Search results for: antimicrobial copper
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1615

Search results for: antimicrobial copper

505 Contribution to the Study of Some Phytochemicals and Biological Aspects of Artemisia absinthium L

Authors: Sihem Benmimoune, Abdelbaki Lemgharbi, Ahmed Ait Yahia, Abdelkrim Kameli

Abstract:

Our study is based on chemical and phytochemical characterization of Artemisia absinthium L and in vitro tests to demonstrate the biological activities of essential oil and natural extract. A qualitative and quantitative comparison of the essential oil extracted by two extraction procedures was performed by analysis of CG/SM and the yield calculation. The method of hydrodistillation has a chemical composition and provides oil content than the best training water vapor. These oils are composed mainly of thujone followed chamazulene and ρ-cymene. The antimicrobial activity of wormwood oil was tested in vitro by two methods (agar diffusion and microdilution) on four plant pathogenic fungi (Aspergillus sp, Botrytis cinerea, Fusarium culmorum and Helminthosporium sp). The study of the antifungal effect showed that this oil has an inhibitory effect counterpart the microorganisms tested in particular the strain Botrytis cinerea. Otherwise, this activity depends on the nature of the oil and the germ itself. The antioxidant activity in vitro was studied with the DPPH method. The activity test shows that the oil and extract of Artemisia absinthium have a very low antioxidant capacity compared to the antioxidants used as a reference. The extract has a potentially high antiradical power not from its oil. The quantitative determinations of phenolic compounds by the Folin-Ciocalteu revealed that absinthe is low in total polyphenols and tannins.

Keywords: artemisia absinthium, biological activities, essential oil, extraction processes

Procedia PDF Downloads 342
504 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils

Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente

Abstract:

Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.

Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi

Procedia PDF Downloads 545
503 Computer Assisted Strategies Help to Pharmacist

Authors: Komal Fizza

Abstract:

All around the world in every field professionals are taking great support from their computers. Computer assisted strategies not only increase the efficiency of the professionals but also in case of healthcare they help in life-saving interventions. The background of this current research is aimed towards two things; first to find out if computer assisted strategies are useful for Pharmacist for not and secondly how much these assist a Pharmacist to do quality interventions. Shifa International Hospital is a 500 bedded hospital, and it is running Antimicrobial Stewardship, during their stewardship rounds pharmacists observed that a lot of wrong doses of antibiotics were coming at times those were being overlooked by the other pharmacist even. So, with the help of MIS team the patients were categorized into adult and peads depending upon their age. Minimum and maximum dose of every single antibiotic present in the pharmacy that could be dispensed to the patient was developed. These were linked to the order entry window. So whenever pharmacist would type any order and the dose would be below or above the therapeutic limit this would give an alert to the pharmacist. Whenever this message pop-up this was recorded at the back end along with the antibiotic name, pharmacist ID, date, and time. From 14th of January 2015 and till 14th of March 2015 the software stopped different users 350 times. Out of this 300 were found to be major errors which if reached to the patient could have harmed them to the greater extent. While 50 were due to typing errors and minor deviations. The pilot study showed that computer assisted strategies can be of great help to the pharmacist. They can improve the efficacy and quality of interventions.

Keywords: antibiotics, computer assisted strategies, pharmacist, stewardship

Procedia PDF Downloads 491
502 Influence of Gravity on the Performance of Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, H. B. Mehta

Abstract:

Closed Loop Pulsating Heat Pipe (CLPHP) is a passive two-phase heat transfer device having potential to achieve high heat transfer rates over conventional cooling techniques. It is found in electronics cooling due to its outstanding characteristics such as excellent heat transfer performance, simple, reliable, cost effective, compact structure and no external mechanical power requirement etc. Comprehensive understanding of the thermo-hydrodynamic mechanism of CLPHP is still lacking due to its contradictory results available in the literature. The present paper discusses the experimental study on 9 turn CLPHP. Inner and outer diameters of the copper tube are 2 mm and 4 mm respectively. The lengths of the evaporator, adiabatic and condenser sections are 40 mm, 100 mm and 50 mm respectively. Water is used as working fluid. The Filling Ratio (FR) is kept as 50% throughout the investigations. The gravitational effect is studied by placing the evaporator heater at different orientations such as horizontal (90 degree), vertical top (180 degree) and bottom (0 degree) as well as inclined top (135 degree) and bottom (45 degree). Heat input is supplied in the range of 10-50 Watt. Heat transfer mechanism is natural convection in the condenser section. Vacuum pump is used to evacuate the system up to 10-5 bar. The results demonstrate the influence of input heat flux and gravity on the thermal performance of the CLPHP.

