Search results for: artificial immune system
18373 The Importance of Artificial Intelligence in Various Healthcare Applications
Authors: Joshna Rani S., Ahmadi Banu
Abstract:
Artificial Intelligence (AI) has a significant task to carry out in the medical care contributions of things to come. As AI, it is the essential capacity behind the advancement of accuracy medication, generally consented to be a painfully required development in care. Albeit early endeavors at giving analysis and treatment proposals have demonstrated testing, we anticipate that AI will at last dominate that area too. Given the quick propels in AI for imaging examination, it appears to be likely that most radiology, what's more, pathology pictures will be inspected eventually by a machine. Discourse and text acknowledgment are now utilized for assignments like patient correspondence and catch of clinical notes, and their utilization will increment. The best test to AI in these medical services areas isn't regardless of whether the innovations will be sufficiently skilled to be valuable, but instead guaranteeing their appropriation in day by day clinical practice. For far reaching selection to happen, AI frameworks should be affirmed by controllers, coordinated with EHR frameworks, normalized to an adequate degree that comparative items work likewise, instructed to clinicians, paid for by open or private payer associations, and refreshed over the long haul in the field. These difficulties will, at last, be survived, yet they will take any longer to do as such than it will take for the actual innovations to develop. Therefore, we hope to see restricted utilization of AI in clinical practice inside 5 years and more broad use inside 10 years. It likewise appears to be progressively evident that AI frameworks won't supplant human clinicians for a huge scope, yet rather will increase their endeavors to really focus on patients. Over the long haul, human clinicians may advance toward errands and work plans that draw on remarkably human abilities like sympathy, influence, and higher perspective mix. Maybe the lone medical services suppliers who will chance their professions over the long run might be the individuals who will not work close by AIKeywords: artificial intellogence, health care, breast cancer, AI applications
Procedia PDF Downloads 18118372 Entropy in a Field of Emergence in an Aspect of Linguo-Culture
Authors: Nurvadi Albekov
Abstract:
Communicative situation is a basis, which designates potential models of ‘constructed forms’, a motivated basis of a text, for a text can be assumed as a product of the communicative situation. It is within the field of emergence the models of text, that can be potentially prognosticated in a certain communicative situation, are designated. Every text can be assumed as conceptual system structured on the base of certain communicative situation. However in the process of ‘structuring’ of a certain model of ‘conceptual system’ consciousness of a recipient is able act only within the border of the field of emergence for going out of this border indicates misunderstanding of the communicative situation. On the base of communicative situation we can witness the increment of meaning where the synergizing of the informative model of communication, formed by using of the invariant units of a language system, is a result of verbalization of the communicative situation. The potential of the models of a text, prognosticated within the field of emergence, also depends on the communicative situation. The conception ‘the field of emergence’ is interpreted as a unit of the language system, having poly-directed universal structure, implying the presence of the core, the center and the periphery, including different levels of means of a functioning system of language, both in terms of linguistic resources, and in terms of extra linguistic factors interaction of which results increment of a text. The conception ‘field of emergence’ is considered as the most promising in the analysis of texts: oral, written, printed and electronic. As a unit of the language system field of emergence has several properties that predict its use during the study of a text in different levels. This work is an attempt analysis of entropy in a text in the aspect of lingua-cultural code, prognosticated within the model of the field of emergence. The article describes the problem of entropy in the field of emergence, caused by influence of the extra-linguistic factors. The increasing of entropy is caused not only by the fact of intrusion of the language resources but by influence of the alien culture in a whole, and by appearance of non-typical for this very culture symbols in the field of emergence. The borrowing of alien lingua-cultural symbols into the lingua-culture of the author is a reason of increasing the entropy when constructing a text both in meaning and in structuring level. It is nothing but artificial formatting of lexical units that violate stylistic unity of a phrase. It is marked that one of the important characteristics descending the entropy in the field of emergence is a typical similarity of lexical and semantic resources of the different lingua-cultures in aspects of extra linguistic factors.Keywords: communicative situation, field of emergence, lingua-culture, entropy
