Search results for: diagnostic analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28696

Search results for: diagnostic analysis

27586 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network

Authors: Z. Abdollahi Biron, P. Pisu

Abstract:

Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.

Keywords: fault diagnostics, communication network, connected vehicles, packet drop out, platoon

Procedia PDF Downloads 239
27585 The Analysis on Leadership Skills in UK Automobile Manufacturing Enterprises

Authors: Yanting Cao

Abstract:

The UK has strong economic growth, which attracts other countries to invest there through globalization. This research process will be based on quantitative and qualitative descriptive analysis using interviews. The secondary analysis will involve a case study approach to understand the important aspects of leadership skills. The research outcomes will be identifying the strength and weaknesses of the leadership skills of UK automobile manufacturing enterprises and suggest the best practices adopted by the respective countries for better results.

Keywords: engineering management, leadership, Industrial project management, Project managers, automobile manufacturing

Procedia PDF Downloads 186
27584 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis

Authors: Lina Wu, Wenyi Lu, Ye Li

Abstract:

Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.

Keywords: correlation coefficients, displacement effect, multivariate analysis technique, regression coefficients

Procedia PDF Downloads 367
27583 Exploring SL Writing and SL Sensitivity during Writing Tasks: Poor and Advanced Writing in a Context of Second Language other than English

Authors: Sandra Figueiredo, Margarida Alves Martins, Carlos Silva, Cristina Simões

Abstract:

This study integrates a larger research empirical project that examines second language (SL) learners’ profiles and valid procedures to perform complete and diagnostic assessment in schools. 102 learners of Portuguese as a SL aged 7 and 17 years speakers of distinct home languages were assessed in several linguistic tasks. In this article, we focused on writing performance in the specific task of narrative essay composition. The written outputs were measured using the score in six components adapted from an English SL assessment context (Alberta Education): linguistic vocabulary, grammar, syntax, strategy, socio-linguistic, and discourse. The writing processes and strategies in Portuguese language used by different immigrant students were analysed to determine features and diversity of deficits on authentic texts performed by SL writers. Differentiated performance was based on the diversity of the following variables: grades, previous schooling, home language, instruction in first language, and exposure to Portuguese as Second Language. Indo-Aryan languages speakers showed low writing scores compared to their peers and the type of language and respective cognitive mapping (such as Mandarin and Arabic) was the predictor, not linguistic distance. Home language instruction should also be prominently considered in further research to understand specificities of cognitive academic profile in a Romance languages learning context. Additionally, this study also examined the teachers representations that will be here addressed to understand educational implications of second language teaching in psychological distress of different minorities in schools of specific host countries.

Keywords: home language, immigrant students, Portuguese language, second language, writing assessment

Procedia PDF Downloads 464
27582 ADCOR © Muscle Damage Rapid Detection Test Based on Skeletal Troponin I Immunochromatography Reaction

Authors: Muhammad Solikhudin Nafi, Wahyu Afif Mufida, Mita Erna Wati, Fitri Setyani Rokim, M. Al-Rizqi Dharma Fauzi

Abstract:

High dose activity without any pre-exercise will impact Delayed Onset Muscle Soreness (DOMS). DOMS known as delayed pain post-exercise and induce skeletal injury which will decrease athletes’ performances. From now on, post-exercise muscle damage can be detected by measuring skeletal troponin I (sTnI) concentration in serum using ELISA but this method needs more time and cost. To prevent decreased athletes performances, screening need to be done rapidly. We want to introduce our new prototype to detect DOMS acutely. Rapid detection tests are based on immunological reaction between skeletal troponin I antibodies and sTnI in human serum or whole blood. Chemical methods that are used in the manufacture of diagnostic test is lateral flow immunoassay. The material used is rat monoclonal antibody sTnI, colloidal gold, anti-mouse IgG, nitrocellulose membrane, conjugate pad, sample pad, wick and backing card. The procedure are made conjugate (colloidal gold and mAb sTnI) and insert into the conjugate pad, gives spray sTnI mAb and anti-mouse IgG into nitrocellulose membrane, and assemble RDT. RDT had been evaluated by measuring the sensitivity of positive human serum (n = 30) and negative human serum (n = 30). Overall sensitivity value was 93% and specificity value was 90%. ADCOR as the first rapid detection test qualitatively showed antigen-antibody reaction and showed good overall performances for screening of muscle damage. Furthermore, these finding still need more improvements to get best results.