Keywords: CLPHP, gravity effect, start up, two-phase flow

Procedia PDF Downloads 263
501 The Impact of a Sustainable Solar System on the Growth of Strawberry Plants in an Agricultural Greenhouse

Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

This study examines the effects of a solar-based heating system, in a north-‎south oriented agricultural greenhouse on the development of strawberry ‎plants during winter. This system relies on the circulation of water as a heat ‎transfer fluid in a closed circuit installed on the greenhouse roof to store heat ‎during the day and release it inside at night. A comparative experimental ‎study was conducted in two greenhouses, one experimental with the solar ‎heating system and the other for control without any heating system. Both ‎greenhouses are located on the terrace of the Solar Energy and Environment ‎Laboratory of the Mohammed V University in Rabat, Morocco. The devel-‎oped heating system consists of a copper coil inserted in double glazing and ‎placed on the roof of the greenhouse, a water pump circulator, a battery, and ‎a photovoltaic solar panel to power the electrical components. This inexpen-‎sive and environmentally friendly system allows the greenhouse to be heated ‎during the winter and improves its microclimate system. This improvement ‎resulted in an increase in the air temperature inside the experimental green-‎house by 6 °C and 8 °C, and a reduction in its relative humidity by 23% and ‎‎35% compared to the control greenhouse and the ambient air, respectively, ‎throughout the winter. For the agronomic performance, it was observed that ‎the production was 17 days earlier than in the control greenhouse.‎

Keywords: sustainability, solar energy, thermal energy storage.‎, greenhouse heating

Procedia PDF Downloads 40
500 Optimization of Machining Parameters of Wire Electric Discharge Machining (WEDM) of Inconel 625 Super Alloy

Authors: Amitesh Goswami, Vishal Gulati, Annu Yadav

Abstract:

In this paper, WEDM has been used to investigate the machining characteristics of Inconel-625 alloy. The machining characteristics namely material removal rate (MRR) and surface roughness (SR) have been investigated along with surface microstructure analysis using SEM and EDS of the machined surface. Taguchi’s L27 Orthogonal array design has been used by considering six varying input parameters viz. Pulse-on time (Ton), Pulse-off time (Toff), Spark Gap Set Voltage (SV), Peak Current (IP), Wire Feed (WF) and Wire Tension (WT) for the responses of interest. It has been found out that Pulse-on time (Ton) and Spark Gap Set Voltage (SV) are the most significant parameters affecting material removal rate (MRR) and surface roughness (SR) are. Microstructure analysis of workpiece was also done using Scanning Electron Microscope (SEM). It was observed that, variations in pulse-on time and pulse-off time causes varying discharge energy and as a result of which deep craters / micro cracks and large/ small number of debris were formed. These results were helpful in studying the effects of pulse-on time and pulse-off time on MRR and SR. Energy Dispersive Spectrometry (EDS) was also done to check the compositional analysis of the material and it was observed that Copper and Zinc which were initially not present in the Inconel 625, later migrated on the material surface from the brass wire electrode during machining

Keywords: MRR, SEM, SR, taguchi, Wire Electric Discharge Machining

Procedia PDF Downloads 353
499 Impact of Activated Carbon and Magnetic Field in Slow Sand Filter on Water Purification for Rural Dwellers

Authors: Baiyeri R. M, Oloriegbe Y. A., Saad A. O., Yusuf, K. O.

Abstract:

Most farmers that produce food crops in Nigeria live in rural areas where potable water is not available. The farmers in some areas have problem of water borne diseases which could affect their health and could lead to death. This study was conducted to determine the impact of incorporating Granular Activated Carbon(GAC) and Magnetic Field(MF) in Slow Sand Filter(SSF) on the purification of water for rural dwellers. The SSF was developed using PVC pipe with diameter 152.4 mm and 1100 mm long, with layers of fine sand with size 0.25 mm and 350 mm depth, followed by GAC 10 mm size and 100 mm depth, fine sand 0.25mm with 500 mm depth and gravel grain size 10-14 mm and 100 mm depth. The SSF was kept moist for 21 days for biofilm layer (schmutzdecke) to fully develop, which is essential for trapping bacteria. Two SSFs fabricated consist of SSF+GAC as Filter 1, SSF+GAC+MF as Filter 2 and Control (Raw water without passing through filter. Water samples were collected from the filter and analyzed. The flow rate of Filter was 25 litres/h Total bacteria counts(TBC) for Filter 1 and Filter 2 and control were 2.4, 4.6 and 8.1 cfu/mg, respectively. Total coliform count for Filter 1 and Filter 2 and control were 1.7, 3.0 and 6.4 cfu/100mL, respectively. The filters reduced water hardness, turbidity, lead, copper, electrical conductivity and TBC by 53.13-73.44% but increased pH from 5.8 to 7.1-7.3. SSF is recommended for water purification in the rural areas.