Procedia PDF Downloads 36218371 A Gastro-Intestinal Model for a Rational Design of in vitro Systems to Study Drugs Bioavailability
Authors: Pompa Marcello, Mauro Capocelli, Vincenzo Piemonte
Abstract:
This work focuses on a mathematical model able to describe the gastro-intestinal physiology and providing a rational tool for the design of an artificial gastro-intestinal system. This latter is mainly devoted to analyse the absorption and bioavailability of drugs and nutrients through in vitro tests in order to overcome (or, at least, to partially replace) in vivo trials. The provided model realizes a conjunction ring (with extended prediction capability) between in vivo tests and mechanical-laboratory models emulating the human body. On this basis, no empirical equations controlling the gastric emptying are implemented in this model as frequent in the cited literature and all the sub-unit and the related system of equations are physiologically based. More in detail, the model structure consists of six compartments (stomach, duodenum, jejunum, ileum, colon and blood) interconnected through pipes and valves. Paracetamol, Ketoprofen, Irbesartan and Ketoconazole are considered and analysed in this work as reference drugs. The mathematical model has been validated against in vivo literature data. Results obtained show a very good model reliability and highlight the possibility to realize tailored simulations for different couples patient-drug, including food adsorption dynamics.Keywords: gastro-intestinal model, drugs bioavailability, paracetamol, ketoprofen
Procedia PDF Downloads 17018370 Towards A New Maturity Model for Information System
Authors: Ossama Matrane
Abstract:
Information System has become a strategic lever for enterprises. It contributes effectively to align business processes on strategies of enterprises. It is regarded as an increase in productivity and effectiveness. So, many organizations are currently involved in implementing sustainable Information System. And, a large number of studies have been conducted the last decade in order to define the success factors of information system. Thus, many studies on maturity model have been carried out. Some of this study is referred to the maturity model of Information System. In this article, we report on development of maturity models specifically designed for information system. This model is built based on three components derived from Maturity Model for Information Security Management, OPM3 for Project Management Maturity Model and processes of COBIT for IT governance. Thus, our proposed model defines three maturity stages for corporate a strong Information System to support objectives of organizations. It provides a very practical structure with which to assess and improve Information System Implementation.Keywords: information system, maturity models, information security management, OPM3, IT governance
Procedia PDF Downloads 44718369 Breeding for Hygienic Behavior in Honey Bees
Authors: Michael Eickermann, Juergen Junk
Abstract:
The Western honey (Apis mellifera) is threatened by a number of parasites, especially the devastating Varroa mite (Varroa destructor) is responsible for a high level of mortality over winter, e.g., in Europe and USA. While the use of synthetic pesticides or organic acids has been preferred so far to control this parasite, breeding strategies for less susceptible honey bees are in early stages. Hygienic behavior can be an important tool for controlling Varroa destructor. Worker bees with a high level of this behavior are able to detect infested brood in the cells under the wax lid during pupation and remove them out of the hive. The underlying processes of this behavior are only partly investigated, but it is for sure that hygienic behavior is heritable and therefore, can be integrated into commercial breeding lines. In a first step, breeding lines with a high level of phenotypic hygienic behavior have been identified by using a bioassay for accurate assessment of this trait in a long-term national breeding program in Luxembourg since 2015. Based on the artificial infestation of nucleus colonies with 150 phoretic Varroa destructor mites, the level of phenotypic hygienic behavior was detected by counting the number of mites in all stages, twelve days after infestation. A nucleus with a high level of hygienic behavior was overwintered and used for breeding activities in the following years. Artificial insemination was used to combine different breeding lines. Buckfast lines, as well as Carnica lines, were used. While Carnica lines offered only a low increase of hygienic behavior up to maximum 62.5%, Buckfast lines performed much better with mean levels of more than 87.5%. Some mating ends up with a level of 100%. But even with a level of 82.5% Varroa mites are not able to reproduce in the colony anymore. In a final step, a nucleus with a high level of hygienic behavior were build up to full colonies and located at two places in Luxembourg to build up a drone congregation area. Local beekeepers can bring their nucleus to this location for mating the queens with drones offering a high level of hygienic behavior.Keywords: agiculture, artificial insemination, honey bee, varroa destructor
