Search results for: oxygen vacancies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1487

Search results for: oxygen vacancies

407 Patients with Chronic Obstructive Pulmonary Feelings of Uncertainty

Authors: Kyngäs Helvi, Patala-Pudas, Kaakinen Pirjo

Abstract:

It has been reported that COPD -patients may experience much emotional distress, which can compromise positive health outcomes. The aim of this study was to explore disease-related uncertainty as reported by Chronic Obstructive Pulmonary Disease (COPD) patients. Uncertainty was defined as a lack of confidence; negative feelings; a sense of confidence; and awareness of the sources of uncertainty. Research design was a non-experimental cross-sectional survey. The data (n=141) was collected by validated questionnaire during COPD -patients’ visits or admissions to a tertiary hospital. The response rate was 62%. The data was analyzed by statistical methods. Around 70% of the participants were male with COPD diagnosed many years ago. Fifty-four percent were under 65 years and used an electronic respiratory aid apparatus (52%) (oxygen concentrator, ventilator or electronic inhalation device). Forty-one percent of the participants smoked. Disease-related uncertainty was widely reported. Seventy-three percent of the participants had uncertainty about their knowledge of the disease, the pulmonary medication and nutrition. One-quarter (25%) did not feel sure about managing COPD exacerbation. About forty percent (43%) reported that they did not have a written exacerbation decision aid indicating how to act in relation to COPD symptoms. Over half of the respondents were uncertain about self-management behavior related to health habits such as exercise and nutrition. Over a third of the participants (37%) felt uncertain about self-management skills related to giving up smoking. Support from the care providers was correlated significantly with the patients’ sense of confidence. COPD -patients who felt no confidence stated that they received significantly less support in care. Disease-related uncertainty should be considered more closely and broadly in the patient care context, and those strategies within patient education that enhance adherence should be strengthened and incorporated into standard practice.

Keywords: adherence, COPD, disease-management, uncertainty

Procedia PDF Downloads 239
406 Treatment of Histopathological Symptoms in N-Nitrosopyrrolidine Induced Changes in Lung Tissue by Isolated Flavonoid from Indigofera tinctoria

Authors: Aastha Agarwal, Veena Sharma

Abstract:

N-nitrosopyrollidine or NPYR is a tobacco-specific nitrosamine which upon intoxicated causes abnormal production of Reactive Oxygen Species disrupt the endogenous antioxidant system. The study was designed to evaluate the histological changes in lung tissue of Mus musculus in NPYR administered lungs and effect of isolated flavonoid 3,6-dihydroxy-(3’,4’,7’-trimethoxyphenyl)-chromen-4-one-7-glucoside (ITC) from experimental plant Indigofera tinctorial. Post treatment with isolated compound significantly restored the abnormal symptoms and changes in pulmonary tissue. Transverse section of mouse lung in control animals appeared as a thin lace. Histologically, most of the lung was arranged as alveoli which were thin walled structures made up of single layered squamous epithelial cells. In the transverse section of lung at 100 X will clearly show the component of alveoli, surround by a thin layer of connective tissue and blood vessels. Smaller bronchioles were lined by cuboidal epithelial cells while larger bronchioles were lined by ciliated columnar epithelium layer while in NPYR intoxicated lungs signs of vast pulmonary damages and carcinogenesis as alveolar damage, necrosis, DADs or defused alveolar damages hyperplasia, metaplasia, dysplasia and next stage of carcinogenesis were revealed. Treatment with ITC showed the significant positive changes in the lung tissue due to the side hydroxyl and methoxy groups in its structure which help in combating oxidative injuries and give protection from the free radicals generated during the metabolism of NPYR in body. Thus, histopathological analysis confirms the development of the cancerous conditions in the lung tissue in mice model and the protective effects of ITC.

Keywords: flavonoid, histopathology, Indigofera tinctoria, lung

Procedia PDF Downloads 296
405 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices

Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes

Abstract:

Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.

Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves

Procedia PDF Downloads 466
404 Hyponatremia in Community-Acquired Pneumonia

Authors: Emna Ketata, Wafa Farhat

Abstract:

Introduction: Hyponatremia is defined by a blood sodium level of ≤ 136 mmol/L; it is associated with a high risk of morbidity and mortality in the emergency room. This was explained by transit disorders, including diarrhea and inappropriate antidiuretic hormone secretion (Syndrome of inappropriate antidiuretic hormone secretion). Pneumonia can cause dyspnea, stress-causing SIADH and digestive symptoms (diarrhea and vomiting). Aim: The purpose of this study was to determine the link between pneumonia and hyponatremia as a predictor of patient’s prognosis and intra-hospital mortality. Methodology: This is a prospective observational study over a period of 3 years in the emergency department. Inclusion :patients (age > 14 years), with clinical signs in favor of pneumonia. Natremia was measured. Natremia was classified as mild to moderate with a blood sodium level between 121 and 135 mmol/L and as severe with a blood sodium level ≤ 120 mmol/L. Results: This study showed an average serum sodium value of 135 mmol/L (range 114–159 mmol/L) in these patients. Hyponatremia was observed in 123 patients (43.6%), 115 patients (97,8%) had mild to moderate hyponatremia and 2,8% had severe hyponatremia. The mean age was 65±17 years with a sex ratio of 1.05. The main reason for consultation in patients with hyponatremia was cough in 58 patients (47.2%), and digestive symptoms were present in 25 patients (20.3. An altered state of consciousness was observed in 11 patients (3%). Patients with hyponatremia had greater heart rate (p=0.02),white blood cell count (p=0.009) , plasmatic lactate (p=0.002) and higher rate of pneumonia recurrence (p=0.001) .In addition, 80% of them have a positive CURB65 score (>=2). hyponatremia had higher rates of use of oxygen therapy compared to patients with normo-natremia (54% vs. 45%). The analytical study showed that hyponatremia is significantly associated with intra-hospital mortality with( p=0.01), severe hyponatremia p=0.04. Conclusion: Hyponatremia is a predictor of mortality and worse prognosis. Recognition of the pathophysiological mechanisms of hyponatremia in pneumonia will probably allow better management of it.

Keywords: oxygenotherapy, mortality, recurrence, positif curb65

Procedia PDF Downloads 92
403 Anti-Parasite Targeting with Amino Acid-Capped Nanoparticles Modulates Multiple Cellular Processes in Host

Authors: Oluyomi Stephen Adeyemi, Kentaro Kato

Abstract:

Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease capable of infecting a range of hosts, including nearly one-third of the human population. Current treatment options for toxoplasmosis patients are limited. In consequence, toxoplasmosis represents a large global burden that is further enhanced by the shortcomings of the current therapeutic options. These factors underscore the need for better anti-T. gondii agents and/or new treatment approach. In the present study, we sought to find out whether preparing and capping nanoparticles (NPs) in amino acids, would enhance specificity toward the parasite versus the host cell. The selection of amino acids was premised on the fact that T. gondii is auxotrophic for some amino acids. The amino acid-nanoparticles (amino-NPs) were synthesized, purified and characterized following established protocols. Next, we tested to determine the anti-T. gondii activity of the amino-NPs using in vitro experimental model of infection. Overall, our data show evidence that supports enhanced and excellent selective action against the parasite versus the host cells by amino-NPs. The findings are promising and provide additional support that warrants exploring the prospects of NPs as alternative anti-parasite agents. In addition, the anti-parasite action by amino-NPs indicates that nutritional requirement of parasite may represent a viable target in the development of better alternative anti-parasite agents. Furthermore, data suggest the anti-parasite mechanism of the amino-NPs involves multiple cellular processes including the production of reactive oxygen species (ROS), modulation of hypoxia-inducing factor-1 alpha (HIF-1α) as well as the activation of kynurenine pathway. Taken together, findings highlight further, the prospects of NPs as alternative source of anti-parasite agents.