Keywords: magnetised water, sow sand filter, portable water, activated carbon

Procedia PDF Downloads 135
498 Strategy for Energy Industry and Oil Complex of Russia

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

Russia was one of the world’s leading mineral- producing countries. In 2012, Russia was ranked among the world’s leading producers or was a leading regional producer of such mineral commodities as aluminum, arsenic, asbestos, bauxite, boron, cadmium, cement, coal, cobalt, copper, diamond, fluorspar, gold, iron ore, lime, magnesium compounds and metals, mica (flake, scrap, and sheet), natural gas, nickel, nitrogen, oil shale, palladium, peat, petroleum, phosphate, pig iron, platinum, potash, rhenium, silicon, steel, sulfur, titanium sponge, tungsten, and vanadium. Russia has large reserves of a variety of mineral resources and undoubtedly will continue to be one of the world’s leading mineral producers. Although the country’s economy is expected to grow in 2012, some problems are likely to remain. In 2011, the Russian economy returned to economic growth after the significant decline in 2010. According to some analysts, however, the recovery of 2011 did not appear sufficiently vigorous to carry the country’s strong economic growth into the next decade. Even in the sectors of the economy where the country is among the world leaders (ferrous metals, gas, petroleum), Russian industry has obsolete plants and equipment, a slow rate of innovation, and low labor productivity.

Keywords: Russia, energy resources, economic growth, strategy, oil complex

Procedia PDF Downloads 603
497 Simultaneous Analysis of 25 Trace Elements in Micro Volume of Human Serum by Inductively Coupled Plasma–Mass Spectrometry

Authors: Azmawati Mohammed Nawi, Siok-Fong Chin, Shamsul Azhar Shah, Rahman Jamal

Abstract:

In recent years, trace elements have gained importance as biomarkers in many chronic diseases. Unfortunately, the requirement for sample volume increases according to the extent of investigation for diagnosis or elucidating the mechanism of the disease. Here, we describe the method development and validation for simultaneous determination of 25 trace elements (lithium (Li), beryllium (Be), magnesium (Mg), aluminium (Al), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), arsenic (As), selenium (Se), rubidium (Rb), strontium (Sr), silver (Ag), cadmium (Cd), caesium (Cs), barium (Ba), mercury (Hg), thallium (Tl), lead (Pb), uranium (U)) using just 20 µL of human serum. Serum samples were digested with nitric acid and hydrochloric acid (ratio 1:1, v/v) and analysed using inductively coupled plasma–mass spectrometry (ICP-MS). Seronorm®, a human-derived serum control material was used as quality control samples. The intra-day and inter-day precisions were consistently < 15% for all elements. The validated method was later applied to 30 human serum samples to evaluate its suitability. In conclusion, we have successfully developed and validated a precise and accurate analytical method for determining 25 trace elements requiring very low volume of human serum.

Keywords: acid digestion, ICP-MS, trace element, serum

Procedia PDF Downloads 185
496 Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions

Authors: Alaa Y. Ali, Natalie P. Holmes, John Holdsworth, Warwick Belcher, Paul Dastoor, Xiaojing Zhou

Abstract:

Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (Tsource) of 180 °C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces.  Systematic variation of hydrogen gas (H2) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (Tgrowth) from 400 to 800 °C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 °C source carbon past the Cu foil at 600 °C for 1 min. The deposition at 600 °C with a H2 flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm-1 FWHM and a relative intensity ratio of the G to 2D bands (IG/I2D) of 0.21. This recipe fabricated a few layers of good quality graphene.

Keywords: graphene, chemical vapor deposition, carbon source, low temperature growth

Procedia PDF Downloads 167
495 Inhibitory Effect of Potential Bacillus Probiotic Strains against Pathogenic Bacteria and Yeast Isolated from Oral Cavity

Authors: Fdhila Walid, Bayar Sihem, Khouidi Bochra, Maâtouk Fethi, Ben Amor Feten, Hajer Hentati, Mahdhi Abdelkarim

Abstract:

The presence of resistant bacteria in the oral cavity can be the major cause of dental antibiotic prophylaxis failure. Multidrug efflux has been described for many organisms, including bacteria and fungi as part of their drugs resistance strategy. The potential use of probiotic bacteria can be considered as a new alternative in the prevention or cure of oral cavity diseases. In this study, different Bacillus strains isolated from the environment were isolated and characterized using biochemical and molecular procedures. The inhibitory activity against different pathogenic bacteria and yeast strains was tested using diffusion agar assay method. Our data revealed that the tested strains have an antimicrobial effect against the pathogenic strains such as Streptococcus mutants. The inhibitory effect was variable depending from the probiotic and pathogenic strains. The obtained result demonstrated that Bacillus can be used as a potential candidates probiotic and help in the prevention and treatment of oral infections, including dental caries, periodontal disease and halitosis. Our data, partly encourage the use of probiotic strains because they do not produce acid which can contribute to faster installation decay and these are spore-forming bacteria that can withstand the stress of the oral cavity (acids, alkalis, and salty foods).

