Search results for: neural smith predictor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2441

Search results for: neural smith predictor

1391 Afghan Refugees as Perpetui Inimici: Revisiting an Early Modern Debate on Enemy Aliens

Authors: Brian Smith

Abstract:

This paper seeks to contrast the contemporary anti-immigration rhetoric since the US pullout of Afghanistan with the debate about enemy aliens in the early modern period. In the seventeenth century, Sir Edward Coke declared that “infidels” should be seen as perpetui inimici (perpetual enemies) since their values were inimical to those of Christian states. As such, they could be perpetually excluded and denied legal standing. Even at that time, these anti-“infidel” arguments clashed with the natural law tradition of hospitality, which assumed that states had a moral responsibility to admit and care for strangers. In particular, this paper looks at the conflict between Hugo Grotius, Samuel Pufendorf, and John Locke. Grotius argues that states have a duty to admit foreigners. He goes out of his way to plan for the admittance of Jewish immigrants. In contrast, Pufendorf claimed that sovereigns had a duty exclude foreigners who would alter the constitutional character of the state. Much like Grotius, Locke argued that non-Christian peoples should be treated as friends and admitted without reservation.

Keywords: enemy aliens, perpetual enemies, hospitality, refugees

Procedia PDF Downloads 108
1390 Defective Autophagy Disturbs Neural Migration and Network Activity in hiPSC-Derived Cockayne Syndrome B Disease Models

Authors: Julia Kapr, Andrea Rossi, Haribaskar Ramachandran, Marius Pollet, Ilka Egger, Selina Dangeleit, Katharina Koch, Jean Krutmann, Ellen Fritsche

Abstract:

It is widely acknowledged that animal models do not always represent human disease. Especially human brain development is difficult to model in animals due to a variety of structural and functional species-specificities. This causes significant discrepancies between predicted and apparent drug efficacies in clinical trials and their subsequent failure. Emerging alternatives based on 3D in vitro approaches, such as human brain spheres or organoids, may in the future reduce and ultimately replace animal models. Here, we present a human induced pluripotent stem cell (hiPSC)-based 3D neural in a vitro disease model for the Cockayne Syndrome B (CSB). CSB is a rare hereditary disease and is accompanied by severe neurologic defects, such as microcephaly, ataxia and intellectual disability, with currently no treatment options. Therefore, the aim of this study is to investigate the molecular and cellular defects found in neural hiPSC-derived CSB models. Understanding the underlying pathology of CSB enables the development of treatment options. The two CSB models used in this study comprise a patient-derived hiPSC line and its isogenic control as well as a CSB-deficient cell line based on a healthy hiPSC line (IMR90-4) background thereby excluding genetic background-related effects. Neurally induced and differentiated brain sphere cultures were characterized via RNA Sequencing, western blot (WB), immunocytochemistry (ICC) and multielectrode arrays (MEAs). CSB-deficiency leads to an altered gene expression of markers for autophagy, focal adhesion and neural network formation. Cell migration was significantly reduced and electrical activity was significantly increased in the disease cell lines. These data hint that the cellular pathologies is possibly underlying CSB. By induction of autophagy, the migration phenotype could be partially rescued, suggesting a crucial role of disturbed autophagy in defective neural migration of the disease lines. Altered autophagy may also lead to inefficient mitophagy. Accordingly, disease cell lines were shown to have a lower mitochondrial base activity and a higher susceptibility to mitochondrial stress induced by rotenone. Since mitochondria play an important role in neurotransmitter cycling, we suggest that defective mitochondria may lead to altered electrical activity in the disease cell lines. Failure to clear the defective mitochondria by mitophagy and thus missing initiation cues for new mitochondrial production could potentiate this problem. With our data, we aim at establishing a disease adverse outcome pathway (AOP), thereby adding to the in-depth understanding of this multi-faced disorder and subsequently contributing to alternative drug development.

Keywords: autophagy, disease modeling, in vitro, pluripotent stem cells

Procedia PDF Downloads 120
1389 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas

Authors: Ahmet Kayabasi, Ali Akdagli

Abstract:

In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.

Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)

Procedia PDF Downloads 441
1388 A Multidimensional Exploration of Narcissistic Personality Disorder Through Psycholinguistic Analysis and Neuroscientific Correlates

Authors: Dalia Elleuch

Abstract:

Narcissistic Personality Disorder (NPD) manifests as a personality disorder marked by inflated self-importance, heightened sensitivity to criticism, a lack of empathy, a preoccupation with appearance over substance, and features such as arrogance, grandiosity, a constant need for admiration, a tendency to exploit others, and an inclination towards demanding special treatment due to a sense of excessive entitlement (APA, 2013). This interdisciplinary study delves into NPD through the systematic synthesis of psycholinguistic analysis and neuroscientific correlates. The cognitive and emotional dimensions of NPD reveal linguistic patterns, including grandiosity, entitlement, and manipulative communication. Neuroscientific investigations reveal structural brain differences and alterations in functional connectivity, further explaining the neural underpinnings of social cognition deficits observed in individuals with NPD. Genetic predispositions and neurotransmitter imbalances add a layer of complexity to the understanding of NPD. The necessity for linguistic intervention in diagnosing and treating Narcissistic Personality Disorder is underscored by an interdisciplinary study that intricately synthesizes psycholinguistic analysis and neuroscientific correlates, offering a comprehensive understanding of NPD’s cognitive, emotional, and neural dimensions and paving the way for future practical, theoretical, and pedagogical approaches to address the complexities of this personality disorder.

Keywords: Narcissistic Personality Disorder (NPD), psycholinguistic analysis, neuroscientific correlates, interpersonal dysfunction, cognitive empathy

Procedia PDF Downloads 65
1387 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates

Authors: Abdelaziz Fellah, Allaoua Maamir

Abstract:

We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.

Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery

Procedia PDF Downloads 387
1386 On the Role of Cutting Conditions on Surface Roughness in High-Speed Thread Milling of Brass C3600

Authors: Amir Mahyar Khorasani, Ian Gibson, Moshe Goldberg, Mohammad Masoud Movahedi, Guy Littlefair

Abstract:

One of the important factors in manufacturing processes especially machining operations is surface quality. Improving this parameter results in improving fatigue strength, corrosion resistance, creep life and surface friction. The reliability and clearance of removable joints such as thread and nuts are highly related to the surface roughness. In this work, the effect of different cutting parameters such as cutting fluid pressure, feed rate and cutting speed on the surface quality of the crest of thread in the high-speed milling of Brass C3600 have been determined. Two popular neural networks containing MLP and RBF coupling with Taguchi L32 have been used to model surface roughness which was shown to be highly adept for such tasks. The contribution of this work is modelling surface roughness on the crest of the thread by using precise profilometer with nanoscale resolution. Experimental tests have been carried out for validation and approved suitable accuracy of the proposed model. Also analysing the interaction of parameters two by two showed that the most effective cutting parameter on the surface value is feed rate followed by cutting speed and cutting fluid pressure.

Keywords: artificial neural networks, cutting conditions, high-speed machining, surface roughness, thread milling

Procedia PDF Downloads 377
1385 An Interaction Model of Communication Skills and Participation in Social Work among Youth

Authors: Mohd Yusri Ibrahim

Abstract:

Youth participation in social work is essential in social and community development. Although many studies have been conducted to identify the determinant of youth involvement, few studies were discussed interaction between communication skills and youth participation in volunteerism. This article will discuss a cross-sectional study that was conducted to identify the relationship between communication skills and youth participation in social work. The results were successfully developed an interaction model of communication skills as predictor to participation criteria among youth. Finally, the article was suggested several ways to encourage youth participation in community by developing their communication skill in various stages.

Keywords: youth, participation, communication skill, social work

Procedia PDF Downloads 365
1384 Injury Prediction for Soccer Players Using Machine Learning

Authors: Amiel Satvedi, Richard Pyne

Abstract:

Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.

Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer

Procedia PDF Downloads 182
1383 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction

Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba

Abstract:

Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.

Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform

Procedia PDF Downloads 53
1382 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method

Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson

Abstract:

Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 193
1381 JaCoText: A Pretrained Model for Java Code-Text Generation

Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract:

Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.

Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks

Procedia PDF Downloads 286
1380 Prospective Relations of Childhood Maltreatment, Temperament and Delinquency among Prisoners: Moderated Mediation Effect of Age and Education

Authors: Razia Anjum, Zaqia Bano, Chan Wai

Abstract:

Temperament has been described as a multifaceted and potentially value-laden construct in literature but there is scarcity of research work in area of forensic psychology predominantly in south Asian countries. Present exposition explored the mediated effect of temperament towards the childhood maltreatment and delinquency. Further the moderated effect of prisoner’s age and education will be examined. Variable System for Windows 1.3 version was used to analyze the data provided by 517 prisoners (407 males, 110 females) from four districts prisons situated at Pakistan. Cross sectional research design was used in this study and representative sample was approached through purposive sampling technique. Only those prisoners were the part of study who maltreated in their childhood in form of physical abuse, psychological abuse, sexual abuse or experienced the emotional neglect. After exploration the childhood adversities through ‘Child Abuse Self-Report Scale’, then the prisoner’s temperament styles were explored through ‘Adult Temperament Scale’. Later on, the investigation with particular to the delinquent behaviors was carried out. The findings suggested that the presence of four temperamental styles (choleric, melancholic, phlegmatic, and sanguine) mediated the childhood maltreatment-delinquency relationship in late adulthood but not in early adulthood. Marked exploration was the significant moderated effect of Prisoner’s age and their level of education that effect the relationship of temperament towards the childhood maltreatment and the delinquency, in this way results are consistent with views on cumulative pathways to delinquency that undergone through the effect of childhood maltreatment. Results indicated that Choleric, Melancholic temperament was the positive predictor of delinquency, whereas. The Phlegmatic and Sanguine temperament were the negative predictor of delinquency, in this way, different types of temperament left an indelible trace on delinquency that can work out by modifying the individual temperament. On the basis of results, it could be concluded that inclination towards the delinquent behaviors including theft, drug abuse, lying, noncompliance behavior, police encounter, violence, cheating, gambling, harassment, homosexuality and heterosexuality could be minimized if properly screen out the temperament. Moreover, study determined the two other significant moderated effect of age towards the involvement in delinquent behaviors and moderated effect of education towards childhood maltreatment and the temperament. Findings suggested that with marked increase in number of years in age the probability to get involve in delinquent behaviors will decrease and the result was consistent with the assumption that education can work as buffered to maximize or minimize the effect of trauma and can shape the temperament accordingly. Results are consistent with views on cumulative disadvantage with the socio-psychological faultiness of community.

Keywords: delinquent behaviors, temperament, prisoners, moderated mediation analysis

Procedia PDF Downloads 104
1379 Bystander Perceived Severity on Traditional versus Cyber Bullying

Authors: C. Smith, T. Goga, T. Hancock

Abstract:

Bullying has been an increasingly prevalent problem among society for decades. Approximately one out of every four students report being bullied at least once during the school year. Additionally, these instances of bullying are often witnessed but not reported by the bystanders, which could be dependent on the type of bullying situation. Thus, the present study aims to investigate any possible perceptual differences which may exist between traditional bullying (i.e., face to face) and cyberbullying from the bystander’s point of view. Undergraduate students were given a bullying scenario to read from either the traditional condition or the cyber condition. They were then asked to rate how severe they perceived this behavior on a Likert based scale. Participants were also asked if they would intervene (yes or no) and what their individual response would be to the witnessed behavior (report/ignore/confront/other). Results indicated that, while there was no significant difference in perceived severity between the two bullying conditions, there was a significant difference in whether or not participants would intervene between the two types of scenarios. A significant effect was also found between the scenarios for response type. Together, these findings suggest that even though individuals may not be aware of how severe they perceive certain bullying behaviors, the responses they exhibit might suggest otherwise.