Keywords: DOMS, sTnI, rapid detection test, ELISA

Procedia PDF Downloads 514
27581 Single Cell Rna Sequencing Operating from Benchside to Bedside: An Interesting Entry into Translational Genomics

Authors: Leo Nnamdi Ozurumba-Dwight

Abstract:

Single-cell genomic analytical systems have proved to be a platform to isolate bulk cells into selected single cells for genomic, proteomic, and related metabolomic studies. This is enabling systematic investigations of the level of heterogeneity in a diverse and wide pool of cell populations. Single cell technologies, embracing techniques such as high parameter flow cytometry, single-cell sequencing, and high-resolution images are playing vital roles in these investigations on messenger ribonucleic acid (mRNA) molecules and related gene expressions in tracking the nature and course of disease conditions. This entails targeted molecular investigations on unit cells that help us understand cell behavoiur and expressions, which can be examined for their health implications on the health state of patients. One of the vital good sides of single-cell RNA sequencing (scRNA seq) is its probing capacity to detect deranged or abnormal cell populations present within homogenously perceived pooled cells, which would have evaded cursory screening on the pooled cell populations of biological samples obtained as part of diagnostic procedures. Despite conduction of just single-cell transcriptome analysis, scRNAseq now permits comparison of the transcriptome of the individual cells, which can be evaluated for gene expressional patterns that depict areas of heterogeneity with pharmaceutical drug discovery and clinical treatment applications. It is vital to strictly work through the tools of investigations from wet lab to bioinformatics and computational tooled analyses. In the precise steps for scRNAseq, it is critical to do thorough and effective isolation of viable single cells from the tissues of interest using dependable techniques (such as FACS) before proceeding to lysis, as this enhances the appropriate picking of quality mRNA molecules for subsequent sequencing (such as by the use of Polymerase Chain Reaction machine). Interestingly, scRNAseq can be deployed to analyze various types of biological samples such as embryos, nervous systems, tumour cells, stem cells, lymphocytes, and haematopoietic cells. In haematopoietic cells, it can be used to stratify acute myeloid leukemia patterns in patients, sorting them out into cohorts that enable re-modeling of treatment regimens based on stratified presentations. In immunotherapy, it can furnish specialist clinician-immunologist with tools to re-model treatment for each patient, an attribute of precision medicine. Finally, the good predictive attribute of scRNAseq can help reduce the cost of treatment for patients, thus attracting more patients who would have otherwise been discouraged from seeking quality clinical consultation help due to perceived high cost. This is a positive paradigm shift for patients’ attitudes primed towards seeking treatment.

Keywords: immunotherapy, transcriptome, re-modeling, mRNA, scRNA-seq

Procedia PDF Downloads 177
27580 Early Requirement Engineering for Design of Learner Centric Dynamic LMS

Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta

Abstract:

We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.

Keywords: adaptive courseware, early requirement engineering, means end analysis, organizational modelling, requirement modelling

Procedia PDF Downloads 501
27579 Computer-Aided Diagnosis of Eyelid Skin Tumors Using Machine Learning

Authors: Ofira Zloto, Ofir Fogel, Eyal Klang

Abstract:

Purpose: The aim is to develop an automated framework based on machine learning to diagnose malignant eyelid skin tumors. Methods: This study utilized eyelid lesion images from Sheba Medical Center, a large tertiary center in Israel. Before model training, we pre-trained our models on the ISIC 2019 dataset consisting of 25,332 images. The proprietary eyelid dataset was then used for fine-tuning. The dataset contained multiple images per patient, aiming to classify malignant lesions in comparison to benign counterparts. Results: The analyzed dataset consisted of images representing both benign and malignant eyelid lesions. For the benign category, a total of 373 images were sourced. In comparison, the malignant category has 186 images. Based on the accuracy values, the model with 3 epochs and a learning rate of 0.0001 exhibited the best performance, achieving an accuracy of 0.748 with a standard deviation of 0.034. At a sensitivity of 69%, the model has a corresponding specificity of 82%. To further understand the decision-making process of our model, we employed heatmap visualization techniques, specifically Gradient-weighted Class Activation Mapping. Discussion: This study introduces a dependable model-aided diagnostic technology for assessing eyelid skin lesions. The model demonstrated accuracy comparable to human evaluation, effectively determining whether a lesion raises a high suspicion of malignancy or is benign. Such a model has the potential to alleviate the burden on the healthcare system, particularly benefiting rural areas and enhancing the efficiency of clinicians and overall healthcare.