Keywords: drug discovery, infectious diseases, mode of action, nanomedicine

Procedia PDF Downloads 112
402 Diversity and Taxonomy: Malaysian Marine Algae Genus Halimeda (Halimedaceae, Chlorophyta)

Authors: Nur Farah Ain Zainee, Ahmad Ismail, Nazlina Ibrahim, Asmida Ismail

Abstract:

The study of genus Halimeda in Malaysia is in the early stage due to less specific study on its taxonomy. Most of the previous research tend to choose other genus such as Caulerpa and Gracilaria because of the potential of being utilized. The identification of Halimeda is complex by the high morphological variation within individual species due to different types of habitat and the changes in composition of seawater. The study was completed to study the diversity and distribution of Halimeda in Malaysia and to identify the morphological and anatomical differences between Halimeda species. The methods which have been used for this study are collection of Halimeda and seawater, preservation of specimen, identification of the specimen including the preparation of the temporary slide and decalcification of the calcium layer by using diluted hydrochloric acid. The specimen were processed in laboratory and kept as herbarium specimen in Algae Herbarium, Universiti Kebangsaan Malaysia. Environmental parameters were tested by using YSI multiparameter probe and the recorded data were temperature, salinity, pH and dissolved oxygen. The nutrient content of seawater such as nitrate and phosphate were analysed by using Hach kit model DR 2000. In the present study, out of 330 herbarium specimen, ten species were identified as Halimeda cuneata, H. discoidea, H. macroloba, H. macrophysa, H. opuntia, H. simulans, H. stuposa, H. taenicola, H. tuna and H. velasquezii. Of these, five species were new record to Malaysia. They are Halimeda cuneata, H. macrophysa, H. stuposa, H. taenicola and H. velasquezii. H. opuntia was found as the most abundance species with wide distribution in Malaysia coastal area. Meanwhile, from the study of their distribution, two localities in which Pulau Balak Balak, Kudat and Pulau Langkawi, Kedah, were noted having high number of Halimeda species. As a conclusion, this study has successfully identified ten species of Halimeda of Malaysia with full description of morphological characteristics that may assist further researcher to differentiate and identify Halimeda.

Keywords: Distribution, diversity, Halimeda, morphological, taxonomy

Procedia PDF Downloads 348
401 Determination of Vinpocetine in Tablets with the Vinpocetine-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis

Authors: Faisal A. Salih

Abstract:

Vinpocetine (Vin) is an ethyl ester of apovincamic acid and is a semisynthetic derivative of vincamine, an alkaloid from plants of the genus Periwinkle (plant) vinca minor. It was found that this compound stimulates cerebral metabolism: it increases the uptake of glucose and oxygen, as well as the consumption of these substances by the brain tissue. Vinpocetine enhances the flow of blood in the brain and has a vasodilating, antihypertensive, and antiplatelet effect. Vinpocetine seems to improve the human ability to acquire new memories and restore memories that have been lost. This drug has been clinically used for the treatment of cerebrovascular disorders such as stroke and dementia memory disorders, as well as in ophthalmology and otorhinolaryngology. It has no side effects, and no toxicity has been reported when using vinpocetine for a long time. For the quantitative determination of Vin in dosage forms, the HPLC methods are generally used. A promising alternative is potentiometry with Vin- selective electrode, which does not require expensive equipment and materials. Another advantage of the potentiometric method is that the pills and solutions for injections can be used directly without separation from matrix components, which reduces both analysis time and cost. In this study, it was found that the choice of a good plasticizer an electrode with the following membrane composition: PVC (32.8 wt.%), ortho-nitrophenyl octyl ether (66.6 wt.%), tetrakis-4-chlorophenyl borate (0.6 wt.%) exhibits excellent analytical performance: lower detection limit (LDL) 1.2•10⁻⁷ M, linear response range (LRR) 1∙10⁻³–3.9∙10⁻⁶ M, the slope of the electrode function 56.2±0.2 mV/decade). Vin masses per average tablet weight determined by direct potentiometry (DP) and potentiometric titration (PT) methods for the two different sets of 10 tablets were (100.35±0.2–100.36±0.1) mg for two sets of blister packs. The mass fraction of Vin in individual tablets, determined using DP, was (9.87 ± 0.02–10.16 ±0.02) mg, while the RSD was (0.13–0.35%). The procedure has very good reproducibility, and excellent compliance with the declared amounts was observed.

Keywords: vinpocetine, potentiometry, ion selective electrode, pharmaceutical analysis

Procedia PDF Downloads 74
400 Value Index, a Novel Decision Making Approach for Waste Load Allocation

Authors: E. Feizi Ashtiani, S. Jamshidi, M.H Niksokhan, A. Feizi Ashtiani

Abstract:

Waste load allocation (WLA) policies may use multi-objective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.

Keywords: waste load allocation (WLA), value index, multi objective particle swarm optimization (MOPSO), Haraz River, equity

Procedia PDF Downloads 422
399 Effect of Retention Time on Kitchen Wastewater Treatment Using Mixed Algal-Bacterial Consortia

Authors: Keerthi Katam, Abhinav B. Tirunaghari, Vinod Vadithya, Toshiyuki Shimizu, Satoshi Soda, Debraj Bhattacharyya

Abstract:

Researchers worldwide are increasingly focusing on the removal of carbon and nutrient from wastewater using algal-bacterial hybrid systems. Algae produce oxygen during photosynthesis, which is taken up by heterotrophic bacteria for mineralizing organic carbon to carbon dioxide. This phenomenon reduces the net mechanical aeration requirement of aerobic biological wastewater treatment processes. Consequently, the treatment cost is also reduced. Microalgae also participate in the treatment process by taking up nutrient (N, P) from wastewater. Algal biomass, if harvested, can generate value-added by-products. The aim of the present study was to compare the performance of two systems - System A (mixed microalgae and bacteria) and System B (diatoms and bacteria) in treating kitchen wastewater (KWW). The test reactors were operated at five different solid retention times (SRTs) -2, 4, 6, 8, and 10-days in draw-and-fill mode. The KWW was collected daily from the dining hall-kitchen area of the Indian Institute of Technology Hyderabad. The influent and effluent samples were analyzed for total organic carbon (TOC), total nitrogen (TN) using TOC-L analyzer. A colorimetric method was used to analyze anionic surfactant. Phosphorus (P) and chlorophyll were measured by following standard methods. The TOC, TN, and P of KWW were in the range of 113.5 to 740 mg/L, 2 to 22.8 mg/L, and 1 to 4.5 mg/L, respectively. Both the systems gave similar results with 85% of TOC removal and 60% of TN removal at 10-d SRT. However, the anionic surfactant removal in System A was 99% and 60% in System B. The chlorophyll concentration increased with an increase in SRT in both the systems. At 2-d SRT, no chlorophyll was observed in System B, whereas 0.5 mg/L was observed in System A. At 10-d SRT, the chlorophyll concentration in System A was 7.5 mg/L, whereas it was 4.5 mg/L in System B. Although both the systems showed similar performance in treatment, the increase in chlorophyll concentration suggests that System A demonstrated a better algal-bacterial symbiotic relationship in treating KWW than System B.