Keywords: bullying, bystander, cyber, severity, traditional

Procedia PDF Downloads 136
1378 Reed: An Approach Towards Quickly Bootstrapping Multilingual Acoustic Models

Authors: Bipasha Sen, Aditya Agarwal

Abstract:

Multilingual automatic speech recognition (ASR) system is a single entity capable of transcribing multiple languages sharing a common phone space. Performance of such a system is highly dependent on the compatibility of the languages. State of the art speech recognition systems are built using sequential architectures based on recurrent neural networks (RNN) limiting the computational parallelization in training. This poses a significant challenge in terms of time taken to bootstrap and validate the compatibility of multiple languages for building a robust multilingual system. Complex architectural choices based on self-attention networks are made to improve the parallelization thereby reducing the training time. In this work, we propose Reed, a simple system based on 1D convolutions which uses very short context to improve the training time. To improve the performance of our system, we use raw time-domain speech signals directly as input. This enables the convolutional layers to learn feature representations rather than relying on handcrafted features such as MFCC. We report improvement on training and inference times by atleast a factor of 4x and 7.4x respectively with comparable WERs against standard RNN based baseline systems on SpeechOcean's multilingual low resource dataset.

Keywords: convolutional neural networks, language compatibility, low resource languages, multilingual automatic speech recognition

Procedia PDF Downloads 123
1377 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach

Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton

Abstract:

Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.

Keywords: competition, growth, model, thinning

Procedia PDF Downloads 128
1376 Using Photo-Elicitation to Explore the Cosmology of Personal Training

Authors: John Gray, Andy Smith, Hazel James

Abstract:

With the introduction of projects such as GP referral and other medical exercise schemes, there has been a shift in the cosmology underpinning exercise leadership. That is, the knowledge base of exercise leaders, specifically personal trainers, has moved from a cosmology based on aesthetic and physical fitness demands to one requiring interaction with the dominant biomedical model underpinning contemporary medicine. In line with this shift research has demonstrated that personal trainer education has aligned itself to a biotechnological model. However, whilst there is a need to examine exercise as medicine, and consider the role of personal trainers as prescribers of these interventions, the possible issues surrounding the growing medicalization of the exercise cosmology have not been explored. Using a phenomenological methodology, and the novel approach of photo-elicitation, this research examined the practices of successful personal trainers. The findings highlight that a growing focus on an iatro-biological based scientific process of exercise prescription may prove problematical. Through the development of a model of practitioner-based knowledge, it is argued there is a possible growing disconnection between the theoretical basis of exercise science and the working cosmology of exercise practitioners.

Keywords: biomedicine, cosmology, personal training, photo-elicitation

Procedia PDF Downloads 380
1375 Neural Network Modelling for Turkey Railway Load Carrying Demand

Authors: Humeyra Bolakar Tosun

Abstract:

The transport sector has an undisputed place in human life. People need transport access to continuous increase day by day with growing population. The number of rail network, urban transport planning, infrastructure improvements, transportation management and other related areas is a key factor affecting our country made it quite necessary to improve the work of transportation. In this context, it plays an important role in domestic rail freight demand planning. Alternatives that the increase in the transportation field and has made it mandatory requirements such as the demand for improving transport quality. In this study generally is known and used in studies by the definition, rail freight transport, railway line length, population, energy consumption. In this study, Iron Road Load Net Demand was modeled by multiple regression and ANN methods. In this study, model dependent variable (Output) is Iron Road Load Net demand and 6 entries variable was determined. These outcome values extracted from the model using ANN and regression model results. In the regression model, some parameters are considered as determinative parameters, and the coefficients of the determinants give meaningful results. As a result, ANN model has been shown to be more successful than traditional regression model.

Keywords: railway load carrying, neural network, modelling transport, transportation

Procedia PDF Downloads 143
1374 Integrating the Athena Vortex Lattice Code into a Multivariate Design Synthesis Optimisation Platform in JAVA

Authors: Paul Okonkwo, Howard Smith

Abstract:

This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology by Mark Drela allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft.

