads 191
12 Significant Reduction in Specific CO₂ Emission through Process Optimization at G Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, M. K. G. Choudhury, Santanu Mallick, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

One of the key corporate goals of Tata Steel company is to demonstrate Environment Leadership. Decreasing specific CO₂ emission is one of the key steps to achieve the stated corporate goal. At any Blast Furnace, specific CO₂ emission is directly proportional to fuel intake. To reduce the fuel intake at G Blast Furnace, an initial benchmarking exercise was carried out with international and domestic Blast Furnaces to determine the potential for improvement. The gap identified during the exercise revealed that the benchmark Blast Furnaces operated with superior raw material quality than that in G Blast Furnace. However, since the raw materials to G Blast Furnace are sourced from the captive mines, improvement in the raw material quality was out of scope. Therefore, trials were taken with different operating regimes, to identify the key process parameters, which on optimization could significantly reduce the fuel intake in G Blast Furnace. The key process parameters identified from the trial were the Stoichiometric Oxygen Ratio, Melting Capacity ratio and the burden distribution inside the furnace. These identified process parameters were optimized to bridge the gap in fuel intake at G Blast Furnace, thereby reducing specific CO₂ emission to benchmark levels. This paradigm shift enabled to lower the fuel intake by 70kg per ton of liquid iron produced, thereby reducing the specific CO₂ emission by 15 percent.

Keywords: benchmark, blast furnace, CO₂ emission, fuel rate

Procedia PDF Downloads 246
11 Formulation and Anticancer Evaluation of Beta-Sitosterol in Henna Methanolic Extract Embedded in Controlled Release Nanocomposite

Authors: Sanjukta Badhai, Durga Barik, Bairagi C. Mallick

Abstract:

In the present study, Beta-Sitosterol in Lawsonia methanolic leaf extract embedded in controlled release nanocomposite was prepared and evaluated for in vivo anticancer efficacy in dimethyl hydrazine (DMH) induced colon cancer. In the present study, colon cancer was induced by s.c injection of DMH (20 mg/kg b.wt) for 15 weeks. The animals were divided into five groups as follows control, DMH alone, DMH and Beta Sitosterol nanocomposite (50mg/kg), DMH and Beta Sitosterol nanocomposite (100 mg/kg) and DMH and Standard Silymarin (100mg/kg) and the treatment was carried out for 15 weeks. At the end of the study period, the blood was withdrawn, and serum was separated for haematological, biochemical analysis and tumor markers. Further, the colonic tissue was removed for the estimation of antioxidants and histopathological analysis. The results of the study displays that DMH intoxication elicits altered haematological parameters (RBC,WBC, and Hb), elevated lipid peroxidation and decreased antioxidants level (SOD, CAT, GPX, GST and GSH), elevated lipid profiles (cholesterol and triglycerides), tumor markers (CEA and AFP) and altered colonic tissue histology. Meanwhile, treatment with Beta Sitosterol nanocomposites significantly restored the altered biochemicals parameters in DMH induced colon cancer mediated by its anticancer efficacy. Further, Beta Sitosterol nanocomposite (100 mg/kg) showed marked efficacy.

Keywords: nanocomposites, herbal formulation, henna, beta sitosterol, colon cancer, dimethyl hydrazine, antioxidant, lipid peroxidation

Procedia PDF Downloads 128
10 Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover

Authors: Javed Mallick

Abstract:

In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islands

Keywords: land use land cover mapping, land surface temperature, support vector machine, LISA model, parallel coordinate plot

Procedia PDF Downloads 44
9 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses

Authors: Ashis Mallick, Rajeev Ranjan

Abstract:

The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.

Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity

Procedia PDF Downloads 288
8 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 19
7 Lipid Extraction from Microbial Cell by Electroporation Technique and Its Influence on Direct Transesterification for Biodiesel Synthesis

Authors: Abu Yousuf, Maksudur Rahman Khan, Ahasanul Karim, Amirul Islam, Minhaj Uddin Monir, Sharmin Sultana, Domenico Pirozzi

Abstract:

Traditional biodiesel feedstock like edible oils or plant oils, animal fats and cooking waste oil have been replaced by microbial oil in recent research of biodiesel synthesis. The well-known community of microbial oil producers includes microalgae, oleaginous yeast and seaweeds. Conventional transesterification of microbial oil to produce biodiesel is lethargic, energy consuming, cost-ineffective and environmentally unhealthy. This process follows several steps such as microbial biomass drying, cell disruption, oil extraction, solvent recovery, oil separation and transesterification. Therefore, direct transesterification of biodiesel synthesis has been studying for last few years. It combines all the steps in a single reactor and it eliminates the steps of biomass drying, oil extraction and separation from solvent. Apparently, it seems to be cost-effective and faster process but number of difficulties need to be solved to make it large scale applicable. The main challenges are microbial cell disruption in bulk volume and make faster the esterification reaction, because water contents of the medium sluggish the reaction rate. Several methods have been proposed but none of them is up to the level to implement in large scale. It is still a great challenge to extract maximum lipid from microbial cells (yeast, fungi, algae) investing minimum energy. Electroporation technique results a significant increase in cell conductivity and permeability caused due to the application of an external electric field. Electroporation is required to alter the size and structure of the cells to increase their porosity as well as to disrupt the microbial cell walls within few seconds to leak out the intracellular lipid to the solution. Therefore, incorporation of electroporation techniques contributed in direct transesterification of microbial lipids by increasing the efficiency of biodiesel production rate.

Keywords: biodiesel, electroporation, microbial lipids, transesterification

Procedia PDF Downloads 238
6 Outcomes of the Gastrocnemius Flap Performed by Orthopaedic Surgeons in Salvage Revision Knee Arthroplasty: A Retrospective Study at a Tertiary Orthopaedic Centre

Authors: Amirul Adlan, Robert McCulloch, Scott Evans, Michael Parry, Jonathan Stevenson, Lee Jeys

Abstract:

Background and Objectives: The gastrocnemius myofascial flap is used to manage soft-tissue defects over the anterior aspect of the knee in the context of a patient presenting with a sinus and periprosthetic joint infection (PJI) or extensor mechanism failure. The aim of this study was twofold: firstly, to evaluate the outcomes of gastrocnemius flaps performed by appropriately trained orthopaedic surgeons in the context of PJI and, secondly, to evaluate the infection-free survival of this patient group. Methods: We retrospectively reviewed 30 patients who underwent gastrocnemius flap reconstruction during staged revision total knee arthroplasty for prosthetic joint infection (PJI). All flaps were performed by an orthopaedic surgeon with orthoplastics training. Patients had a mean age of 68.9 years (range 50–84) and were followed up for a mean of 50.4 months (range 2–128 months). A total of 29 patients (97 %) were categorized into Musculoskeletal Infection Society (MSIS) local extremity grade 3 (greater than two compromising factors), and 52 % of PJIs were polymicrobial. The primary outcome measure was flap failure, and the secondary outcome measure was a recurrent infection. Results: Flap survival was 100% with no failures or early returns to theatre for flap problems such as necrosis or haematoma. Overall infection-free survival during the study period was 48% (13 of 27 infected cases). Using limb salvage as the outcome, 77% (23 of 30 patients) retained the limb. Infection recurrence occurred in 48% (10 patients) in the type B3 cohort and 67% (4 patients) in the type C3 cohort (p = 0.65). Conclusion: The surgical technique for a gastrocnemius myofascial flap is reliable and reproducible when performed by appropriately trained orthopaedic surgeons, even in high-risk groups. However, the risks of recurrent infection and amputation remain high within our series due to poor host and extremity factors.

Keywords: gastrocnemius flap, limb salvage, revision arthroplasty, outcomes

Procedia PDF Downloads 83
5 The Improvement in Clinical Outcomes with the Histological Presence of Nidus Following Radiofrequency Ablation (RFA) for Osteoid Osteoma (OO)

Authors: Amirul Adlan, Motaz AlAqeel, Scott Evans, Vaiyapuri sumathi, Mark Davies, Rajesh Botchu

Abstract:

Background & Objectives: Osteoid osteoma (OO) is a benign tumor of the bone commonly found in childhood and adolescence, causing bone pain, especially during the night. CT-guided radiofrequency ablation (RFA) is currently the mainstay treatment for OO. There is currently no literature reporting the outcomes of OO following RFA based on the histological presence of a nidus seen on a biopsy taken at the time of RFA. The primary aim of this study was to compare the clinical outcomes of OO between the group of patients with the presence of nidus on biopsy samples from RFA with those without nidus. Secondly, we aimed to examine other factors that may affect the outcomes of OO, reflecting our experience as a tertiary orthopedic oncology center. Methods: We retrospectively reviewed 88 consecutive patients diagnosed with osteoid osteoma treated with RFA between November 2005 and March 2015, consisting of 63 males (72%) and 25 females (28%). Sixty-six patients (75%) had nidus present in their biopsy samples. Patients’ mean age was 17.6 years (4-53). The median duration of follow-up was 12.5 months (6-20.8). Lesions were located in the appendicular skeleton in seventy-nine patients (90%), while nine patients (10%) had an OO in the axial skeleton. Outcomes assessed were based on patients’ pain alleviation (partial, complete, or no pain improvement) and the need for further interventions. Results: Pain improvement in the patient group with nidus in the histology sample was significantly better than in the group without nidus (OR 7.4, CI 1.35-41.4, p=0.021). The patient group with nidus on biopsy demonstrated less likelihood of having a repeat procedure compared to the group without nidus(OR 0.092, CI 0.016-0.542, p=0.008). Our study showed significantly better outcomes in pain improvement in appendicular lesions compared to the axially located lesions (p = 0.005). Patients with spinal lesions tend to have relatively poor pain relief than those with appendicular or pelvic lesions (p=0.007). Conclusions: Patients with nidus on histology had better pain alleviation compared to patients without nidus. The histological presence of nidus significantly reduces the chance of repeat interventions. The pain alleviation of osteoid osteoma following RFA is better in patients with appendicular lesions than spinal or axially located lesions.

Keywords: osteoid osteoma, benign tumour, radiofrequency ablation, oncology

Procedia PDF Downloads 110
4 A Comparison of the Microbiology Profile for Periprosthetic Joint Infection (PJI) of Knee Arthroplasty and Lower Limb Endoprostheses in Tumour Surgery

Authors: Amirul Adlan, Robert A McCulloch, Neil Jenkins, MIchael Parry, Jonathan Stevenson, Lee Jeys

Abstract:

Background and Objectives: The current antibiotic prophylaxis for oncological patients is based upon evidence from primary arthroplasty despite significant differences in both patient group and procedure. The aim of this study was to compare the microbiology organisms responsible for PJI in patients who underwent two-stage revision for infected primary knee replacement with those of infected oncological endoprostheses of the lower limb in a single institution. This will subsequently guide decision making regarding antibiotic prophylaxis at primary implantation for oncological procedures and empirical antibiotics for infected revision procedures (where the infecting organism(s) are unknown). Patient and Methods: 118 patients were treated with two-stage revision surgery for infected knee arthroplasty and lower limb endoprostheses between 1999 and 2019. 74 patients had two-stage revision for PJI of knee arthroplasty, and 44 had two-stage revision of lower limb endoprostheses. There were 68 males and 50 females. The mean age for the knee arthroplasty cohort and lower limb endoprostheses cohort were 70.2 years (50-89) and 36.1 years (12-78), respectively (p<0.01). Patient host and extremity criteria were categorised according to the MSIS Host and Extremity Staging System. Patient microbiological culture, the incidence of polymicrobial infection and multi-drug resistance (MDR) were analysed and recorded. Results: Polymicrobial infection was reported in 16% (12 patients) from knee arthroplasty PJI and 14.5% (8 patients) in endoprostheses PJI (p=0.783). There was a significantly higher incidence of MDR in endoprostheses PJI, isolated in 36.4% of cultures, compared to knee arthroplasty PJI (17.2%) (p=0.01). Gram-positive organisms were isolated in more than 80% of cultures from both cohorts. Coagulase-negative Staphylococcus (CoNS) was the commonest gram-positive organism, and Escherichia coli was the commonest Gram-negative organism in both groups. According to the MSIS staging system, the host and extremity grade of knee arthroplasty PJI cohort were significantly better than endoprostheses PJI(p<0.05). Conclusion: Empirical antibiotic management of PJI in orthopaedic oncology is based upon PJI in arthroplasty despite differences in both host and microbiology. Our results show a significant increase in MDR pathogens within the oncological group despite CoNS being the most common infective organism in both groups. Endoprosthetic patients presented with poorer host and extremity criteria. These factors should be considered when managing this complex patient group, emphasising the importance of broad-spectrum antibiotic prophylaxis and preoperative sampling to ensure appropriate perioperative antibiotic cover.