Procedia PDF Downloads 13618368 Optimal Injected Current Control for Shunt Active Power Filter Using Artificial Intelligence
Authors: Brahim Berbaoui
Abstract:
In this paper, a new particle swarm optimization (PSO) based method is proposed for the implantation of optimal harmonic power flow in power systems. In this algorithm approach, proportional integral controller for reference compensating currents of active power filter is performed in order to minimize the total harmonic distortion (THD). The simulation results show that the new control method using PSO approach is not only easy to be implanted, but also very effective in reducing the unwanted harmonics and compensating reactive power. The studies carried out have been accomplished using the MATLAB Simulink Power System Toolbox.Keywords: shunt active power filter, power quality, current control, proportional integral controller, particle swarm optimization
Procedia PDF Downloads 61618367 Cultivating Responsible AI: For Cultural Heritage Preservation in India
Authors: Varsha Rainson
Abstract:
Artificial intelligence (AI) has great potential and can be used as a powerful tool of application in various domains and sectors. But with the application of AI, there comes a wide spectrum of concerns around bias, accountability, transparency, and privacy. Hence, there is a need for responsible AI, which can uphold ethical and accountable practices to ensure that things are transparent and fair. The paper is a combination of AI and cultural heritage preservation, with a greater focus on India because of the rich cultural legacy that it holds. India’s cultural heritage in itself contributes to its identity and the economy. In this paper, along with discussing the impact culture holds on the Indian economy, we will discuss the threats that the cultural heritage is exposed to due to pollution, climate change and urbanization. Furthermore, the paper reviews some of the exciting applications of AI in cultural heritage preservation, such as 3-D scanning, photogrammetry, and other techniques which have led to the reconstruction of cultural artifacts and sites. The paper eventually moves into the potential risks and challenges that AI poses in cultural heritage preservation. These include ethical, legal, and social issues which are to be addressed by organizations and government authorities. Overall, the paper strongly argues the need for responsible AI and the important role it can play in preserving India’s cultural heritage while holding importance to value and diversity.Keywords: responsible AI, cultural heritage, artificial intelligence, biases, transparency
Procedia PDF Downloads 18718366 Review on Rainfall Prediction Using Machine Learning Technique
Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya
Abstract:
Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.Keywords: ANN, CNN, supervised learning, machine learning, deep learning
Procedia PDF Downloads 20218365 The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment
Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane
Abstract:
Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence is invaluable in identifying crime. It has been observed that an algorithm based on artificial intelligence (AI) is highly effective in detecting risks, preventing criminal activity, and forecasting illegal activity. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. Researchers and other authorities have used the available data as evidence in court to convict a person. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISA). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The MADIK is implemented using the Java Agent Development Framework and implemented using Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISA and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5 percent of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.Keywords: artificial intelligence, computer science, criminal investigation, digital forensics
Procedia PDF Downloads 21218364 Innovative Technologies for Aeration and Feeding of Fish in Aquaculture with Minimal Impact on the Environment
Authors: Vasile Caunii, Andreea D. Serban, Mihaela Ivancia
Abstract:
The paper presents a new approach in terms of the circular economy of technologies for feeding and aeration of accumulations and water basins for fish farming and aquaculture. Because fish is and will be one of the main foods on the planet, the use of bio-eco-technologies is a priority for all producers. The technologies proposed in the paper want to reduce by a substantial percentage the costs of operation of ponds and water accumulation, using non-polluting technologies with minimal impact on the environment. The paper proposes two innovative, intelligent systems, fully automated that use a common platform, completely eco-friendly. One system is intended to aerate the water of the fish pond, and the second is intended to feed the fish by dispersing an optimal amount of fodder, depending on population size, age and