Keywords: diatoms, microalgae, retention time, wastewater treatment

Procedia PDF Downloads 129
398 Study of Radiation Response in Lactobacillus Species

Authors: Kanika Arora, Madhu Bala

Abstract:

The small intestine epithelium is highly sensitive and major targets of ionizing radiation. Radiation causes gastrointestinal toxicity either by direct deposition of energy or indirectly (inflammation or bystander effects) generating free radicals and reactive oxygen species. Oxidative stress generated as a result of radiation causes active inflammation within the intestinal mucosa leading to structural and functional impairment of gut epithelial barrier. As a result, there is a loss of tolerance to normal dietary antigens and commensal flora together with exaggerated response to pathogens. Dysbiosis may therefore thought to play a role in radiation enteropathy and can contribute towards radiation induced bowel toxicity. Lactobacilli residing in the gut shares a long conjoined evolutionary history with their hosts and by doing so these organisms have developed an intimate and complex symbiotic relationships. The objective behind this study was to look for the strains with varying resistance to ionizing radiation and to see whether the niche of the bacteria is playing any role in radiation resistance property of bacteria. In this study, we have isolated the Lactobacillus spp. from probiotic preparation and murine gastrointestinal tract, both of which were supposed to be the important source for its isolation. Biochemical characterization did not show a significant difference in the properties, while a significant preference was observed in carbohydrate utilization capacity by the isolates. Effect of ionizing radiations induced by Co60 gamma radiation (10 Gy) on lactobacilli cells was investigated. A cellular survival curve versus absorbed doses was determined. Radiation resistance studies showed that the response of isolates towards cobalt-60 gamma radiation differs from each other and significant decrease in survival was observed in a dose-dependent manner. Thus the present study revealed that the property of radioresistance in Lactobacillus depends upon the source from where they have been isolated.

Keywords: dysbiosis, lactobacillus, mitigation, radiation

Procedia PDF Downloads 137
397 The Use of Spirulina during Aerobic Exercise on the Performance of Immune and Consumption Indicators (A Case Study: Young Men After Physical Training)

Authors: Vahab Behmanesh

Abstract:

One of the topics that has always attracted the attention of sports medicine and sports science experts is the positive or negative effect of sports activities on the functioning of the body's immune system. In the present research, a course of aerobic running with spirulina consumption has been studied on the maximum oxygen consumption and the performance of some indicators of the immune system of men who have trained after one session of physical activity. In this research, 50 trained students were studied randomly in four groups, spirulina- aerobic, spirulina, placebo- aerobic, and control. In order to test the research hypotheses, one-way statistical method of variance (ANOVA) was used considering the significance level of a=0.005 and post hoc test (LSD). A blood sample was taken from the participants in the first stage test in fasting and resting state immediately after Bruce's maximal test on the treadmill until complete relaxation was reached, and their Vo2max value was determined through the aforementioned test. The subjects of the spirulina-aerobic running and placebo-aerobic running groups took three 500 mg spirulina and 500 mg placebo pills a day for six weeks and ran three times a week for 30 minutes at the threshold of aerobic stimulation. The spirulina and placebo groups also consumed spirulina and placebo tablets in the above method for six weeks. Then they did the same first stage test as the second stage test. Blood samples were taken to measure the number of CD4+, CD8+, NK, and the ratio of CD4+ to CD8+ on four occasions before and after the first and second stage tests. The analysis of the findings showed that: aerobic running and spirulina supplement alone increase Vo2max. Aerobic running and consumption of spirulina increases Vo2max more than other groups (P<0.05), +CD4 and hemoglobin of the spirulina-aerobic running group was significantly different from other groups (P=0.002), +CD4 of the groups together There was no significant difference, NK increased in all groups, the ratio of CD4+ to CD8+ between the groups had a significant difference (P=0.002), the ratio of CD4+ to CD8+ in the spirulina- aerobic group was lower than the spirulina and placebo groups. All in all, it can be concluded that the supplement of spirulina and aerobic exercise may increase Vo2max and improve safety indicators.

Keywords: spirulina (Q2), hemoglobin (Q3), aerobic exercise (Q3), residual activity (Q2), CD4+ to CD8+ ratio (Q3)

Procedia PDF Downloads 123
396 Tocotrienol Rich Fraction in Nicotine-Induced Embryos: Cytoskeletal Changes of Actin and Tubulin

Authors: Nurul Hamirah Kamsani, Mohd Hamim Rajikin, Nor Ashikin Mohamed Noor Khan, Sharaniza Abdul Rahim

Abstract:

Cytoskeletal structures, in particular actin and tubulin, provide a fundamental framework in all cells, including embryos. Under influence of nicotine, the cytoskeletal organization may be subjected to oxidative stress (OS) insult and cause alteration. Tocotrienol-rich fraction (TRF) is proven to enhance fertility better than the other sub-group of Vitamin E, tocopherols (TCPs). The objective of this study was to evaluate the effects of TRF on 1) actin and tubulin of 2- and 8-cell murine embryos and 2) the regulation of reactive oxygen species (ROS)-scavenging enzymes; induced by nicotine. Twenty four female Balb/C were subjected to either subcutaneous (sc) injection of 0.9% NaCl; sc injection of 3.0 mg/kg bw/day nicotine; sc injection of 3.0 mg/kg bw/day nicotine + oral gavage (OG) of 60 mg/kg bw/day TRF; or OG of 60 mg/kg bw/day TRF for 7 consecutive days. After superovulation and mating, animals were euthanized. 2-cell developing embryos were retrieved. 50% of the retrieved embryos were visualized under confocal laser staining microscopy (CLSM) for alterations of actin and tubulin. The remaining amount of embryos was cultured in vitro until 8-cell stage followed by CLSM visualization. Blood plasma was subjected to OS assays. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined and analysed accordingly. At both 2- and 8-cell developing stages, actin intensities were significantly reduced in the nicotine group (p<0.001). After the intervention, actin intensity was significantly increased compared to that of the nicotine group (p<0.001). The same trend was seen in tubulin at both cell stages. TRF has minimized the deleterious effects of nicotine in actin and tubulin of both 2- and 8-cell developmental stages during pre-implantation embryonic development in mice in vitro. Levels of endogenous anti-oxidative enzymes were sustained close to control accompanied by decreased levels of OS biomarker.