Keywords: microbiology, periprosthetic Joint infection, knee arthroplasty, endoprostheses

Procedia PDF Downloads 82
3 Integration of EEG and Motion Tracking Sensors for Objective Measure of Attention-Deficit Hyperactivity Disorder in Pre-Schoolers

Authors: Neha Bhattacharyya, Soumendra Singh, Amrita Banerjee, Ria Ghosh, Oindrila Sinha, Nairit Das, Rajkumar Gayen, Somya Subhra Pal, Sahely Ganguly, Tanmoy Dasgupta, Tanusree Dasgupta, Pulak Mondal, Aniruddha Adhikari, Sharmila Sarkar, Debasish Bhattacharyya, Asim Kumar Mallick, Om Prakash Singh, Samir Kumar Pal

Abstract:

Background: We aim to develop an integrated device comprised of single-probe EEG and CCD-based motion sensors for a more objective measure of Attention-deficit Hyperactivity Disorder (ADHD). While the integrated device (MAHD) relies on the EEG signal (spectral density of beta wave) for the assessment of attention during a given structured task (painting three segments of a circle using three different colors, namely red, green and blue), the CCD sensor depicts movement pattern of the subjects engaged in a continuous performance task (CPT). A statistical analysis of the attention and movement patterns was performed, and the accuracy of the completed tasks was analysed using indigenously developed software. The device with the embedded software, called MAHD, is intended to improve certainty with criterion E (i.e. whether symptoms are better explained by another condition). Methods: We have used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 years old pre-schoolers). During the painting of three segments of a circle using three distinct colors (red, green, and blue), absolute power for delta and beta EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task (CPT) i.e., separation of the various colored balls from one table to another. We have used our indigenously developed software for the statistical analysis to derive a scale for the objective assessment of ADHD. We have also compared our scale with clinical ADHD evaluation. Results: In a limited clinical trial with preliminary statistical analysis, we have found a significant correlation between the objective assessment of the ADHD subjects with that of the clinician’s conventional evaluation. Conclusion: MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty.

Keywords: ADHD, CPT, EEG signal, motion sensor, psychometric test

Procedia PDF Downloads 60
2 Wetland Community and Their Livelihood Opportunities in the Face of Changing Climatic Condition in Southwest Bangladesh

Authors: Mohsina Aktar, Bishawjit Mallick

Abstract:

Bangladesh faces the multidimensional manifestations of climate change e.g. flood, cyclone, sea level rise, drainage congestion, salinity, etc. This study aimed at to find out the community’s perception of the perceived impact of climate change on their wetland resource based livelihood, to analyze their present livelihood scenario and to find out required institutional setup to strengthen present livelihood scenario. Therefore, this study required both quantitative analysis like quantification of wetland resources, occupation, etc. and also exploratory information like policy and institutional reform. For quantitative information 200 questionnaire survey and in some cases observation survey and for socially shareable qualitative and quantitative issues case study and focus group discussion were conducted. In-Depth interview was conducted for socially non-shareable qualitative issues. The overall findings of this study have been presented maintaining a sequence- perception about climate change effect, livelihood scenario and required institutional support of the wetland community. Flood has been ranked where cyclone effect is comparatively less disastrous in this area. Heavy rainfall comes after the cyclone. Female members responded almost same about the ranking and effects of frequently occurred and devastating effects of climate change. People are much more aware of the impact of climate change. Training of Care in RVCC project helps to increase their knowledge level. If the level of education can be increased, people can fight against calamity and poverty with more confidence. People seem to overcome the problems of water logging and thus besides involving in Hydroponics (33.3%) as prime occupation in monsoon; they are also engaged in other business related activities. January to May is the low-income season for the farmers. But some people don’t want to change their traditional occupation and their age is above 45. The young earning member wants to utilize their lean income period by alternative occupation. People who do not have own land and performing water transportation or other types of occupation are now interested about Hydroponics. People who give their land on rent are now thinking about renting their land in monsoon as through that they can earn a sound amount rather than get nothing. What they require is just seed, training, and capital. Present marketing system faces the problem of communication. So this sector needed to be developed. Involvement of women in income earning activity is very low (5.1%), and 100% women are housewives. They became inferior due to their educational level and dominance of their husband. Only one NGO named BCAS (Bangladesh Center for Advanced Studies) has been found engage training facilities and advocacy for this purpose. Upazilla agricultural extension office like other GO remains inactive to give support the community for extension and improvement of Hydroponics agriculture. If the community gets proper support and inspiration, they can fight against crisis of low-income and climate change, with the Hydroponics cultivation system successfully.