Keywords: machine learning;, eyelid skin tumors;, decision-making process;, heatmap visualization techniques

Procedia PDF Downloads 4
27578 Resistance of Haemonchus spp. to Albendazole, Fenbendazole and Levamisole in 4 Goat Farms of Antioquia, Colombia

Authors: Jose D. Zapata-Torres, Esteban Naranjo-Gutiérrez, Angela M. Martínez-Valencia, Jenny J. Chaparro-Gutiérrez, David Villar-Argaiz

Abstract:

Reports of drug resistance have been made in every livestock host and to every anthelmintic class. In some regions of world, the extremely high prevalence of multi-drug resistance in nematodes of sheep and goats threatens the viability of small-ruminant industries. In the region of Antioquia, Colombia, no reports of nematode resistance have been documented due to a lack of veterinary diagnostic laboratories. The objective of this study was to evaluate the efficacy of albendazole, fenbendazole, and levamisole to control gastrointestinal nematodes in goat farms of Antioquia by doing fecal egg count reduction tests. A total of 139 crossbreed goats from four separate farms were sampled for feces prior to, and 14 days following anthelmintc treatments. Individual fecal egg counts were performed using the modified three chamber McMaster technique. The anthelmintics administered at day 0 were albendazole (farm 1, n=63), fenbendazole (farm 2, n=20), and levamisole (farm 3 and 4, n= 37, and 19). Larval cultures were used to identify the genus of nematodes using Baermann`s technique and the morphological keys for identification of L3 in small ruminants. There was no difference in fecal egg counts between 0 and 14, with means (±SD) of 1681,5 ± 2121,5 and 1715,12 ± 1895,4 epg (eggs per gram), respectively. The egg count reductions for each anthelmintic and farm were 25,86% for albendazole (farm 1), 0% for fenbendazole (farm 2), 0% (farm 3), and 5,5% (farm 4) for levamisole. The genus of nematodes identified was predominantly Haemonchus spp., with 70,27% and 82,81% for samples from day 0 and 14, respectively. These results provide evidence of a total state of resistance to 3 common anthelmintics. Further research is needed to design integrate management programs to control nematodes in small ruminants in Colombia.

Keywords: anthelmintics, goat, haemonchus, resistance

Procedia PDF Downloads 529
27577 Combined Analysis of Sudoku Square Designs with Same Treatments

Authors: A. Danbaba

Abstract:

Several experiments are conducted at different environments such as locations or periods (seasons) with identical treatments to each experiment purposely to study the interaction between the treatments and environments or between the treatments and periods (seasons). The commonly used designs of experiments for this purpose are randomized block design, Latin square design, balanced incomplete block design, Youden design, and one or more factor designs. The interest is to carry out a combined analysis of the data from these multi-environment experiments, instead of analyzing each experiment separately. This paper proposed combined analysis of experiments conducted via Sudoku square design of odd order with same experimental treatments.

Keywords: combined analysis, sudoku design, common treatment, multi-environment experiments

Procedia PDF Downloads 347
27576 Teaching English to Rural Students: A Case Study of a Select Batch at SSN College of Engineering, Chennai

Authors: Martha Karunakar

Abstract:

There exists a wide divide between the urban and the rural students in a vast country like India. This dichotomy is seen in the resources available to them, like the learning facilities, the infra-structure, the learning ambience and meeting of their basic needs of food, clothing and shelter. This paper discusses the effect of English language teaching as a Bridge course on a select batch of rural students at an Engineering college in Chennai, one of the four Metros of India. The study aims to understand how the teacher input and the teacher- peer-student interaction facilitates the acquisition of the basic structures of the English language to a group that is minimally exposed to the language. The objective in conducting the Bridge Course is to integrate these rural students into the mainstream and empower them in terms of English speaking ability; to enable them to comprehend their respective engineering classes where the medium of instruction is English and also to be able to interact with their urban peers. This program is conducted prior to the start of a regular academic session to equip them face the rigors of engineering education. The study is placed within the framework of Interaction theory in second language acquisition. The study evaluates the impact of linking theory and practice by implementing meaningful interaction not only within classrooms but also in the common areas. By providing intensive comprehensible input, it is anticipated that participant’s level of English language improves. The teaching methods and classroom activities included individual and group participation, encompassing all the four skills of listening, speaking, reading and writing (LSRW). The diagnostic tests that were administered before the commencement of the course and the exit test after the completion were used to record the impact of the training.