Keywords: actin, nicotine, pre-implantation embryos, tocotrienol rich fraction, tubulin

Procedia PDF Downloads 151
395 Consumer Health Risk Assessment from Some Heavy Metal Bioaccumulation in Common Carp (Cyprinus Carpio) from Lake Koka, Ethiopia

Authors: Mathewos Temesgen, Lemi Geleta

Abstract:

Lake Koka is one of the Ethiopian Central Rift Valleys lakes, where the absorbance of domestic, agricultural, and industrial waste from the nearby industrial and agro-industrial activities is very common. The aim of this research was to assess the heavy metal bioaccumulation in edible parts of common carp (Cyprinus carpio) in Lake Koka and the health risks associated with the dietary intake of the fish. Three sampling sites were selected randomly for primary data collection. Physicochemical parameters (pH, Total Dissolved Solids, Dissolved Oxygen and Electrical Conductivity) were measured in-situ. Four heavy metals (Cd, Cr, Pb, and Zn) in water and bio-accumulation in the edible parts of the fish were analyzed with flame atomic absorption spectrometry. The mean values of TDS, EC, DO and pH of the lake water were 458.1 mg/L, 905.7 µ s/cm, 7.36 mg/L, and 7.9, respectively. The mean concentrations of Zn, Cr, and Cd in the edible part of fish were also 0.18 mg/kg, ND-0.24 mg/kg, and ND-0.03 mg/kg, respectively. Pb was, however, not identified. The amount of Cr in the examined fish muscle was above the level set by FAO, and the accumulation of the metals showed marked differences between sampling sites (p<0.05). The concentrations of Cd, Pb and were below the maximum permissible limit. The results also indicated that Cr has a high transfer factor value and Zn has the lowest. The carcinogenic hazard ratio values were below the threshold value (<1) for the edible parts of fish. The estimated weekly intake of heavy metals from fish muscles ranked as Cr>Zn>Cd, but the values were lower than the Reference Dose limit for metals. The carcinogenic risk values indicated a low health risk due to the intake of individual metals from fish. Furthermore, the hazard index of the edible part of fish was less than unity. Generally, the water quality is not a risk for the survival and reproduction of fish, and the heavy metal contents in the edible parts of fish exhibited low carcinogenic risk through the food chain.

Keywords: bio-accumulation, cyprinus carpio, hazard index, heavy metals, Lake Koka

Procedia PDF Downloads 114
394 Antibacterial Property of ZnO Nanoparticles: Effect of Intrinsic Defects

Authors: Suresh Kumar Verma, Jugal Kishore Das, Ealisha Jha, Mrutyunjay Suar, SKS Parashar

Abstract:

In recent years nanoforms of inorganic metallic oxides has attracted a lot of interest due to their small size and significantly improved physical, chemical and biological properties compared to their molecular precursor. Some of the inorganic materials such as TiO2, ZnO, MgO, CaO, Al2O3 have been extensively used in biological applications. Zinc Oxide is a Wurtzite-type semiconductor and piezo-electric material exhibiting excellent electrical, optical and chemical properties with a band energy gap of 3.1-3.4 eV. Nanoforms of Zinc Oxide (ZnO) are increasingly recognised for their utility in biological application. The significant physical parameters such as surface area, particle size, surface charge and Zeta potential of Zinc Oxide (ZnO) nanoparticles makes it suitable for the uptake, persistance, biological, and chemical activities inside the living cells. The present study shows the effect of intrinsic defects of ZnO nanocrystals synthesized by high energy ball milling (HEBM) technique in their antibacterial activities. Bulk Zinc oxide purchased from market were ball milled for 7 h, 10 h, and 15 h respectively to produce nanosized Zinc Oxide. The structural and optical modification of such synthesized particles were determined by X-ray diffraction (XRD), Scanning Electron Microscopy and Electron Paramagnetic Resonance (EPR). The antibacterial property of synthesized Zinc Oxide nanoparticles was tested using well diffusion, minimum inhibitory Concentration, minimum bacteriocidal concentration, reactive oxygen species (ROS) estimation and membrane potential determination methods. In this study we observed that antibacterial activity of ZnO nanoparticles is because of the intrinsic defects that exist as a function of difference in size and milling time.

Keywords: high energy ball milling, ZnO nanoparticles, EPR, Antibacterial properties

Procedia PDF Downloads 428
393 Ion Beam Writing and Implantation in Graphene Oxide, Reduced Graphene Oxide and Polyimide Through Polymer Mask for Sensorics Applications

Authors: Jan Luxa, Vlastimil Mazanek, Petr Malinsky, Alexander Romanenko, Mariapompea Cutroneo, Vladimir Havranek, Josef Novak, Eva Stepanovska, Anna Mackova, Zdenek Sofer

Abstract:

Using accelerated energetic ions is an interesting method for the introduction of structural changes in various carbon-based materials. This way, the properties can be altered in two ways: a) the ions lead to the formation of conductive pathways in graphene oxide structures due to the elimination of oxygen functionalities and b) doping with selected ions to form metal nanoclusters, thus increasing the conductivity. In this work, energetic beams were employed in two ways to prepare capacitor structures in graphene oxide (GO), reduced graphene oxide (rGO) and polyimide (PI) on a micro-scale. The first method revolved around using ion beam writing with a focused ion beam, and the method involved ion implantation via a polymeric mask. To prepare the polymeric mask, a direct spin-coating of PMMA on top of the foils was used. Subsequently, proton beam writing and development in isopropyl alcohol were employed. Finally, the mask was removed using acetone solvent. All three materials were exposed to ion beams with an energy of 2.5-5 MeV and an ion fluence of 3.75x10¹⁴ cm-² (1800 nC.mm-²). Thus, prepared microstructures were thoroughly characterized by various analytical methods, including Scanning electron microscopy (SEM) with Energy-Dispersive X-ray spectroscopy (EDS), X-ray Photoelectron spectroscopy (XPS), micro-Raman spectroscopy, Rutherford Back-scattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) spectroscopy. Finally, these materials were employed and tested as sensors for humidity using electrical conductivity measurements. The results clearly demonstrate that the type of ions, their energy and fluence all have a significant influence on the sensory properties of thus prepared sensors.

Keywords: graphene, graphene oxide, polyimide, ion implantation, sensors

Procedia PDF Downloads 85
392 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate

Authors: Beenish Saba, Ann D. Christy

Abstract:

Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.