Keywords: probiotic, pathogenic bacteria, yeast, oral cavity

Procedia PDF Downloads 379
494 Formulation and Technology of the Composition of Essential Oils as a Feed Additive in Poultry with Antibacterial Action

Authors: S. Barbaqadze, M. Goderdzishvili, E. Mosidze, L. Lomtadze, V. Mshvildadze, L. Bakuridze, D. Berashvili, A. Bakuridze

Abstract:

This paper focuses on the formulation of phytobiotic designated for further implantation in poultry farming. Composition was meant to be water-soluble powder containing antibacterial essential oils. The development process involved Thyme, Monarda and Clary sage essential oils. The antimicrobial activity of essential oils composite was meant to be tested against gram-negative and gram-positive bacterial strains. The results are processed using the statistical program Sigma STAT. To make essential oils composition water soluble surfactants were added to them. At the first stage of the study, nine options for the optimal composition of essential oils and surfactants were developed. The effect of the amount of surfactants on the essential oils composition solubility in water has been investigated. On the basis of biopharmaceutical studies, the formulation of phytobiotic has been determined: Thyme, monarda and clary sage essential oils 2:1:1 - 100 parts; Licorice extract 5.25 parts and inhalation lactose 300 parts. A technology for the preparation of phytobiotic has been developed and a technological scheme for the preparation of phytobiotic has been made up. The research was performed within the framework of the grant project CARYS-19-363 funded be the Shota Rustaveli National Science Foundation of Georgia.

Keywords: clary, essential oils, monarda, phytobiotics, poultry, thyme

Procedia PDF Downloads 160
493 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: arc spray, coating, composite, erosion

Procedia PDF Downloads 452
492 Nano-Bioremediation of Contaminated Industrial Wastewater Using Biosynthesized AgNPs and Their Nano-Composite

Authors: Osama M. Darwesh, Sahar H. Hassan, Abd El-Raheem R. El-Shanshoury, Shawky Z. Sabae

Abstract:

Nanotechnology as multidisciplinary technology is growing rapidly with important applications in several sectors. Also, nanobiotechnology is known for the use of microorganisms for the synthesis of targeted nanoparticles. The present study deals with the green synthesis of silver nanoparticles using aquatic bacteria and the development of a biogenic nanocomposite for environmental applications. Twenty morphologically different colonies were isolated from the collected water samples from eight different locations at the Rosetta branch of the Nile Delta, Egypt. The obtained results illustrated that the most effective bacterial isolate (produced the higher amount of AgNPs after 24 h of incubation time) is isolate R3. Bacillus tequilensis was the strongest extracellular bio-manufactory of AgNPs. Biosynthesized nanoparticles had a spherical shape with a mean diameter of 2.74 to 28.4 nm. The antimicrobial activity of silver nanoparticles against many pathogenic microbes indicated that the produced AgNPs had high activity against all tested multi-antibiotic resistant pathogens. Also, the stabilized prepared AgNPs-SA nanocomposite has greater catalytic activity for the decolourization of some dyes like Methylene blue (MB) and Crystal violet. Such results represent a promising stage for producing eco-friendly, cost-effective, and easy-to-handle devices for the bioremediation of contaminated industrial wastewater.

Keywords: bioremediation, AgNPs, AgNPs-SA nanocomposite, Bacillus tequilensis, nanobiotechnology

Procedia PDF Downloads 69
491 Variations in Water Supply and Quality in Selected Groundwater Sources in a Part of Southwest Nigeria

Authors: Samuel Olajide Babawale, O. O. Ogunkoya

Abstract:

The study mapped selected wells in Inisa town, Osun state, in the guinea savanna region of southwest Nigeria, and determined the water quality considering certain elements. It also assessed the variation in the elevation of the water table surface to depth of the wells in the months of August and November. This is with a view to determine the level of contamination of the water with respect to land use and anthropogenic activities, and also to determine the variation that occurs in the quantity of well water in the rainy season and the start of the dry season. Results show a random pattern of the distribution of the mapped wells and shows that there is a shallow water table in the study area. The temporal changes in the elevation show that there are no significant variations in the depth of the water table surface over the period of study implying that there is a sufficient amount of water available to the town all year round. It also shows a high concentration of sodium in the water sample analyzed compared to other elements that were considered, which include iron, copper, calcium, and lead. This is attributed majorly to anthropogenic activities through the disposal of waste in landfill sites. There is a low concentration of lead which is a good indication of a reduced level of pollution.

Keywords: anthropogenic activities, land use, temporal changes, water quality

Procedia PDF Downloads 134
490 Disposition Kinetics of Ciprofloxacin after Intramuscular Administration in Lohi Sheep

Authors: Zahid Iqbal, Ijaz Javed, Riaz Hussain, Ibadullah Jan, Amir Ali Khan

Abstract:

This study was conducted to investigate the disposition kinetics of ciprofloxacin and calculate its optimal dosage in Pakistani sheep of Lohi breed. Injectable preparation of ciprofloxacin was given intramuscularly to eight sheep at a dose of 5 mg/Kg. Before administration of drug blood sample was drawn from each animal. Post drug administration, blood samples were also drawn at various predetermined time periods. Drug concentration in the blood samples was assessed through high performance liquid chromatograph (HPLC). Data were best described by two compartment open model and different pharmacokinetic (PK) parameters were calculated. Cmax of 1.97 ± 0.15 µg/ml was reached at Tmax of 0.88 ± 0.09 hours. Half life of absorption (t1/2 abs) was observed to be 0.63 ± 0.16 hours while t1/2 α (distribution half life) and t1/2 ß (elimination half life) were found to be 0.46 ± 0.05 and 2.93 ± 0.45 hours, respectively. Vd (apparent volume of distribution) was calculated as 2.89 ± 0.30 L/kg while AUC (area under the curve) was 7.19 ± 0.38 µg.hr/mL and CL (total body clearance) was 0.75 ± 0.04 L/hr/kg. Using these parameters, an optimal intramuscular dosage of ciprofloxacin in adult Lohi sheep was calculated as 21.43 mg/kg, advised to be repeated after 24 hours. From this, we came to the conclusion that calculated dose was much higher than the dose advised by the foreign manufacturer and to avoid antimicrobial resistance, it is advised that this locally investigated dosage regimen should be strictly followed in local sheep.