habits. Both systems use a floating platform, regenerative energy sources, are equipped with intelligent and innovative systems, and in addition to fully automated operation, significantly reduce the costs of aerating water accumulations (natural or artificial) and feeding fish. The intelligent system used for feeding, in addition, to reduce operating costs, optimizes the amount of food, thus preventing water pollution and the development of bacteria, microorganisms. The advantages of the systems are: increasing the yield of fish production, these are green installations, with zero pollutant emissions, can be arranged anywhere on the water surface, depending on the user's needs, can operate autonomously or remotely controlled, if there is a component failure, the system provides the operator with accurate data on the issue, significantly reducing maintenance costs, transmit data about the water physical and chemical parameters.Keywords: bio-eco-technologies, economy, environment, fish
Procedia PDF Downloads 15018363 Neuroprotective Effect of Germinated Dolichos lablab on 6-Hydroxy Dopamine (6-OHDA) Induced Toxicity in SH-SY5Y Neuroblastoma Cell
Authors: Taek Hwan Lee, Moon Ho Do, Lalita Subedi, Young Un Park, Sun Yeou Kim
Abstract:
Natural and artificial toxic substances namely neurotoxins induce the bitter effect in the nervous system termed as neurotoxicity. It can modulate the normal functioning of the nervous system either hyperactivate it or damage homeostasis of neuronal system. Neurotoxins induced toxicity ultimately kills the neuron. The present study investigated the neuroprotective effects of germinated Dolichos lablab on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity using SH-SY5Y neuroblastoma cells. Germination is a process of plant growth from a seed. Sprouting of a seedling from a seed induced many molecular changes in the seed in order to prepare it for further growth. Because of these molecular and chemical changes, the neuroprotective effect of Dolichos lablab is higher in the germinated form than in the normal condition. SH-SY5Y cells were treated with Dolichos lablab extract (50, 100 g/ml) followed by 6-OHDA (25M) induced toxicity. Cell Viability was measured to check the cell survival against 6-OHDA induced toxicity using MTT assay. Dolichos lablab showed a neuroprotective effect against 6-OHDA induced neuronal cell death in neuroblastoma cell at a higher concentration of 100g/ml however the effect is much better even at the lower concentration after germination 50g/ml. Cell survival was increased dramatically after 15 h of germination and increased with time of germination in concentration dependent manner. Trigonelline as a representative compound was validated in germinated Dolichos lablab by HPLC analysis that might enhance the neuroprotective effect of Dolichos lablab. This result suggests that Dolichos lablab possess neuroprotective effect in neuroblastoma cells against 6-OHDA however its activity was more potent in the germinated form.Keywords: dolichos lablab, germination, neuroprotection, trigonelline
Procedia PDF Downloads 32318362 A Wireless Feedback Control System as a Base of Bio-Inspired Structure System to Mitigate Vibration in Structures
Authors: Gwanghee Heo, Geonhyeok Bang, Chunggil Kim, Chinok Lee
Abstract:
This paper attempts to develop a wireless feedback control system as a primary step eventually toward a bio-inspired structure system where inanimate structure behaves like a life form autonomously. It is a standalone wireless control system which is supposed to measure externally caused structural responses, analyze structural state from acquired data, and take its own action on the basis of the analysis with an embedded logic. For an experimental examination of its effectiveness, we applied it on a model of two-span bridge and performed a wireless control test. Experimental tests have been conducted for comparison on both the wireless and the wired system under the conditions of Un-control, Passive-off, Passive-on, and Lyapunov control algorithm. By proving the congruence of the test result of the wireless feedback control system with the wired control system, its control performance was proven to be effective. Besides, it was found to be economical in energy consumption and also autonomous by means of a command algorithm embedded into it, which proves its basic capacity as a bio-inspired system.Keywords: structural vibration control, wireless system, MR damper, feedback control, embedded system
Procedia PDF Downloads 21118361 Neural Network Approach to Classifying Truck Traffic
Authors: Ren Moses
Abstract:
The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate.Keywords: artificial neural networks, vehicle classification, traffic flow, traffic analysis, and highway opera-tions
Procedia PDF Downloads 31118360 KCBA, A Method for Feature Extraction of Colonoscopy Images
Authors: Vahid Bayrami Rad
Abstract:
In recent years, the use of artificial intelligence techniques, tools, and methods in processing medical images and health-related applications has been highlighted and a lot of research has been done in this regard. For example, colonoscopy and diagnosis of colon lesions are some cases in which the process of diagnosis of lesions can be improved by using image processing and artificial intelligence algorithms, which help doctors a lot. Due to the lack of accurate measurements and the variety of injuries in colonoscopy images, the process of diagnosing the type of lesions is a little difficult even for expert doctors. Therefore, by using different software and image processing, doctors can be helped to increase the accuracy of their observations and ultimately improve their diagnosis. Also, by using automatic methods, the process of diagnosing the type of disease can be improved. Therefore, in this paper, a deep learning framework called KCBA is proposed to classify colonoscopy lesions which are composed of several methods such as K-means clustering, a bag of features and deep auto-encoder. Finally, according to the experimental results, the proposed method's performance in classifying colonoscopy images is depicted considering the accuracy criterion.Keywords: colorectal cancer, colonoscopy, region of interest, narrow band imaging, texture analysis, bag of feature
Procedia PDF Downloads 5718359 An Analysis and Design of Mobile Payment System Based on NFC Technology
Authors: Shafiq ur Rehman, Zubair Ahmed Shaikh
Abstract:
This research provides the comparative study of different mobile payment system and proposes an efficient solution of mobile payment system. The research involves discovering how the mobile payment methods can be used and implemented keeping user and system interaction under consideration. The implementation of Nielsen’s heuristic and universal design principles enhanced the user’s interaction design and made the system more appropriate, understandable and visible to the end user. The design of application is greatly affected by the user driven factors. These factors help in the efficiency of the application usage.Keywords: mobile payment system, m-commerce, usability, near field communication
Procedia PDF Downloads 45318358 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10
Procedia PDF Downloads 23218357 Trends, Status, and Future Directions of Artificial Intelligence in Human Resources Disciplines: A Bibliometric Analysis
Authors: Gertrude I. Hewapathirana, Loi A. Nguyen, Mohammed M. Mostafa
Abstract:
Artificial intelligence (AI) technologies and tools are swiftly integrating into many functions of all organizations as a competitive drive to enhance innovations, productivity, efficiency, faster and precise decision making to keep up with rapid changes in the global business arena. Despite increasing research on AI technologies in production, manufacturing, and information management, AI in human resource disciplines is still lagging. Though a few research studies on HR informatics, recruitment, and HRM in general, how to integrate AI in other HR functional disciplines (e.g., compensation, training, mentoring and coaching, employee motivation) is rarely researched. Many inconsistencies of research hinder developing up-to-date knowledge on AI in HR disciplines. Therefore, exploring eight research questions, using bibliometric network analysis combined with a meta-analysis of published research literature. The authors attempt to generate knowledge on the role of AI in improving the efficiency of HR functional disciplines. To advance the knowledge for the benefit of researchers, academics, policymakers, and practitioners, the study highlights the types of AI innovations and outcomes, trends, gaps, themes and topics, fast-moving disciplines, key players, and future directions.AI in HR informatics in high tech firms is the dominant theme in many research publications. While there is increasing attention from researchers and practitioners, there are many gaps between the promise, potential, and real AI applications in HR disciplines. A higher knowledge gap raised many unanswered questions regarding legal, ethical, and morale aspects of AI in HR disciplines as well as the potential contributions of AI in HR disciplines that may guide future research directions. Though the study provides the most current knowledge, it is limited to peer-reviewed empirical, theoretical, and conceptual research publications stored in the WoS database. The implications for theory, practice, and future research are discussed.Keywords: artificial intelligence, human resources, bibliometric analysis, research directions
Procedia PDF Downloads 9718356 Development of a Hamster Knowledge System Based on Android Application
Authors: Satien Janpla, Thanawan Boonpuck, Pattarapan Roonrakwit
Abstract:
In this paper, we present a hamster knowledge system based on android application. The objective of this system is to advice user to upkeep and feed hamsters based on mobile application. We describe the design approaches and functional components of this system. The system was developed based on knowledge based of hamster experts. The results were divided by the research purposes into 2 parts: developing the mobile application for advice users and testing and evaluating the system. Black box technique was used to evaluate application performances and questionnaires were applied to measure user satisfaction with system usability by specialists and users.Keywords: hamster knowledge, Android application, black box, questionnaires