Keywords: microbial fuel cell, landfill leachate, power generation, MFC

Procedia PDF Downloads 316
391 Nitrous Oxide Wastage: Putting Strategies “In the Pipeline” to Reduce Carbon Emissions from Nitrous Oxide

Authors: F. Gallop, C. Ward, M. Zaky, M. Vaghela, R. Sabaratnam

Abstract:

Nitrous oxide (N₂O) has been used in anaesthesia for over 150 years owing to advantageous physical and pharmacological properties. However, with a global warming potential of 310, we have an urgent responsibility to reduce its usage and emission. Anecdotal evidence in our hospital trust suggests minimal N₂O usage, yet our theatres receive a staggering supply. This warranted further investigation. We used a data collection tool to prospectively capture quantitative and qualitative data regarding N₂O cases during one week: this recorded demographics, N₂O indications, clinical management, and total N₂O consumption in litres. In addition, N₂O usage in dental sedation suites and paediatric theatres was separately quantified. Pipeline supply data was acquired from British Oxygen Company accounts. We captured 490 cases. 4% (n=19) used N₂O, 63% (n=12) of these in dental theatres. Common N₂0 indications were induction speed (37%) and rapidly increasing anaesthesia depth (32%). In adult cases, N₂O was always used intraoperatively rather than solely at induction. 74% (n=14) of anaesthetists reported environmental concern over using N₂O. The week’s total N₂O usage was 8109 litres, amounting to 421,668 litres annually. However, the annual N₂O pipeline supply is 2,997,000 litres; an enormous 1.8 million Kg of CO₂. Our results supportively demonstrate that the N₂O pipeline supply greatly exceeds its clinical use. Acknowledging clinical areas not audited, the discrepancy between supply and usage suggests approximately 2.5 million litres of yearly wastage. We consequently recommend terminating the N₂O pipeline supply in minimally used areas, eliminating 1.5 million Kg of CO₂ emissions. High usage clinical areas could consider portable N₂O cylinders as an alternative. In Sweden, N₂O destruction technology is routinely used to minimise CO₂ emissions. Our results support National Health System investment in similar infrastructure.

Keywords: anaesthesia, environment, medical gases, nitrous oxide, sustainability

Procedia PDF Downloads 139
390 Determination of Anti-Fungal Activity of Cedrus deodara Oil against Oligoporus placentus, Trametes versicolor and Xylaria acuminata on Populus deltoids

Authors: Sauradipta Ganguly, Akhato Sumi, Sanjeet Kumar Hom, Ajan T. Lotha

Abstract:

Populus deltoides is a hardwood used predominantly for the manufacturing of plywood, matchsticks, and paper in India and hence has a higher economical significance. Wood-decaying fungi cause serious damage to Populus deltoides products, as the wood itself is perishable and vulnerable to decaying agents, decreasing their aesthetical value which in return results in significant monetary loss for the wood industries concerned. The aim of the study was to determine the antifungal activity of Cedrus deodara oil against three primary wood-decaying fungi namely white-rot fungi (Trametes versicolor), brown-rot fungi (Oligoporus placentus) and soft-rot fungi (Xylaria acuminata) on Populus deltoides samples under optimum laboratory conditions. The susceptibility of Populus deltoides samples on the fungal attack and the ability of deodar oil to control colonization of the wood rotting fungi on the samples were assessed. Three concentrations of deodar oil were considered for the study as treating solutions, i.e., 4%, 5%, and 6%. The Populus deltoides samples were treated with treating solutions, and the ability of the same to prevent a fungal attack on the samples were assessed using accelerated test in the laboratory at Biochemical Oxygen Demand incubator at temperature (25 ± 2°C) and relative humidity 70 ± 4%. Efficacy test and statistical analysis of deodar oil against Trametes versicolor, Oligoporus placentus, and Xylariaacuminataon P. deltoides samples exhibited light, minor and negligible mycelia growth at 4 %, 5% and 6% concentrations of deodar oil, respectively. Whereas, moderate to heavy attack was observed on the surface of the control samples. Statistical analysis further established that the treatments were statistically significant and had significantly inhibited fungal growth of all the three fungus spp by almost 3 to 5 times.

Keywords: populus deltoides, Trametes versicolor, Oligoporus placentus, Xylaria acuminata, Deodar oil, treatment

Procedia PDF Downloads 125
389 Phytoremediation of Textile Wastewater Laden with 1,4-Dioxane Using Eichhornia crassipes: A Sustainable Development Approach

Authors: Hadeer Ibrahiem, Mahmoud Nasr, Masarrat M. M. Migahid, Mohamed A. Ghazy

Abstract:

The release of textile wastewater loaded with 1,4 dioxane into aquatic ecosystems has been associated with various human health risks and adverse environmental impacts. In parallel, phytoremediation has been recently employed to treat highly polluted wastewater because various plant species tend to produce certain enzymes as a defense mechanism against a toxic environment. To our best knowledge, this study is the first to investigate the ability of phytoremediation using Eichhornia crassipes for the removal of various pollutants, including 1,4 dioxane, from textile wastewater. A phytoremediation system composed of Eichhornia crassipes was acclimatized for 10 d, and then operated in four lab-scale hydroponic systems, viz., negative control, positive control, and two different 1,4 dioxane concentration (400 and 500 mg/L). After 11 d of operation, the phytoremediation system achieved removal efficiencies of 67.5±3.4%, 89.4±4.4%, 83.6±3.8% for 1,4 dioxane (at initial concentration 400 mg/L), chemical oxygen demand (COD) (at initial concentration 679 mg/L), and cumulative heavy metals, respectively. The removal of these pollutants was mainly supported by the phyto-sorption and phytodegradation mechanisms. The economic feasibility of this phytoremediation system was validated by estimating the capital and operating costs, requiring 4.6 USD for the treatment of 1 m3 textile wastewater. The study concluded that the phytoremediation process could be used as a practical and economical approach to treat textile wastewater laden with various organic and inorganic pollutants. Due to the observed pollution reduction and human health protection, the study objectives would fulfill the targets of SDG 3 “Good Health and Well-being” and SDG 6 “Clean Water and Sanitation”. Further studies are required to (i) investigate the ability of plant species to withstand higher concentrations of 1,4 dioxane for an extended operation time and (ii) understand the biochemical pathways for the degradation of 1,4 dioxane via the action of plant enzymes and the associated microbial community.

Keywords: 1, 4 dioxane concentrations, hydrophytes, Eichhornia crassipes, phytoremediation effectiveness, SDGs, textile industrial effluent

Procedia PDF Downloads 101
388 Nanoprofiling of GaAs Surface in a Combined Low-Temperature Plasma for Microwave Devices

Authors: Victor S. Klimin, Alexey A. Rezvan, Maxim S. Solodovnik, Oleg A. Ageev

Abstract:

In this paper, the problems of existing methods of profiling and surface modification of nanoscale arsenide-gallium structures are analyzed. The use of a combination of methods of local anodic oxidation and plasma chemical etching to solve this problem is considered. The main features that make this technology one of the promising areas of modification and profiling of near-surface layers of solids are demonstrated. In this paper, we studied the effect of formation stress and etching time on the geometrical parameters of the etched layer and the roughness of the etched surface. Experimental dependences of the thickness of the etched layer on the time and stress of formation were obtained. The surface analysis was carried out using atomic force microscopy methods, the corresponding profilograms were constructed from the obtained images, and the roughness of the etched surface was studied accordingly. It was shown that at high formation voltage, the depth of the etched surface increased, this is due to an increase in the number of active particles (oxygen ions and hydroxyl groups) formed as a result of the decomposition of water molecules in an electric field, during the formation of oxide nanostructures on the surface of gallium arsenide. Oxide layers were used as negative masks for subsequent plasma chemical etching by the STE ICPe68 unit. BCl₃ was chosen as the chlorine-containing gas, which differs from analogs in some parameters for the effect of etching of nanostructures based on gallium arsenide in the low-temperature plasma. The gas mixture of reaction chamber consisted of a buffer gas NAr = 100 cm³/min and a chlorine-containing gas NBCl₃ = 15 cm³/min at a pressure P = 2 Pa. The influence of these methods modes, which are formation voltage and etching time, on the roughness and geometric parameters, and corresponding dependences are demonstrated. Probe nanotechnology was used for surface analysis.