Keywords: comprehensible input, interaction, rural students, teaching English

Procedia PDF Downloads 384
27575 Magnification Factor Based Seismic Response of Moment Resisting Frames with Open Ground Storey

Authors: Subzar Ahmad Bhat, Saraswati Setia, V. K.Sehgal

Abstract:

During the past earthquakes, open ground storey buildings have performed poorly due to the soft storey defect. Indian Standard IS 1893:2002 allows analysis of open ground storey buildings without considering infill stiffness but with a multiplication factor 2.5 in compensation for the stiffness discontinuity. Therefore, the aim of this paper is to check the applicability of the multiplication factor of 2.5 and study behaviour of the structure after the application of the multiplication factor. For this purpose, study is performed on models considering infill stiffness using SAP 2000 (Version 14) by linear static analysis and response spectrum analysis. Total seven models are analysed and designed for the range of multiplication factor ranging from 1.25 to 2.5. The value of multiplication factor equal to 2.5 has been found on the higher side, resulting in increased dimension and percentage of reinforcement without significant enhancement beyond a certain multiplication factor. When the building with OGS is designed for values of MF higher than 1.25 considering infill stiffness soft storey effect shifts from ground storey to first storey. For the analysis of the OGS structure best way to analysis the structure is to analyse it as the frame with stiffness and strength of the infill taken into account. The provision of infill walls in the upper storeys enhances the performance of the structure in terms of displacement and storey drift controls.

Keywords: open ground storey, multiplication factor, IS 1893:2002 provisions, static analysis, response spectrum analysis, infill stiffness, equivalent strut

Procedia PDF Downloads 396
27574 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm

Authors: Rashid Ahmed , John N. Avaritsiotis

Abstract:

Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.

Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis

Procedia PDF Downloads 452
27573 An Analysis of the Need of Training for Indian Textile Manufacturing Sector

Authors: Shipra Sharma, Jagat Jerath

Abstract:

Human resource training is an essential element of talent management in the current era of global competitiveness and dynamic trade in the manufacturing industry. Globally, India is behind only China as the largest textile manufacturer. The major challenges faced by the Indian textile manufacturing Industry are low technology levels, growing skill gaps, unorganized structure, lower efficiencies, etc. indicating the need for constant talent up-gradation. Assessment of training needs from a strategic perspective is an essential step for the formulation of effective training. The paper established the significance of training in the Indian textile industry and to determine the training needs on various parameters as presented. 40 HR personnel/s working in the textile and apparel companies based in the industrial region of Punjab, India, were the respondents for the study. The research tool used in this case was a structured questionnaire as per five-point Likert scale. Statistical analysis through descriptive statistics and chi-square test indicated the increased need for training whenever there were technical changes in the organizations. As per the data presented in this study, most of the HR personnel/s agreed that the variables associated with organizational analysis, task analysis, and individual analysis have a statistically significant role to play in determining the need for training in an organization.

Keywords: Indian textile manufacturing industry, significance of training, training needs analysis, parameters for training needs assessment

Procedia PDF Downloads 166
27572 Prediction of the Performance of a Bar-Type Piezoelectric Vibration Actuator Depending on the Frequency Using an Equivalent Circuit Analysis

Authors: J. H. Kim, J. H. Kwon, J. S. Park, K. J. Lim

Abstract:

This paper has investigated a technique that predicts the performance of a bar-type unimorph piezoelectric vibration actuator depending on the frequency. This paper has been proposed an equivalent circuit that can be easily analyzed for the bar-type unimorph piezoelectric vibration actuator. In the dynamic analysis, rigidity and resonance frequency, which are important mechanical elements, were derived using the basic beam theory. In the equivalent circuit analysis, the displacement and bandwidth of the piezoelectric vibration actuator depending on the frequency were predicted. Also, for the reliability of the derived equations, the predicted performance depending on the shape change was compared with the result of a finite element analysis program.

Keywords: actuator, piezoelectric, performance, unimorph

Procedia PDF Downloads 464
27571 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases

Authors: Suglo Tohari Luri

Abstract:

Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.

Keywords: data, engine, intelligence, customer, neo4j, database

Procedia PDF Downloads 194
27570 Multi-Agent Railway Control System: Requirements Definitions of Multi-Agent System Using the Behavioral Patterns Analysis (BPA) Approach

Authors: Assem I. El-Ansary

Abstract:

This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent Railway Control System (MARCS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.