Keywords: wetland community, hydroponics, climate change adaptation, livelihood

Procedia PDF Downloads 240
1 Moths of Indian Himalayas: Data Digging for Climate Change Monitoring

Authors: Angshuman Raha, Abesh Kumar Sanyal, Uttaran Bandyopadhyay, Kaushik Mallick, Kamalika Bhattacharyya, Subrata Gayen, Gaurab Nandi Das, Mohd. Ali, Kailash Chandra

Abstract:

Indian Himalayan Region (IHR), due to its sheer latitudinal and altitudinal expanse, acts as a mixing ground for different zoogeographic faunal elements. The innumerable unique and distributional restricted rare species of IHR are constantly being threatened with extinction by the ongoing climate change scenario. Many of which might have faced extinction without even being noticed or discovered. Monitoring the community dynamics of a suitable taxon is indispensable to assess the effect of this global perturbation at micro-habitat level. Lepidoptera, particularly moths are suitable for this purpose due to their huge diversity and strict herbivorous nature. The present study aimed to collate scattered historical records of moths from IHR and spatially disseminate the same in Geographic Information System (GIS) domain. The study also intended to identify moth species with significant altitudinal shifts which could be prioritised for monitoring programme to assess the effect of climate change on biodiversity. A robust database on moths recorded from IHR was prepared from voluminous secondary literature and museum collections. Historical sampling points were transformed into richness grids which were spatially overlaid on altitude, annual precipitation and vegetation layers separately to show moth richness patterns along major environmental gradients. Primary samplings were done by setting standard light traps at 11 Protected Areas representing five Indian Himalayan biogeographic provinces. To identify significant altitudinal shifts, past and present altitudinal records of the identified species from primary samplings were compared. A consolidated list of 4107 species belonging to 1726 genera of 62 families of moths was prepared from a total of 10,685 historical records from IHR. Family-wise assemblage revealed Erebidae to be the most speciose family with 913 species under 348 genera, followed by Geometridae with 879 species under 309 genera and Noctuidae with 525 species under 207 genera. Among biogeographic provinces, Central Himalaya represented maximum records with 2248 species, followed by Western and North-western Himalaya with 1799 and 877 species, respectively. Spatial analysis revealed species richness was more or less uniform (up to 150 species record per cell) across IHR. Throughout IHR, the middle elevation zones between 1000-2000m encompassed high species richness. Temperate coniferous forest associated with 1500-2000mm rainfall zone showed maximum species richness. Total 752 species of moths were identified representing 23 families from the present sampling. 13 genera were identified which were restricted to specialized habitats of alpine meadows over 3500m. Five historical localities with high richness of >150 species were selected which could be considered for repeat sampling to assess climate change influence on moth assemblage. Of the 7 species exhibiting significant altitudinal ascend of >2000m, Trachea auriplena, Diphtherocome fasciata (Noctuidae) and Actias winbrechlini (Saturniidae) showed maximum range shift of >2500m, indicating intensive monitoring of these species. Great Himalayan National Park harbours most diverse assemblage of high-altitude restricted species and should be a priority site for habitat conservation. Among the 13 range restricted genera, Arichanna, Opisthograptis, Photoscotosia (Geometridae), Phlogophora, Anaplectoides and Paraxestia (Noctuidae) were dominant and require rigorous monitoring, as they are most susceptible to climatic perturbations.

Keywords: altitudinal shifts, climate change, historical records, Indian Himalayan region, Lepidoptera

Procedia PDF Downloads 147