Keywords: nanostructures, GaAs, plasma chemical etching, modification structures

Procedia PDF Downloads 145
387 Internal Stresses and Structural Evolutions in Zr Alloys during Oxidation at High Temperature and Subsequent Cooling

Authors: Raphaelle Guillou, Matthieu Le Saux, Jean-Christophe Brachet, Thomas Guilbert, Elodie Rouesne, Denis Menut, Caroline Toffolon-Masclet, Dominique Thiaudiere

Abstract:

In some hypothetical accidental situations, such as during a Loss Of Coolant Accident (LOCA) in pressurized water reactors, fuel cladding tubes made of zirconium alloys can be exposed for a few minutes to steam at High Temperature (HT up to 1200°C) before being cooled and then quenched in water. Under LOCA-like conditions, the cladding undergoes a number of metallurgical changes (phase transformations, oxygen diffusion and growth of an oxide layer...) and is consequently submitted to internal stresses whose state evolves during the transient. These stresses can have an effect on the oxide structure and the oxidation kinetics of the material. They evolve during cooling, owing to differences between the thermal expansion coefficients of the various phases and phase transformations of the metal and the oxide. These stresses may result in the failure of the cladding during quenching, once the material is embrittled by oxidation. In order to progress in the evaluation of these internal stresses, X-ray diffraction experiments were performed in-situ under synchrotron radiation during HT oxidation and subsequent cooling on Zircaloy-4 sheet samples. First, structural evolutions, such as phase transformations, have been studied as a function of temperature for both the oxide layer and the metallic substrate. Then, internal stresses generated within the material oxidized at temperatures between 700 and 900°C have been evaluated thanks to the 2θ diffraction peak position shift measured during the in-situ experiments. Electron backscatter diffraction (EBSD) analysis was performed on the samples after cooling in order to characterize their crystallographic texture. Furthermore, macroscopic strains induced by oxidation in the conditions investigated during the in-situ X-ray diffraction experiments were measured in-situ in a dilatometer.

Keywords: APRP, stains measurements, synchrotron diffraction, zirconium allows

Procedia PDF Downloads 309
386 A Study on the Influence of Salicylic Acid on Sub-Mergence Stress Recovery of Selected Rice Cultivars Grown in Kebbi State Northwest Nigeria

Authors: Ja'afar Umar, Salisu Naziru

Abstract:

Submergence stress in plants refers to the physiological and biochemical challenges that occur when plants are partially or fully submerged in water. This type of stress primarily affects plants in flood-prone areas or regions with heavy rainfall, where oxygen availability and other essential resources are limited. Salicylic acid (SA) is an important plant hormone involved in various physiological processes and responses to environmental stress, particularly in plant defense mechanisms against pathogens. Its role as a signaling molecule in plants is crucial for activating defense pathways, regulating growth, and managing responses to biotic (living) and abiotic (non-living) stresses. The study involved using salicylic acid (SA) at concentrations of 1g/L, 2g/L, and 3g/L, dissolved in water, to treat rice plants during submergence stress. The experiment had four treatments: 0g/L (control), 1g/L, 2g/L, and 3g/L of SA, each with four replications. Rice seedlings were submerged in water for 11 days and then desubmerged for 7 days. During the experiment, all plants except the control received a foliar spray of SA solutions, while control plants were sprayed with distilled water. The results indicate a significant difference (P<0.05) between the control and salicylic acid (SA)-treated rice plants. SalicyJalic acid, particularly at concentrations of 1g/L, 2g/L, and 3g/L, generally improved the recovery of all four rice cultivars from submergence stress, as reflected by increased numbers of nodes, longer internodes, taller plants, and longer root lengths compared to untreated controls. Salicylic acid, particularly at concentrations of 1g/L, 2g/L, and 3g/L, generally improved the recovery of all four rice cultivars from submergence stress, as reflected by increased numbers of nodes, longer internodes, taller plants, and longer root lengths compared to untreated controls.

Keywords: submergence, stress, rice, salicylic

Procedia PDF Downloads 18
385 A Bicycle Based Model of Prehospital Care Implanted in Northeast of the Brazil: Initial Experience

Authors: Odaleia de O. Farias, Suzelene C. Marinho, Ecleidson B. Fragoso, Daniel S. Lima, Francisco R. S. Lira, Lara S. Araújo, Gabriel dos S. D. Soares

Abstract:

In populous cities, prehospital care services that use vehicles alternative to ambulances are needed in order to reduce costs and improve response time to occurrences in areas with large concentration of people, such as leisure and tourism spaces. In this context, it was implanted a program called BIKE VIDA, that is innovative quick access and assistance program. The aim of this study is to describe the implantation and initial profile of occurrences performed by an urgency/emergency pre-hospital care service through paramedics on bicycles. It is a cross-sectional, descriptive study carried out in the city of Fortaleza, Ceara, Brazil. The data included service records from July to August 2017. Ethical aspects were respected. The service covers a perimeter of 4.5 km, divided into three areas with perimeter of 1.5 km for each paramedic, attending from 5 am to 9 pm. Materials transported by bicycles include External Automated Defibrillator - DEA, portable oxygen, oximeter, cervical collar, stethoscope, sphygmomanometer, dressing and immobilization materials and personal protective equipment. Occurrences are requested directly by calling the emergency number 192 or through direct approach to the professional. In the first month of the program, there were 93 emergencies/urgencies, mainly in the daytime period (71,0%), in males (59,7%), in the age range of 26 to 45 years (46,2%). The main nature was traumatic incidents (53.3%). Most of the cases (88,2%) did not require ambulance transport to the hospital, and there were two deaths. Pre-hospital service through bicycles is an innovative strategy in Brazil and has shown to be promising in terms of reducing costs and improving the quality of the services offered.