Procedia PDF Downloads 34118355 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.Keywords: multiclass classification, convolution neural network, OpenCV
Procedia PDF Downloads 17618354 An Early Attempt of Artificial Intelligence-Assisted Language Oral Practice and Assessment
Authors: Paul Lam, Kevin Wong, Chi Him Chan
Abstract:
Constant practicing and accurate, immediate feedback are the keys to improving students’ speaking skills. However, traditional oral examination often fails to provide such opportunities to students. The traditional, face-to-face oral assessment is often time consuming – attending the oral needs of one student often leads to the negligence of others. Hence, teachers can only provide limited opportunities and feedback to students. Moreover, students’ incentive to practice is also reduced by their anxiety and shyness in speaking the new language. A mobile app was developed to use artificial intelligence (AI) to provide immediate feedback to students’ speaking performance as an attempt to solve the above-mentioned problems. Firstly, it was thought that online exercises would greatly increase the learning opportunities of students as they can now practice more without the needs of teachers’ presence. Secondly, the automatic feedback provided by the AI would enhance students’ motivation to practice as there is an instant evaluation of their performance. Lastly, students should feel less anxious and shy compared to directly practicing oral in front of teachers. Technically, the program made use of speech-to-text functions to generate feedback to students. To be specific, the software analyzes students’ oral input through certain speech-to-text AI engine and then cleans up the results further to the point that can be compared with the targeted text. The mobile app has invited English teachers for the pilot use and asked for their feedback. Preliminary trials indicated that the approach has limitations. Many of the users’ pronunciation were automatically corrected by the speech recognition function as wise guessing is already integrated into many of such systems. Nevertheless, teachers have confidence that the app can be further improved for accuracy. It has the potential to significantly improve oral drilling by giving students more chances to practice. Moreover, they believe that the success of this mobile app confirms the potential to extend the AI-assisted assessment to other language skills, such as writing, reading, and listening.Keywords: artificial Intelligence, mobile learning, oral assessment, oral practice, speech-to-text function
Procedia PDF Downloads 10318353 Standardized Black Ginseng Extract Improving a Suppressed Immunomodulatory Effect Induced by Heat Stress
Authors: Byung Wook Yang, Jong Dae Park, Wang Soo Shin, Ji-Hyeon Song, Seo-Yun Choi, Boo-Yong Lee, Young Tae Hahm
Abstract:
Korean ginseng (Panax ginseng C. A. Meyer) is frequently taken orally as a traditional herbal medicine with ginsenosides as the main pharmacological component in Asian countries, and its use is increasing worldwide. Recently, the increase in global temperature has been reported to cause various kinds of biological disorders induced by heat stress in human. The standardized black ginseng extract (SBGE; KGR-BG1) was developed in our biological screening experiment on the thermo-regulation, whose chemical characteristics were evaluated as ginsenoside Rg1, Rb1, Rg3(S), as well as Re, Rf, Rg2(S), Rh1(S), Rh2(S), and Rg5+Rk1. Heat stress responses such as body weight, food intake, water consumption have been measured when treated with Standardized Black Ginseng Extract (SBGE) in the animal experiment and also, biomarkers. SBGE treated group has been found to inhibit a decrease in body weight, a decrease in food intake and an increase in the water consumption when compared with non-treated group against environmental heat stress. These results suggest that SBGE might have a protective effect against environmental heat stress. And also, the several factors of stress response on the immune system need to be done for further studies and its evaluation is in progress.Keywords: ginseng, ginsenoside, standardization, heat stress, immunomodulatory effect
Procedia PDF Downloads 29718352 Research Repository System (RRS) for Academics
Authors: Ajayi Olusola Olajide, O. Ojeyinka Taiwo, Adeolara Oluwawemimo Janet, Isheyemi Olufemi Gabriel, Lawal Muideen Adekunle
Abstract:
In an academic world where research work is the tool for promotion and elevation to higher cadres, the quest for a system that secure researchers’ work, monitor as well as alert researchers of pending academic research work, cannot be over-emphasized. This study describes how a research repository system for academics is designed. The invention further relates to a system for archiving any paperwork and journal that comprises of a database for storing all researches. It relates to a method for users to communicate through messages which will also allow reviewing all the messages. To create this research repository system, PHP and MySQL were married together for the system implementation.Keywords: research, repository, academic, archiving, secure, system, implementation