Keywords: analysis, multi-agent, railway control, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases

Procedia PDF Downloads 547
27569 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 78
27568 Modified Lot Quality Assurance Sampling (LQAS) Model for Quality Assessment of Malaria Parasite Microscopy and Rapid Diagnostic Tests in Kano, Nigeria

Authors: F. Sarkinfada, Dabo N. Tukur, Abbas A. Muaz, Adamu A. Yahuza

Abstract:

Appropriate Quality Assurance (QA) of parasite-based diagnosis of malaria to justify Artemisinin-based Combination Therapy (ACT) is essential for Malaria Programmes. In Low and Middle Income Countries (LMIC), resource constrain appears to be a major challenge in implementing the conventional QA system. We designed and implemented a modified LQAS model for QA of malaria parasite (MP) microscopy and RDT in a State Specialist Hospital (SSH) and a University Health Clinic (UHC) in Kano, Nigeria. The capacities of both facilities for MP microscopy and RDT were assessed before implementing a modified LQAS over a period of 3 months. Quality indicators comprising the qualities of blood film and staining, MP positivity rates, concordance rates, error rates (in terms of false positives and false negatives), sensitivity and specificity were monitored and evaluated. Seventy one percent (71%) of the basic requirements for malaria microscopy was available in both facilities, with the absence of certifies microscopists, SOPs and Quality Assurance mechanisms. A daily average of 16 to 32 blood samples were tested with a blood film staining quality of >70% recorded in both facilities. Using microscopy, the MP positivity rates were 50.46% and 19.44% in SSH and UHS respectively, while the MP positivity rates were 45.83% and 22.78% in SSH and UHS when RDT was used. Higher concordance rates of 88.90% and 93.98% were recorded in SSH and UHC respectively using microscopy, while lower rates of 74.07% and 80.58% in SSH and UHC were recorded when RDT was used. In both facilities, error rates were higher when RDT was used than with microscopy. Sensitivity and specificity were higher when microscopy was used (95% and 84% in SSH; 94% in UHC) than when RDT was used (72% and 76% in SSH; 78% and 81% in UHC). It could be feasible to implement an integrated QA model for MP microscopy and RDT using modified LQAS in Malaria Control Programmes in Low and Middle Income Countries that might have resource constrain for parasite-base diagnosis of malaria to justify ACT treatment.

Keywords: malaria, microscopy, quality assurance, RDT

Procedia PDF Downloads 226
27567 A Rare Case of Metastatic Basal Cell Carcinoma

Authors: Nitesh Kumar, Eoin Twohig, jasparl cheema, Sadiq mawji, Yousif al najjar

Abstract:

Basal cell carcinoma (BCC) is the commonest cutaneous malignancy affecting humans. Despite this, distant spread is exceptionally rare. Metastatic BCC (mBCC) is estimated to occur in 0.0028 - 0.5%. it aim to illustrate with the aid of histological slides, a case of mBCC occurring in a fit and well 67-year-old. Initial diagnosis of desmoplastic BCC was made in 2006 from a scalp biopsy with the lesion then being excised. Re-excision of local recurrence was undertaken the following year. In 2014 the patient presented with an ipsilateral level 2a mass. Fine Needle Aspiration raised the suspicion of metastatic carcinoma. The patient had excision of two nodes from the left neck alongside pharyngeal tonsillectomy and tongue base biopsies. Histologically, the nodes closely resembled the immunophenotype of the initial scalp lesion. The patient subsequently had a modified radical neck dissection, and residual mBCC was excised from the left Sternocleidomastoid muscle. In 2023 the patient developed haematuria. On further investigation bilateral lung lesions on CT were noted with subsequent biopsy confirming mBCC. Spinal and renal lesions have also been found. Histopathology showed clear resemblance of the lung metastases to both those in the neck and the primary (scalp BCC) – with no squamous differentiation seen. The time span from primary to occurrence of lung metastasis (18 years) affirms the indolent and slow growing nature of BCC.  This case fulfils Lattes and Kessler diagnostic criteria. High risk cases are described as those with advanced local presentation, primary tumour on the Head and Neck and locally recurrent lesions.