Keywords: pharmacokinetics, dosage regimen, ciprofloxacin, HPLC, sheep

Procedia PDF Downloads 539
489 Toxic Heavy Metal Accumulation by Algerian Malva sylvestris L. Depending on Location Variation

Authors: Souhila Terfi, Fatma Hassaine-Sadi

Abstract:

In the present study, wet digestion with HCl and HNO3 mixture was used to extract the heavy metals (copper (Cu), chromium (Cr), zinc (Zn), lead (Pb) and cadmium (Cd)) from the leaves, the stems and the roots of Malva sylvestris L., which were subsequently analyzed by AAS. The samples (soil and parts of species) were collected from different sites: the industrial area (IA) (Rouiba), the rubbish dump area (RDA) (Boudouaou), the residential area (RA) with large open fields and construction activities (Blida), the Montaigne area (MA) (Chrea) and the high plateau area (HPA) (Berouaguia). The study showed differences in metal concentrations according to the analysed parts and the different sampling locations. In the contaminated site of the industrial area (IA), high content of the toxic heavy metals (Cd: 3.18 µg/g DW and Pb: 34.48 µg/g DW) were found in the leaves of Malva sylvestris L. This finding suggests that the consumers of this species could be exposed to a risk associated with this higher level of these toxic metals. It was found that Malva sylvestris L. is rich by Zn and Cu in some sites, which are considered to be the essential elements for the human health. The obtained results with the control site (Montaigne area) suggest that this species can be applicable in both the health and food, feasible alternatives as medicinal plant without any risk.

Keywords: Malva sylvestris L., toxic heavy metal, medicinal plant, impact on human health

Procedia PDF Downloads 362
488 Bioactivity Profiling of Botswana’s Medicinal Ethnobotany With Potential to Mitigate Oxidative Stress

Authors: Daniel Motlhanka, Neo Kerebotswe

Abstract:

The strong and long history of use of medicinal plants in Botswana to address existing and emerging health threats provides undebatable evidence for their potential as innovative therapeutic tools. The prevalence of emerging health threats, such as COVID-19 and hard-to-treat non-communicable diseases, warrants the scientific community to revisit and exploit ethnopharmacology for its potential as a source of therapeutic tools. Many studies conducted on bioactivity-guided bioassays of ethnobotanical resources have proved a number of health beneficial properties of these plants, such as free radical scavenging, anti-inflammatory, antimicrobial and, most importantly, the capability of medicinal plants to alleviate oxidative stress. In this work, a number of medicinal plants used in Botswana traditional medicine were investigated for both their free radical scavenging capability and total phenolic contents using the Free Radical Scavenging Power (FRSP) and Folin Ciocalteau (FC) method. At 100 micrograms/ml all the studied plants expressed above 90% Scavenging power and expressed total phenolic contents between 5000- 8890 mg/L.GAE. These plants are promising tools for engineering active therapeutic tools against life-threatening diseases of oxidative stress origin.

Keywords: oxidative stress, non-communicable diseases, total phenolics, ethnobotanicals

Procedia PDF Downloads 53
487 Low Power Glitch Free Dual Output Coarse Digitally Controlled Delay Lines

Authors: K. Shaji Mon, P. R. John Sreenidhi

Abstract:

In deep-submicrometer CMOS processes, time-domain resolution of a digital signal is becoming higher than voltage resolution of analog signals. This claim is nowadays pushing toward a new circuit design paradigm in which the traditional analog signal processing is expected to be progressively substituted by the processing of times in the digital domain. Within this novel paradigm, digitally controlled delay lines (DCDL) should play the role of digital-to-analog converters in traditional, analog-intensive, circuits. Digital delay locked loops are highly prevalent in integrated systems.The proposed paper addresses the glitches present in delay circuits along with area,power dissipation and signal integrity.The digitally controlled delay lines(DCDL) under study have been designed in a 90 nm CMOS technology 6 layer metal Copper Strained SiGe Low K Dielectric. Simulation and synthesis results show that the novel circuits exhibit no glitches for dual output coarse DCDL with less power dissipation and consumes less area compared to the glitch free NAND based DCDL.