Procedia PDF Downloads 58818351 The impact of Breast Cancer Polymorphism on Breast Cancer
Authors: Roudabeh Vakil Monfared, Farhad Mashayekhi
Abstract:
Breast cancer is the most common malignancy type among women with about 1 million new cases each year. The immune system plays an important role in the breast cancer development. OX40L (also known as TNFSF4), a membrane protein, which is a member of the tumor necrosis factor super family binds to its receptor OX40 and this co-stimulation has a crucial role in T-cell proliferation, survival and cytokine release. Due to the importance of the T-cells in anti-tumor activities of OX40L we studied the association of rs3850641 (T→C) polymorphism of OX40L gene with breast cancer. The study included 123 women with breast cancer and 126 healthy volunteers with no signs of cancer. Genomic DNA was extracted from blood leucocytes. Genotype and allele frequencies were determined in patients and control cases with the method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and the analysis was performed by Med Calc. The prevalence of genotype frequencies of TT, CT and CC were 60.9%, 30.08% and 8.9 % in patients with breast cancer and 74.6 %, 18.25 % and 7.14 % in healthy volunteers while the T and C allelic frequency was 76.01% and 23.98 % in patients and 83.73% and 16.26% in healthy controls. Respectively Statistical analysis has shown no significant difference from the comparison of either genotype (P=0.06). According to these results, the rs3850641 SNP has no association with the susceptibility of breast cancer in a population in northern Iran. However, further studies in larger populations including other genetic and environmental factors are required to achieve conclusion.Keywords: OX40L, gene, polymorphism, breast cancer
Procedia PDF Downloads 53518350 Need for Policy and Legal Framework for Caste Based Atrocities as Violation of International Human Rights in View of Indian Diaspora
Authors: Vijayalaxmi Khopade
Abstract:
The Prima facie caste system is intrinsic to Indian society. It is an ancient system of intense social stratification based upon birth and enjoying religious sanction. The uppermost strata and privileges are ascribed and enjoyed by brahmins (priestly class), while the lowest strata are occupied by Dalits who are not ascribed with any privileges. The caste system is inherently hierarchical, patriarchal, and systematic and thrives solely on exploitation justified through means of the Brahminical system of hegemony based singularly on birth. The caste system has extended its tentacles to other religions like Christianity, Buddhism, Jainism, and Islam in South Asia. Term Dalit is colloquially used to categorize persons belonging to lower strata in the caste hierarchy. However, this category is heterogenous and highly stratified, following practices like untouchability and exclusion amongst themselves. The modern Indian legal system acknowledges the existence of Caste and its perils. Therefore, by virtue of the Indian Constitution, provisions for affirmative action for the protection and development of Dalits are made. Courts in India have liberally interpreted laws to benefit Dalits. However, the modern system of governance is not immune from Caste based biases. These biases are reflected in the implementation of governance, including the dispensation of justice. The economic reforms of the 1990s gave a huge boost to the Indian diaspora. Persons of Indian origin are now seen making great strides in almost every sector and enjoying positions of power globally. As one peels off the layer of ethnic Indian origin, a deep seated layer of Caste and Caste based patriarchy is clearly visible. Indian diaspora enjoying positions of power essentially belongs to upper castes and carry Caste based biases with them. These castes have long enjoyed the benefits of education; therefore, they were the first ones to benefit from LPG (Liberalization, Privatization, Globalization) model adopted in the 1990s. Dalits, however, had little formal education until recently. The western legal system, to the best of our knowledge, does not recognize Caste and, therefore, cannot afford protection for Dalits, wherein discrimination and exploitation take place solely on the basis of Caste. Therefore, Dalits are left with no legal remedy outside domestic jurisdiction. Countries like the UK have made an attempt to include Caste in their Equality Bill 2010. This has met with tough resistance from Upper caste Hindus who shy away from recognizing their caste privileges and, therefore, the existence of Caste. In this paper, an attempt for comparative analysis is made between various legal protections accorded to Dalits in India vis-à-vis international human rights as protected by the United Nations under its declaration of Universal Human rights. An attempt has been made to mark a distinction between race and Caste and to establish a position of women in Caste based hierarchy. The paper also makes an argument for the inclusion of atrocities committed against Dalits as a violation of international human rights, their protection by the United Nations, and the trial of their violations by International Courts. The paper puts into perspective the need for an external agency like the United Nations and International courts to interfere in rights guaranteed by the Indian Constitution, even with the existence of a modern legal system in a sovereign democratic country.Keywords: atrocity, caste, diaspora, legal framework