Keywords: emergency, response time, prehospital care, urgency

Procedia PDF Downloads 197
384 Brown Macroalgae L. hyperborea as Natural Cation Exchanger and Electron Donor for the Treatment of a Zinc and Hexavalent Chromium Containing Galvanization Wastewater

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The electroplating industry requires a lot of process water, which generates a large volume of wastewater loaded with heavy metals. Two different wastewaters were collected in a company’s wastewater treatment plant, one after the use of zinc in the metal plating process and the other after the use of chromium. The main characteristics of the Zn(II) and Cr(VI) wastewaters are: pH = 6.7/5.9; chemical oxygen demand = 55/<5 mg/L; sodium, potassium, magnesium and calcium ions concentrations of 326/28, 4/28, 11/7 and 46/37 mg/L, respectively; zinc(II) = 11 mg/L and Cr(VI) = 39 mg/L. Batch studies showed that L. hyperborea can be established as a natural cation exchanger for heavy metals uptake mainly due to the presence of negatively charged functional groups in the surface of the biomass. Beyond that, L. hyperborea can be used as a natural electron donor for hexavalent chromium reduction to trivalent chromium at acidic medium through the oxidation of the biomass, and Cr(III) can be further bound to the negatively charged functional groups. The uptake capacity of Cr(III) by the oxidized biomass after Cr(VI) reduction was higher than by the algae in its original form. This can be attributed to the oxidation of the biomass during Cr(VI) reduction, turning other active sites available for Cr(III) binding. The brown macroalgae Laminaria hyperborea was packed in a fixed-bed column in order to evaluate the feasibility of the system for the continuous treatment of the two galvanization wastewaters. The column, with an internal diameter of 4.8 cm, was packed with 59 g of algae up to a bed height of 27 cm. The operation strategy adopted for the treatment of the two wastewaters consisted in: i) treatment of the Zn(II) wastewater in the first sorption cycle; ii) desorption of pre-loaded Zn(II) using an 1.0 M HCl solution; iii) treatment of the Cr(VI) wastewater, taking advantage of the acidic conditions of the column after the desorption cycle, for the reduction of the Cr(VI) to Cr(III), in the presence of the electrons resulting from the biomass oxidation. This cycle ends when all the oxidizing groups are used.

Keywords: biosorption, brown marine macroalgae, zinc, chromium

Procedia PDF Downloads 323
383 From Homogeneous to Phase Separated UV-Cured Interpenetrating Polymer Networks: Influence of the System Composition on Properties and Microstructure

Authors: Caroline Rocco, Feyza Karasu, Céline Croutxé-Barghorn, Xavier Allonas, Maxime Lecompère, Gérard Riess, Yujing Zhang, Catarina Esteves, Leendert van der Ven, Rolf van Benthem Gijsbertus de With

Abstract:

Acrylates are widely used in UV-curing technology. Their high reactivity can, however, limit their conversion due to early vitrification. In addition, the free radical photopolymerization is known to be sensitive to oxygen inhibition leading to tacky surfaces. Although epoxides can lead to full polymerization, they are sensitive to humidity and exhibit low polymerization rate. To overcome the intrinsic limitations of both classes of monomers, Interpenetrating Polymer Networks (IPNs) can be synthesized. They consist of at least two cross linked polymers which are permanently entangled. They can be achieved under thermal and/or light induced polymerization in one or two steps approach. IPNs can display homogeneous to heterogeneous morphologies with various degrees of phase separation strongly linked to the monomer miscibility and also synthesis parameters. In this presentation, we synthesize UV-cured methacrylate - epoxide based IPNs with different chemical compositions in order to get a better understanding of their formation and phase separation. Miscibility before and during the photopolymerization, reaction kinetics, as well as mechanical properties and morphology have been investigated. The key parameters controlling the morphology and the phase separation, namely monomer miscibility and synthesis parameters have been identified. By monitoring the stiffness changes on the film surface, atomic force acoustic microscopy (AFAM) gave, in conjunction with polymerization kinetic profiles and thermomechanical properties, explanations and corroborated the miscibility predictions. When varying the methacrylate / epoxide ratio, it was possible to move from a miscible and highly-interpenetrated IPN to a totally immiscible and phase-separated one.

Keywords: investigation of properties and morphology, kinetics, phase separation, UV-cured IPNs

Procedia PDF Downloads 367
382 Enhancing Sewage Sludge Management through Integrated Hydrothermal Liquefaction and Anaerobic Digestion: A Comparative Study

Authors: Harveen Kaur Tatla, Parisa Niknejad, Rajender Gupta, Bipro Ranjan Dhar, Mohd. Adana Khan

Abstract:

Sewage sludge management presents a pressing challenge in the realm of wastewater treatment, calling for sustainable and efficient solutions. This study explores the integration of Hydrothermal Liquefaction (HTL) and Anaerobic Digestion (AD) as a promising approach to address the complexities associated with sewage sludge treatment. The integration of these two processes offers a complementary and synergistic framework, allowing for the mitigation of inherent limitations, thereby enhancing overall efficiency, product quality, and the comprehensive utilization of sewage sludge. In this research, we investigate the optimal sequencing of HTL and AD within the treatment framework, aiming to discern which sequence, whether HTL followed by AD or AD followed by HTL, yields superior results. We explore a range of HTL working temperatures, including 250°C, 300°C, and 350°C, coupled with residence times of 30 and 60 minutes. To evaluate the effectiveness of each sequence, a battery of tests is conducted on the resultant products, encompassing Total Ammonia Nitrogen (TAN), Chemical Oxygen Demand (COD), and Volatile Fatty Acids (VFA). Additionally, elemental analysis is employed to determine which sequence maximizes energy recovery. Our findings illuminate the intricate dynamics of HTL and AD integration for sewage sludge management, shedding light on the temperature-residence time interplay and its impact on treatment efficiency. This study not only contributes to the optimization of sewage sludge treatment but also underscores the potential of integrated processes in sustainable waste management strategies. The insights gleaned from this research hold promise for advancing the field of wastewater treatment and resource recovery, addressing critical environmental and energy challenges.

Keywords: Anaerobic Digestion (AD), aqueous phase, energy recovery, Hydrothermal Liquefaction (HTL), sewage sludge management, sustainability.

Procedia PDF Downloads 81
381 Zinc Oxide Nanoparticles as Support for Classical Anti-cancer Therapies

Authors: Nadine Wiesmann, Melanie Viel, Christoph Buhr, Rachel Tanner, Wolfgang Tremel, Juergen Brieger

Abstract:

Recidivation of tumors and the development of resistances against the classical anti-tumor approaches represent a major challenge we face when treating cancer. In order to master this challenge, we are in desperate need of new treatment options beyond the beaten tracks. Zinc oxide nanoparticles (ZnO NPs) represent such an innovative approach. Zinc oxide is characterized by a high level of biocompatibility, concurrently ZnO NPs are able to exert anti-tumor effects. By concentration of the nanoparticles at the tumor site, tumor cells can specifically be exposed to the nanoparticles while low zinc concentrations at off-target sites are tolerated well and can be excreted easily. We evaluated the toxicity of ZnO NPs in vitro with the help of immortalized tumor cell lines and primary cells stemming from healthy tissue. Additionally, the Chorioallantoic Membrane Assay (CAM Assay) was employed to gain insights into the in vivo behavior of the nanoparticles. We could show that ZnO NPs interact with tumor cells as nanoparticulate matter. Furthermore, the extensive release of zinc ions from the nanoparticles nearby and within the tumor cells results in overload with zinc. Beyond that, ZnO NPs were found to further the generation of reactive oxygen species (ROS). We were able to show that tumor cells were more prone to the toxic effects of ZnO NPs at intermediate concentrations compared to fibroblasts. With the help of ZnO NPs covered by a silica shell in which FITC dye was incorporated, we were able to track ZnO NPs within tumor cells as well as within a whole organism in the CAM assay after injection into the bloodstream. Depending on the applied concentrations, selective tumor cell killing seems feasible. Furthermore, the combinational treatment of tumor cells with radiotherapy and ZnO NPs shows promising results. Still, further investigations are needed to gain a better understanding of the interaction between ZnO NPs and the human body to be able to pave the way for their application as an innovative anti-tumor agent in the clinics.