Keywords: BCC, metastasis, rare, skin cancer

Procedia PDF Downloads 58
27566 Changes in the Median Sacral Crest Associated with Sacrocaudal Fusion in the Greyhound

Authors: S. M. Ismail, H-H Yen, C. M. Murray, H. M. S. Davies

Abstract:

A recent study reported a 33% incidence of complete sacrocaudal fusion in greyhounds compared to a 3% incidence in other dogs. In the dog, the median sacral crest is formed by the fusion of sacral spinous processes. Separation of the 1st spinous process from the median crest of the sacrum in the dog has been reported as a diagnostic tool of type one lumbosacral transitional vertebra (LTV). LTV is a congenital spinal anomaly, which includes either sacralization of the caudal lumbar part or lumbarization of the most cranial sacral segment of the spine. In this study, the absence or reduction of fusion (presence of separation) between the 1st and 2ndspinous processes of the median sacral crest has been identified in association with sacrocaudal fusion in the greyhound, without any feature of LTV. In order to provide quantitative data on the absence or reduction of fusion in the median sacral crest between the 1st and 2nd sacral spinous processes, in association with sacrocaudal fusion. 204 dog sacrums free of any pathological changes (192 greyhound, 9 beagles and 3 labradors) were grouped based on the occurrence and types of fusion and the presence, absence, or reduction in the median sacral crest between the 1st and 2nd sacral spinous processes., Sacrums were described and classified as follows: F: Complete fusion (crest is present), N: Absence (fusion is absent), and R: Short crest (fusion reduced but not absent (reduction). The incidence of sacrocaudal fusion in the 204 sacrums: 57% of the sacrums were standard (3 vertebrae) and 43% were fused (4 vertebrae). Type of sacrum had a significant (p < .05) association with the absence and reduction of fusion between the 1st and 2nd sacral spinous processes of the median sacral crest. In the 108 greyhounds with standard sacrums (3 vertebrae) the percentages of F, N and R were 45% 23% and 23% respectively, while in the 84 fused (4 vertebrae) sacrums, the percentages of F, N and R were 3%, 87% and 10% respectively and these percentages were significantly different between standard (3 vertebrae) and fused (4 vertebrae) sacrums (p < .05). This indicates that absence of spinous process fusion in the median sacral crest was found in a large percentage of the greyhounds in this study and was found to be particularly prevalent in those with sacrocaudal fusion – therefore in this breed, at least, absence of sacral spinous process fusion may be unlikely to be associated with LTV.

Keywords: greyhound, median sacral crest, sacrocaudal fusion, sacral spinous process

Procedia PDF Downloads 446
27565 High-Performance Liquid Chromatographic Method with Diode Array Detection (HPLC-DAD) Analysis of Naproxen and Omeprazole Active Isomers

Authors: Marwa Ragab, Eman El-Kimary

Abstract:

Chiral separation and analysis of omeprazole and naproxen enantiomers in tablets were achieved using high-performance liquid chromatographic method with diode array detection (HPLC-DAD). Kromasil Cellucoat chiral column was used as a stationary phase for separation and the eluting solvent consisted of hexane, isopropanol and trifluoroacetic acid in a ratio of: 90, 9.9 and 0.1, respectively. The chromatographic system was suitable for the enantiomeric separation and analysis of active isomers of the drugs. Resolution values of 2.17 and 3.84 were obtained after optimization of the chromatographic conditions for omeprazole and naproxen isomers, respectively. The determination of S-isomers of each drug in their dosage form was fully validated.

Keywords: chiral analysis, esomeprazole, S-Naproxen, HPLC-DAD

Procedia PDF Downloads 302
27564 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy

Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos

Abstract:

Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.

Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree

Procedia PDF Downloads 156
27563 Propagation of DEM Varying Accuracy into Terrain-Based Analysis

Authors: Wassim Katerji, Mercedes Farjas, Carmen Morillo

Abstract:

Terrain-Based Analysis results in derived products from an input DEM and these products are needed to perform various analyses. To efficiently use these products in decision-making, their accuracies must be estimated systematically. This paper proposes a procedure to assess the accuracy of these derived products, by calculating the accuracy of the slope dataset and its significance, taking as an input the accuracy of the DEM. Based on the output of previously published research on modeling the relative accuracy of a DEM, specifically ASTER and SRTM DEMs with Lebanon coverage as the area of study, analysis have showed that ASTER has a low significance in the majority of the area where only 2% of the modeled terrain has 50% or more significance. On the other hand, SRTM showed a better significance, where 37% of the modeled terrain has 50% or more significance. Statistical analysis deduced that the accuracy of the slope dataset, calculated on a cell-by-cell basis, is highly correlated to the accuracy of the input DEM. However, this correlation becomes lower between the slope accuracy and the slope significance, whereas it becomes much higher between the modeled slope and the slope significance.