Keywords: glitch free, NAND-based DCDL, CMOS, deep-submicrometer

Procedia PDF Downloads 245
486 Enhancement of Pool Boiling Regimes by Sand Deposition

Authors: G. Mazor, I. Ladizhensky, A. Shapiro, D. Nemirovsky

Abstract:

A lot of researches was dedicated to the evaluation of the efficiency of the uniform constant and temporary coatings enhancing a heat transfer rate. Our goal is an investigation of the sand coatings distributed by both uniform and non-uniform forms. The sand of different sizes (0.2-0.4-0.6 mm) was attached to a copper ball (30 mm diameter) surface by means of PVA adhesive as a uniform layer. At the next stage, sand spots were distributed over the ball surface with an areal density that ranges between one spot per 1.18 cm² (for low-density spots) and one spot per 0.51 cm² (for high-density spots). The spot's diameter value varied from 3 to 6.5 mm and height from 0.5 to 1.5 mm. All coatings serve as a heat transfer enhancer during the quenching in liquid nitrogen. Highest heat flux densities, achieved during quenching, lie in the range 10.8-20.2 W/cm², depending on the sand layer structure. Application of the enhancing coating increases an amount of heat, evacuated by highly effective nucleate and transition boiling, by a factor of 4.5 as compared to the bare sample. The non-uniform sand coatings were increasing the heat transfer rate value under all pool boiling conditions: nucleate boiling, transfer boiling and the most severe film boiling. A combination of uniform sand coating together with high-density sand spots increased the average heat transfer rate by a factor of 3.

Keywords: heat transfer enhancement, nucleate boiling, film boiling, transfer boiling

Procedia PDF Downloads 128
485 The Mineral and Petroleum Sectors of Papua New Guinea: An Overview

Authors: James Wapyer, Simon A. Kawagle

Abstract:

The current downturn in the metal and oil prices has significantly affected the mineral and petroleum sectors of Papua New Guinea. The sectors have not grown substantially in the last three years compared to previous years. Resources of several projects have not been proved up as well as feasibility studies not undertaken on advanced projects. In the 2012-2015 periods, however, development licences for four projects have been granted - the Solwara-1 project in the Manus Basin, the Woodlark project, the Crater Mountains project and the Stanley gas-condensate project. There has been some progress on three advanced projects – Frieda River copper-gold porphyry, Mount Kare gold, and the Wafi-Golpu projects. The oilfields are small by world standard but have been high rates of production. The developments of liquefied natural gas projects are progressing well and the first LNG project with ExxonMobil and partners shipped its first cargo in May 2014, the second with Total and partners involving Elk-Antelope gas-condensate fields is in its development stage, and the third with Horizon Oil and partners involving gas fields in the western Papuan basin is in the planning stage. Significantly, in the years 2012-2015, the country has exported liquefied natural gas, nickel, cobalt and chromium, and has granted exploration licences for iron-sands and coal measures for the first time.

Keywords: exploration, mineral, Papua New Guinea, petroleum

Procedia PDF Downloads 272
484 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury

Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas

Abstract:

Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.

Keywords: antibacterial, chitosan, healing process, nanocomposites, silver

Procedia PDF Downloads 288
483 Strategic Mine Planning: A SWOT Analysis Applied to KOV Open Pit Mine in the Democratic Republic of Congo

Authors: Patrick May Mukonki

Abstract:

KOV pit (Kamoto Oliveira Virgule) is located 10 km from Kolwezi town, one of the mineral rich town in the Lualaba province of the Democratic Republic of Congo. The KOV pit is currently operating under the Katanga Mining Limited (KML), a Glencore-Gecamines (a State Owned Company) join venture. Recently, the mine optimization process provided a life of mine of approximately 10 years withnice pushbacks using the Datamine NPV Scheduler software. In previous KOV pit studies, we recently outlined the impact of the accuracy of the geological information on a long-term mine plan for a big copper mine such as KOV pit. The approach taken, discussed three main scenarios and outlined some weaknesses on the geological information side, and now, in this paper that we are going to develop here, we are going to highlight, as an overview, those weaknesses, strengths and opportunities, in a global SWOT analysis. The approach we are taking here is essentially descriptive in terms of steps taken to optimize KOV pit and, at every step, we categorized the challenges we faced to have a better tradeoff between what we called strengths and what we called weaknesses. The same logic is applied in terms of the opportunities and threats. The SWOT analysis conducted in this paper demonstrates that, despite a general poor ore body definition, and very rude ground water conditions, there is room for improvement for such high grade ore body.

Keywords: mine planning, mine optimization, mine scheduling, SWOT analysis

Procedia PDF Downloads 225
482 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia

Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski

Abstract:

The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.

Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils

Procedia PDF Downloads 368
481 Phytochemical Screening, Antioxidant Potential, and Mineral Composition of Dried Abelmoschus esculentus L. Fruits Consume in Gada Area of Sokoto State, Nigeria

Authors: I. Sani, F. Bello, I. M. Fakai, A. Abdulhamid

Abstract:

Abelmoschus esculentus L. fruit is very common especially in northern part of Nigeria, but people are ignorant of its medicinal and pharmacological benefits. Preliminary phytochemical screening, antioxidant potential and mineral composition of the dried form of this fruit were determined. The Phytochemical screening was conducted using standard methods. Antioxidant potential screening was carried out using Ferric Reducing Antioxidant Power Assay (FRAP) method, while, the mineral compositions were analyzed using an atomic absorption spectrophotometer by wet digest method. The result of the qualitative phytochemical screening revealed that the fruits contain saponins, flavonoids, tannins, steroids, and terpenoids, while, anthraquinone, alkaloids, phenols, glycosides, and phlobatannins were not detected. The quantitative analysis revealed that the fruits contain saponnins (380 ± 0.020 mg/g), flavonoids (240±0.01 mg/g), and tannins (21.71 ± 0.66 mg/ml). The antioxidant potential was determined to be 54.1 ± 0.19%. The mineral composition revealed that 100 g of the fruits contains 97.52 ± 1.04 mg of magnesium (Mg), 94.53 ± 3.21 mg of calcium (Ca), 77.10 ± 0.79 mg of iron (Fe), 47.14 ± 0.41 mg of zinc (Zn), 43.96 ± 1.49 mg of potassium (K), 42.02 ± 1.09 mg of sodium (Na), 0.47 ± 0.08 mg of copper (Cu) and 0.10 ± 0.02 mg of lead (Pb). These results showed that the Abelmoschus esculentus L. fruit is a good source of antioxidants, and contains an appreciable amount of phytochemicals, therefore, it has some pharmacological attributes. On the other side, the fruit can serve as a nutritional supplement for Mg, Ca, Fe, Zn, K, and Na, but a poor source of Cu, and contains no significant amount of Pb.

Keywords: Abelmoschus esculentus Fruits, antioxidant potential, mineral composition, phytochemical screening

Procedia PDF Downloads 377
480 Use of Carica papaya as a Bio-Sorbent for Removal of Heavy Metals in Wastewater

Authors: W. E. Igwegbe, B. C. Okoro, J. C. Osuagwu

Abstract:

The study was aimed at assessing the effectiveness of reducing the concentrations of heavy metals in waste water using Pawpaw (Carica papaya) wood as a bio-sorbent. The heavy metals considered include; zinc, cadmium, lead, copper, iron, selenium, nickel, and manganese. The physiochemical properties of carica papaya stem were studied. The experimental sample was obtained from a felled trunk of matured pawpaw tree. Waste water for experimental use was prepared by dissolving soil samples collected from a dump site at Owerri, Imo state in water. The concentration of each metal remaining in solution as residual metal after bio-sorption was determined using Atomic absorption Spectrometer. The effects of ph, contact time and initial heavy metal concentration were studied in a batch reactor. The results of Spectrometer test showed that there were different functional groups detected in the carica papaya stem biomass. Optimum bio-sorption occurred at pH 5.9 with 5g/100ml solution of bio-sorbent. The results of the study showed that the treated wastewater is fit for irrigation purpose based on Canada wastewater quality guideline for the protection of Agricultural standard. This approach thus provides a cost effective and environmentally friendly option for treating waste water.

Keywords: biomass, bio-sorption, Carica papaya, heavy metal, wastewater

Procedia PDF Downloads 372
479 Biological Organic or Inorganic Sulfur Sources Feeding Effects on Intake and Some Blood Metabolites of Close-Up Holstein Cows

Authors: Mehdi Kazemi-Bonchenari, Esmaeil Manidari, Vahid Keshavarz

Abstract:

This study was carried out to investigate the effects of increased level of sulfur by supplementing magnesium sulfate with or without biologically organic source in dairy cow close-up diets on dry matter intake (DMI) and some blood metabolites. The 24 multiparous close-up Holstein cows averaging body weight 687.94 kg and days until expected calving date 21.89 d were allocated in three different treatments (8 cows per each) in a completely randomized design. The first treatment (T1) has contained 0.21% sulfur (DM basis), the second treatment (T2) has contained 0.41% sulfur which entirely supplied through magnesium sulfate and the third treatment (T3) has contained 0.41% sulfur which supplied through combination of magnesium sulfate and an organic source of sulfur. All the cows were fed same diet after parturition until 21 d. The DMI for both pre-calving (P < 0.001) and post-calving was affected by treatments (P < 0.004) and T2 showed the lowest DMI among treatments. Among the blood metabolites, glucose, calcium, and copper were decreased in T2 (P < 0.05). However, blood concentrations of BHBA, NEFA, urea, CPK, and AST were increased in T2 (P < 0.05). The results of the present study indicate that although magnesium sulfate has negative effect on dairy cow health and performance, a combination of magnesium sulfate and biological organic source of sulfur in close-up diets could have positive effects on DMI and performance of Holstein dairy cows.