Keywords: metal oxide nanoparticles, nanomedicine, overcome resistances against classical treatment options, zinc oxide nanoparticles

Procedia PDF Downloads 128
380 Relationship between Monthly Shrimp Catch Rates and the Oceanography-Related Variables

Authors: Hussain M. Al-foudari, Weizhong Chen, James M. Bishop

Abstract:

Correlations between oceanographic variables and monthly catch rates of total shrimp and those of each of the major species (Penaeus semisulcatus, Metapenaeus affinis and Parapenaeopsis stylifera) showed significant differences for particular conditions. Catches of P. semisulcatus were basically positively correlated with temperature, i.e., the higher the temperature, the higher the catch rate, while those of M. affinis and P. stylifera were negatively correlated with temperature, i.e., high catch rates occurred in the low temperature waters. Thus, during the months January and April, P. semisulcatus preferred waters with high temperature, usually the offshore and southern areas, while M. affinis and P. stylifera preferred waters with low temperature, usually inshore and northern areas. The relationships between the catch rate of P. semisulcatus and salinity were not so clear. Results indicated that although salinity was one of the factors affecting the distribution of P. semisulcatus, it was not the principal factor, and impacts from other variables, such as temperature, might overshadow the correlation between the catch rates of P. semisulcatus and salinity. The relationship between shrimp catch rates and dissolved oxygen (DO) also showed mixed results. The catch rates of M. affinis increased with a decrease of surface DO in November 2013, but decreased with lower bottom DO in December. These results indicated that DO might be a factor affecting distributions of the shrimp; however; the true correlation between catch rate and DO might be easily overshadowed by other environmental variables. Catch rates of P. semisulcatus did not show any relationship with depth. P. semisulcatus is a migratory species and widely distributed in Kuwait's waters.During the shrimp season from July through December, P. semisulcatus occurs in almost all areas in Kuwait's waters irrespective of water depth. The catch rates of M. affinis and P. stylifera, however, showed clear relationships with depth. Both species had significantly higher catch rates in shallower waters, indicative of their restricted distribution.

Keywords: Kuwait, Penaeus semisulcatus, Metapenaeus affinis, Parapenaeopsis stylifera, Arabian gulf

Procedia PDF Downloads 490
379 Antioxidant Activity of Friedelin, Eudesmic Acid and Methyl-3,4,5-Trimethoxybenzoate from Tapinanthus bangwensis (Engl., and K. Krause) [Loranthaceae] Grown in Nigeria

Authors: Odunayo Christy Atewolara-Odule, Olapeju O. Aiyelaagbe

Abstract:

The search for new natural anti-oxidants has grown tremendously over the years because reactive oxygen species (ROS) production and oxidative stress have been linked to a large number of human degenerative diseases, such as cancer, cardiovascular diseases, inflammation, and diabetes. Tapinanthus bangwensis, a parasitic plant commonly known as mistletoe belonging to the Loranthaceae family, is mostly employed traditionally to treat inflammation, cancer, diabetes, and hypertension to mention a few. In this study, air-dried pulverized leaves and stem of Tapinanthus bangwensis were successively extracted with n-hexane, ethyl acetate, and methanol to give the corresponding crude extracts. The extracts were purified by column chromatography and high-performance liquid chromatography to give the isolated compounds. Structural elucidation was done using mass spectrometry, Fourier transform infra-red, 1D and 2D NMR spectroscopy. The antioxidant activity of the compounds was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ascorbic acid as standard. Three compounds; Friedelin, Eudesmic acid (3,4,5-trimethoxybenzoic) and Methyl-3,4,5-trimethoxybenzoate were isolated from the extracts of Tapinanthus bangwensis. Friedelin was isolated from the ethyl acetate extract of the stem while the two other compounds were isolated from the methanol extract of the leaves. The percentages of free radical scavenging activities of the compounds are as follows: Friedelin, 73.69%, methyl-3,4,5-trimethoxybenzoate, 79.33% and eudesmic, 87.68% anti-oxidant activity which were quite comparable to 93.96% given by ascorbic acid. We are reporting, to our best knowledge, for the first time the occurrence of friedelin and eudesmic acid in Tapinanthus bangwensis. The high anti-oxidant activity of these compounds supports the use of this plant in the management of diabetes and hypertension as they will be useful in combating complications arising from the disease.

Keywords: column chromatography, eudesmic acid, friedelin, Tapinanthus bangwensis

Procedia PDF Downloads 248
378 Investigation of Light Transmission Characteristics and CO2 Capture Potential of Microalgae Panel Bioreactors for Building Façade Applications

Authors: E. S. Umdu, Ilker Kahraman, Nurdan Yildirim, Levent Bilir

Abstract:

Algae-culture offers new applications in sustainable architecture with its continuous productive cycle, and a potential for high carbon dioxide capture. Microalgae itself has multiple functions such as carbon dioxide fixation, biomass production, oxygen generation and waste water treatment. Incorporating microalgae cultivation processes and systems to building design to utilize this potential is promising. Microalgae cultivation systems, especially closed photo bioreactors can be implemented as components in buildings. And these systems be accommodated in the façade of a building, or in other urban infrastructure in the future. Application microalgae bio-reactors of on building’s façade has the added benefit of acting as an effective insulation system, keeping out the heat of the summer and the chill of the winter. Furthermore, microalgae can give a dynamic appearance with a liquid façade that also works as an adaptive sunshade. Recently, potential of microalgae to use as a building component to reduce net energy demand in buildings becomes a popular topic and innovative design proposals and a handful of pilot applications appeared. Yet there is only a handful of examples in application and even less information on how these systems affect building energy behavior. Further studies on microalgae mostly focused on single application approach targeting either carbon dioxide utilization through biomass production or biofuel production. The main objective of this study is to investigate effects of design parameters of microalgae panel bio-reactors on light transmission characteristics and CO2 capture potential during growth of Nannochloropsis occulata sp. A maximum reduction of 18 ppm in CO2 levels of input air during the experiments with a % light transmission of 14.10, was achieved in 6 day growth cycles. Heat transfer behavior during these cycles was also inspected for possible façade applications.

Keywords: building façade, CO2 capture, light transmittance, microalgae

Procedia PDF Downloads 190