Keywords: terrain-based analysis, slope, accuracy assessment, Digital Elevation Model (DEM)

Procedia PDF Downloads 447
27562 Evaluating the Validity of the Combined Bedside Test in Diagnosing Juvenile Myasthenia Gravis (2012-2024)

Authors: Pechpailin Kortnoi, Tanitnun Paprad

Abstract:

Background: Myasthenia gravis (MG) is an autoimmune disorder characterized by impaired neuromuscular transmission due to antibodies against nicotinic receptors, leading to muscle weakness, ptosis, and respiratory issues. The incidence of MG has risen globally, emphasizing the need for effective diagnostics. Objective: This study evaluates the validity of a combined bedside test (the ice pack test and fatigability test) for diagnosing juvenile myasthenia gravis (JMG) in pediatric patients with ptosis. Methods: This cross-sectional study, conducted from January 2012 to May 2024 at King Chulalongkorn Memorial Hospital, Thailand, included pediatric patients (1 month to 18 years) with ptosis undergoing ice pack and fatigability tests. Data included demographics, clinical findings, and test results. Diagnostic efficacy was assessed using sensitivity, specificity, accuracy, PPV, NPV, Fagan Nomogram, Kappa Statistics, and McNemar’s Chi-Square. Results: Of 43 identified patients, 32 were included, with 47% male and a mean age of 7 years. The combined bedside test had high sensitivity (92.8%) and accuracy (87.5%) but moderate specificity (50%). It significantly outperformed the ice pack test (P = 0.0005), which showed low sensitivity (42.8%) and accuracy (43.8%). The fatigability test had 82% sensitivity and 92% PPV. Confirmatory tests (AChR-Ab, MuSK-Ab, neostigmine, repetitive nerve stimulation) supported most diagnoses. Conclusions: The combined bedside test, with high sensitivity (92.8%) and accuracy (87.5%), is an effective screening tool for juvenile myasthenia gravis, outperforming the ice pack test. Integrating it into clinical practice may improve diagnosis and enable timely treatment. The fatigability test (82% sensitivity) is also useful as an adjunct screening tool.

Keywords: myasthenia gravis, the fatigability test, the ice pack test, the combined bedside test

Procedia PDF Downloads 12
27561 Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic

Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova

Abstract:

Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.

Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification

Procedia PDF Downloads 110
27560 Psychological Alarm among Individuals Suffering from Irritable Bowel Syndrome

Authors: Selim A., Albasher N., Bakrmom G., Alanzi S.

Abstract:

Irritable bowel syndrome (IBS) is a chronic functional bowel disorder characterized by abdominal discomfort or pain and associated with alteration in frequency and/or form of bowel habit among other symptoms. This diagnosis is associated with increased levels of psychological distress, maladaptive coping, genetic risk factors, abnormal small and colonic intestine transit, change in stool frequency or form and abdominal discomfort or pain. Aim: The aim of the study was to assess psychological alarm among individuals suffering from Irritable Bowel Syndrome (IBS). Methods: A cross-sectional correlational research design was used to conduct the current study. A convenience sample of 504 participants was included in the present study. Data were collected using a self-report questionnaire. The questionnaire included socio-demographic data, ROME III to identify Irritable Bowel Syndrome (IBS) and Psychological Alarm Questionnaire. Results: Out of 504 participants who reported abdominal discomfort, 297 (58.9 %) participants met the diagnostic criteria of IBS. The mean age of the IBS participants was 30.16 years, females composed 75.1% of the IBS participants, and 55.2% did not seek medical help. Psychological alarms such as feeling anxious, feeling depressed, having suicidal ideations, bodily pain, having impaired functioning due to pain and feeling unable to cope with pain were significantly high among IBS individuals when compared to individuals not suffering from IBS. Psychological alarms such as feeling anxious, feeling depressed, having suicidal ideations, bodily pain, having impaired functioning due to pain and feeling unable to cope with pain were significantly high among IBS individuals compared to individuals not suffering from IBS. Conclusion: IBS is highly associated with significant psychological alarms including depression, anxiety and suicidal ideas.