Keywords: organic sulfur, dairy cow, intake, blood metabolites

Procedia PDF Downloads 309
478 Synthesis, Crystallography and Anti-TB Activity of Substituted Benzothiazole Analogues

Authors: Katharigatta N. Venugopala, Melendhran Pillay, Bander E. Al-Dhubiab

Abstract:

Tuberculosis (TB) infection is caused mainly by Mycobacterium tuberculosis (MTB) and it is one of the most threatening and wide spread infectious diseases in the world. Benzothiazole derivatives are found to have diverse chemical reactivity and broad spectrum of pharmacological activity. Some of the important pharmacological activities shown by the benzothiazole analogues are antitumor, anti-inflammatory, antimicrobial, anti-tubercular, anti-leishmanial, anticonvulsant and anti-HIV properties. Keeping all these facts in mind in the present investigation it was envisaged to synthesize a series of novel {2-(benzo[d]-thiazol-2-yl-methoxy)-substitutedaryl}-(substitutedaryl)-methanones (4a-f) and characterize by IR, NMR (1H and 13C), HRMS and single crystal x-ray studies. The title compounds are investigated for in vitro anti-tubercular activity against two TB strains such as H37Rv (ATCC 25177) and MDR-MTB (multi drug resistant MTB resistant to Isoniazid, Rifampicin and Ethambutol) by agar diffusion method. Among the synthesized compounds in the series, test compound {2-(benzo[d]thiazol-2-yl-methoxy)-5-fluorophenyl}-(4-chlorophenyl)-methanone (2c) was found to exhibit significant activity with MICs of 1 µg/mL and 2 µg/mL against H37Rv and MDR-MTB, respectively when compared to standard drugs. Single crystal x-ray studies was used to study intra and intermolecular interactions, including polymorphism behavior of the test compounds, but none of the compounds exhibited polymorphism behavior.

Keywords: benzothiazole analogues, characterization, crystallography, anti-TB activity

Procedia PDF Downloads 281
477 Materials for Electrically Driven Aircrafts: Highly Conductive Carbon-Fiber Reinforced Epoxy Composites

Authors: Simon Bard, Martin Demleitner, Florian Schonl, Volker Altstadt

Abstract:

For an electrically driven aircraft, whose engine is based on semiconductors, alternative materials are needed. The avoid hotspots in the materials thermally conductive polymers are necessary. Nevertheless, the mechanical properties of these materials should remain. Herein, the work of three years in a project with airbus and Siemens is presented. Different strategies have been pursued to achieve conductive fiber-reinforced composites: Metal-coated carbon fibers, pitch-based fibers and particle-loaded matrices have been investigated. In addition, a combination of copper-coated fibers and a conductive matrix has been successfully tested for its conductivity and mechanical properties. First, prepregs have been produced with a laboratory scale prepreg line, which can handle materials with maximum width of 300 mm. These materials have then been processed to fiber-reinforced laminates. For the PAN-fiber reinforced laminates, it could be shown that there is a strong dependency between fiber volume content and thermal conductivity. Laminates with 50 vol% of carbon fiber offer a conductivity of 0.6 W/mK, those with 66 vol% of fiber a thermal conductivity of 1 W/mK. With pitch-based fiber, the conductivity enhances to 1.5 W/mK for 61 vol% of fiber, compared to 0.81 W/mK with the same amount of fibers produced from PAN (+83% in conducitivity). The thermal conductivity of PAN-based composites with 50 vol% of fiber is at 0.6 W/mK, their nickel-coated counterparts with the same fiber volume content offer a conductivity of 1 W/mK, an increase of 66%.

Keywords: carbon, electric aircraft, polymer, thermal conductivity

Procedia PDF Downloads 163
476 Potential Antibacterial Applications and Synthesis, Structural, Magnetic, Optical, and Dielectric Characterization of Nickel-Substituted Cobalt Ferrite Nanoparticles

Authors: Tesfay Gebremichael Reda

Abstract:

Nanoparticle technology is fast progressing and is being employed in innumerable medical applications. At this time, the public's health is seriously threatened by the rise of bacterial strains resistant to several medications. Metal nanoparticles are a potential alternate approach for tackling this global concern, and this is the main focus of this study. The citrate precursor sol-gel synthesis method was used to synthesize the, Niₓ Co(₁-ₓ) Fe₂ O₄, (where x = 0.0:0.2:1.0) nanoparticle. XRD identified the development of the cubic crystal structure to have a preferential orientation along (311), and the average particle size was found to be 29-38 nm. The average crystallizes assessed with ImageJ software and origin 22 of the SEM are nearly identical to the XRD results. In the created NCF NPs, the FT-IR spectroscopy reveals structural examinations and the redistribution of cations between octahedral (505-428 cm-1) and tetrahedral (653-603 cm-1) locales. Finally, the decrease of coercive fields HC, 2384 Oe to 241.93 Oe replacement of Co²+ cation with Ni²+. Band gap energy rises as Ni concentration increases, which may be attributed to the fact that the ionic radii of Ni²+ ions are smaller than that of Co²+ ions, which results in a strong electrostatic interaction. On the contrary, except at x = 0.4, the dielectric constant decreases as the nickel concentration increases. According to the findings of this research work, nanoparticles composed of Ni₀.₄ Co₀.₄ Fe₂ O₄ have demonstrated a promising value against S. aureus and E. coli, and it suggests a proposed model for their potential use as a new source of antibacterial agents.

Keywords: antimicrobial, band gap, citrate precursor, dielectric, nanoparticle

Procedia PDF Downloads 29