Procedia PDF Downloads 21618349 Outcome of Induction of Labour by Cervical Ripening with an Osmotic Dilator in a District General Hospital
Authors: A. Wahid Uddin
Abstract:
Osmotic dilator for cervical ripening bypasses the initial hormonal exposure necessary for a routine method of induction. The study was a clinical intervention with an osmotic dilator followed by prospective observation. The aim was to calculate the percentage of women who had successful cervical ripening using modified BISHOP score as evidenced by artificial rupture of membrane. The study also estimated the delivery interval following a single administration of osmotic dilators. Randomly selected patients booked for induction of labour accepting the intervention were included in the study. The study population comprised singleton term pregnancy, cephalic presentation, intact membranes with a modified BISHOP score of less than 6. Initial sample recruited was 30, but 6 patients left the study and the study was concluded on 24 patients. The data were collected in a pre-designed questionnaire and analysis were expressed in percentages along with using mean value for continuous variables. In 70 % of cases, artificial rupture of the membrane was possible and the mean time from insertion of the osmotic dilator to the delivery interval was 30 hours. The study concluded that an osmotic dilator could be a suitable alternative for hormone-based induction of labour.Keywords: dilator, induction, labour, osmotic
Procedia PDF Downloads 13818348 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice
Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha
Abstract:
Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability
Procedia PDF Downloads 11718347 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention
Authors: Avinash Malladhi
Abstract:
Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory
Procedia PDF Downloads 9318346 A Real-time Classification of Lying Bodies for Care Application of Elderly Patients
Authors: E. Vazquez-Santacruz, M. Gamboa-Zuniga
Abstract:
In this paper, we show a methodology for bodies classification in lying state using HOG descriptors and pressures sensors positioned in a matrix form (14 x 32 sensors) on the surface where bodies lie down. it will be done in real time. Our system is embedded in a care robot that can assist the elderly patient and medical staff around to get a better quality of life in and out of hospitals. Due to current technology a limited number of sensors is used, wich results in low-resolution data array, that will be used as image of 14 x 32 pixels. Our work considers the problem of human posture classification with few information (sensors), applying digital process to expand the original data of the sensors and so get more significant data for the classification, however, this is done with low-cost algorithms to ensure the real-time execution.Keywords: real-time classification, sensors, robots, health care, elderly patients, artificial intelligence
Procedia PDF Downloads 86618345 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network
Authors: Abdolreza Memari
Abstract:
In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model
Procedia PDF Downloads 50118344 Enterpreneurship as a Strategic Tool for Higher Productivity in Nigerian Universities System
Authors: Yahaya Salihu Emeje, Amuchie Austine Anthony
Abstract:
The topic examined the prospects of entrepreneurship as an emerging dynamic and strategic tool in the upliftment of human and non-human resources in the Nigerian university system, with a view of showcasing the abundant positive impact, on the Nigerian University system in particular and Nigerian economy at large. It is end at bringing out the benefits of entrepreneurship in the university system which includes, namely cultivating the culture of enterprise in University system; improvement in the quality and quantity of both human and non-human resources; innovative and creative methods of production; new employment strategies in the University system; improved sources of internal generated revenue; entrepreneurship as the culture of sustainability within and outside the university system. Secondary data was used in analyzing entrepreneurship as a productivity tool in the Nigeria University system. From the findings, the university system could be enriched through innovative ideas and technical revenue and employment generation; sustainable financial and economic base; university autonomy and improved international ranking of Nigerian Universities system; therefore, recommended that entrepreneurship is necessary therapy for reviving the ailing, Nigerian universities system.Keywords: entrepreneurship, strategic, productivity, universities
Procedia PDF Downloads 395