Keywords: abdominal pain , irritable bowel syndrome, distress, psychological alarms

Procedia PDF Downloads 190
27559 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 408
27558 Gait Analysis in Total Knee Arthroplasty

Authors: Neeraj Vij, Christian Leber, Kenneth Schmidt

Abstract:

Introduction: Total knee arthroplasty is a common procedure. It is well known that the biomechanics of the knee do not fully return to their normal state. Motion analysis has been used to study the biomechanics of the knee after total knee arthroplasty. The purpose of this scoping review is to summarize the current use of gait analysis in total knee arthroplasty and to identify the preoperative motion analysis parameters for which a systematic review aimed at determining the reliability and validity may be warranted. Materials and Methods: This IRB-exempt scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist strictly. Five search engines were searched for a total of 279 articles. Articles underwent a title and abstract screening process followed by full-text screening. Included articles were placed in the following sections: the role of gait analysis as a research tool for operative decisions, other research applications for motion analysis in total knee arthroplasty, gait analysis as a tool in predicting radiologic outcomes, gait analysis as a tool in predicting clinical outcomes. Results: Eleven articles studied gait analysis as a research tool in studying operative decisions. Motion analysis is currently used to study surgical approaches, surgical techniques, and implant choice. Five articles studied other research applications for motion analysis in total knee arthroplasty. Other research applications for motion analysis currently include studying the role of the unicompartmental knee arthroplasty and novel physical therapy protocols aimed at optimizing post-operative care. Two articles studied motion analysis as a tool for predicting radiographic outcomes. Preoperative gait analysis has identified parameters than can predict postoperative tibial component migration. 15 articles studied motion analysis in conjunction with clinical scores. Conclusions: There is a broad range of applications within the research domain of total knee arthroplasty. The potential application is likely larger. However, the current literature is limited by vague definitions of ‘gait analysis’ or ‘motion analysis’ and a limited number of articles with preoperative and postoperative functional and clinical measures. Knee adduction moment, knee adduction impulse, total knee range of motion, varus angle, cadence, stride length, and velocity have the potential for integration into composite clinical scores. A systematic review aimed at determining the validity, reliability, sensitivities, and specificities of these variables is warranted.

Keywords: motion analysis, joint replacement, patient-reported outcomes, knee surgery

Procedia PDF Downloads 94
27557 Nurturing Scientific Minds: Enhancing Scientific Thinking in Children (Ages 5-9) through Experiential Learning in Kids Science Labs (STEM)

Authors: Aliya K. Salahova

Abstract:

Scientific thinking, characterized by purposeful knowledge-seeking and the harmonization of theory and facts, holds a crucial role in preparing young minds for an increasingly complex and technologically advanced world. This abstract presents a research study aimed at fostering scientific thinking in early childhood, focusing on children aged 5 to 9 years, through experiential learning in Kids Science Labs (STEM). The study utilized a longitudinal exploration design, spanning 240 weeks from September 2018 to April 2023, to evaluate the effectiveness of the Kids Science Labs program in developing scientific thinking skills. Participants in the research comprised 72 children drawn from local schools and community organizations. Through a formative psychology-pedagogical experiment, the experimental group engaged in weekly STEM activities carefully designed to stimulate scientific thinking, while the control group participated in daily art classes for comparison. To assess the scientific thinking abilities of the participants, a registration table with evaluation criteria was developed. This table included indicators such as depth of questioning, resource utilization in research, logical reasoning in hypotheses, procedural accuracy in experiments, and reflection on research processes. The data analysis revealed dynamic fluctuations in the number of children at different levels of scientific thinking proficiency. While the development was not uniform across all participants, a main leading factor emerged, indicating that the Kids Science Labs program and formative experiment exerted a positive impact on enhancing scientific thinking skills in children within this age range. The study's findings support the hypothesis that systematic implementation of STEM activities effectively promotes and nurtures scientific thinking in children aged 5-9 years. Enriching education with a specially planned STEM program, tailoring scientific activities to children's psychological development, and implementing well-planned diagnostic and corrective measures emerged as essential pedagogical conditions for enhancing scientific thinking abilities in this age group. The results highlight the significant and positive impact of the systematic-activity approach in developing scientific thinking, leading to notable progress and growth in children's scientific thinking abilities over time. These findings have promising implications for educators and researchers, emphasizing the importance of incorporating STEM activities into educational curricula to foster scientific thinking from an early age. This study contributes valuable insights to the field of science education and underscores the potential of STEM-based interventions in shaping the future scientific minds of young children.

Keywords: Scientific thinking, education, STEM, intervention, Psychology, Pedagogy, collaborative learning, longitudinal study

Procedia PDF Downloads 62