Keywords: aerodynamics, automation, optimisation, AVL, JNI

Procedia PDF Downloads 582
1373 Study on the Work-Life Balance of Selected Working Single Mothers in the Coastal Community of La Huerta, Paranaque

Authors: Idette Sheirina Biyo, Rhodora Lynn C. Lintag

Abstract:

This paper explores how the work-life balance of selected working single mothers situated in a coastal community is affecting their well-being. Working single mothers carry the responsibility of earning for their family while simultaneously exercising their motherhood. This study utilized a purposeful qualitative research through semi-structured interviews among ten working single mothers living in the coastal community of La Huerta, Parañaque in order to identify the following: a) experiences of the working single mothers, b) problems usually encountered, and c) how these problems are affecting their well-being. Dorothy Smith’s Feminist Standpoint theory is used as a theoretical lens in order to explain their work-life balance. Results have shown that despite their dual roles as the main income earners and heads of the households, they are not neglecting to care for their well-being. They consider getting sufficient rest, eating well, and going to church as forms of caring for their well-being. Other factors that affect their work-life balance include living arrangements, work hours, type of work, and income.

Keywords: coastal community, well-being, work-life balance, Working single mother

Procedia PDF Downloads 204
1372 Negative Sequence-Based Protection Techniques for Microgrid Connected Power Systems

Authors: Isabelle Snyder, Travis Smith

Abstract:

Microgrid protection presents challenges to conventional protection techniques due to the low-induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected modes. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid-connected or microgrid-connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are labeled as follows: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR).

Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection

Procedia PDF Downloads 98
1371 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network

Authors: Amit Verma, Pardeep Kaur

Abstract:

In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.

Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval

Procedia PDF Downloads 378
1370 The Making of a Community: Perception versus Reality of Neighborhood Resources

Authors: Kirstie Smith

Abstract:

This paper elucidates the value of neighborhood perception as it contributes to the advancement of well-being for individuals and families within a neighborhood. Through in-depth interviews with city residents, this paper examines the degree to which key stakeholders’ (residents) evaluate their neighborhood and perception of resources and identify, access, and utilize local assets existing in the community. Additionally, the research objective included conducting a community inventory that qualified the community assets and resources of lower-income neighborhoods of a medium-sized industrial city. Analysis of the community’s assets was compared with the interview results to allow for a better understanding of the community’s condition. Community mapping revealed the key informants’ reflections of assets were somewhat validated. In each neighborhood, there were more assets mapped than reported in the interviews. Another chief supposition drawn from this study was the identification of key development partners and social networks that offer the potential to facilitate locally-driven community development. Overall, the participants provided invaluable local knowledge of the perception of neighborhood assets, the well-being of residents, the condition of the community, and suggestions for responding to the challenges of the entire community in order to mobilize the present assets and networks.

Keywords: community mapping, family, resource allocation, social networks

Procedia PDF Downloads 353
1369 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language

Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim

Abstract:

The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.

Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition

Procedia PDF Downloads 323
1368 Amniotic Fluid Mesenchymal Stem Cells Selected for Neural Specificity Ameliorates Chemotherapy Induced Hearing Loss and Pain Perception

Authors: Jan F. Talts, Amit Saxena, Kåre Engkilde

Abstract:

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by anti-neoplastic agents, with a prevalence from 19 % to 85 %. Clinically, CIPN is a mostly sensory neuropathy leading to pain and to motor and autonomic changes. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors, especially because currently, there is no single effective method of preventing CIPN. Hearing loss is the most common form of sensory impairment in humans and can be caused by ototoxic chemical compounds such as chemotherapy (platinum-based antineoplastic agents).In rodents, single or repeated cisplatin injections induce peripheral neuropathy and hearing impairment mimicking human disorder, allowing studying the efficacy of new pharmacological candidates in chemotherapy-induced hearing loss and peripheral neuropathy. RNA sequencing data from full term amniotic fluid (TAF) mesenchymal stemcell (MSC) clones was used to identify neural-specific markers present on TAF-MSC. Several prospective neural markers were tested by flow cytometry on cultured TAF-MSC. One of these markers was used for cell-sorting using Tyto MACSQuant cell sorter, and the neural marker positive cell population was expanded for several passages to the final therapeutic product stage. Peripheral neuropathy and hearing loss was induced in mice by administration of cisplatin in three week-long cycles. The efficacy of neural-specific TAF-MSC in treating hearing loss and pain perception was evaluated by administration of three injections of 3 million cells/kg by intravenous route or three injections of 3 million cells/kg by intra-arterial route after each cisplatin cycle treatment. Auditory brainstem responses (ABR) are electric potentials recorded from scalp electrodes, and the first ABR wave represents the summed activity of the auditory nerve fibers contacting the inner hair cells. For ABR studies, mice were anesthetized, then earphones were placed in the left ear of each mouse, an active electrode was placed in the vertex of the skull, a reference electrode under the skin of the mastoid bone, and a ground electrode in the neck skin. The stimuli consisted of tone pips of five frequencies (2, 4, 6, 12, 16, and 24 kHz) at various sound levels (from 0 to 90 dB) ranging to cover the mouse auditory frequency range. The von Frey test was used to assess the onset and maintenance of mechanical allodynia over time. Mice were placed in clear plexiglass cages on an elevated mesh floor and tested after 30 min of habituation. Mechanical paw withdrawal threshold was examined using an electronic von Frey anesthesiometer. Cisplatin groups treated with three injections of 3 million cells/kg by intravenous route and three injections of 3 million cells/kg by intra-arterial route after each cisplatin cycle treatment presented, a significant increase of hearing acuity characterized by a decrease of ABR threshold and a decrease of neuropathic pain characterized by an increase of von Frey paw withdrawal threshold compared to controls only receiving cisplatin. This study shows that treatment with MSCselected for neural specificity presents significant positive efficacy on the chemotherapy-induced neuropathic pain and the chemotherapy-induced hearing loss.

Keywords: mesenchymal stem cell, peripheral neuropathy, amniotic fluid, regenerative medicine

Procedia PDF Downloads 166
1367 Design and Control of a Knee Rehabilitation Device Using an MR-Fluid Brake

Authors: Mina Beheshti, Vida Shams, Mojtaba Esfandiari, Farzaneh Abdollahi, Abdolreza Ohadi

Abstract:

Most of the people who survive a stroke need rehabilitation tools to regain their mobility. The core function of these devices is a brake actuator. The goal of this study is to design and control a magnetorheological brake which can be used as a rehabilitation tool. In fact, the fluid used in this brake is called magnetorheological fluid or MR that properties can change by variation of the magnetic field. The braking properties can be set as control by using this feature of the fluid. In this research, different MR brake designs are first introduced in each design, and the dimensions of the brake have been determined based on the required torque for foot movement. To calculate the brake dimensions, it is assumed that the shear stress distribution in the fluid is uniform and the fluid is in its saturated state. After designing the rehabilitation brake, the mathematical model of the healthy movement of a healthy person is extracted. Due to the nonlinear nature of the system and its variability, various adaptive controllers, neural networks, and robust have been implemented to estimate the parameters and control the system. After calculating torque and control current, the best type of controller in terms of error and control current has been selected. Finally, this controller is implemented on the experimental data of the patient's movements, and the control current is calculated to achieve the desired torque and motion.

Keywords: rehabilitation, magnetorheological fluid, knee, brake, adaptive control, robust control, neural network control, torque control

Procedia PDF Downloads 151
1366 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 175
1365 Looking At Labor Trafficking In Poland

Authors: Ashlyn Smith, Chloe Zampelli, Vincent Manna, Vernon Murray

Abstract:

According to Polaris (a UN affiliate), there are currently 44 million human trafficking victims globally. Using a sample of 137 labor trafficking victims in Poland, we found that all were Ukrainian citizens. We categorized victims according to the “Victim Intervention Marketing” (Murray) social marketing framework. The largest victim type consisted of “Willing Assimilators” (57%). This means they entered their particular trafficking situations without coercion and were left at will. Such victims are typically driven by financial desperation. Twenty percent (20%) of Willing Assimilators were men, and 80% were women. Victims who were not Willing Assimilators were forced as either “Enlightened Apostates” (37%) or “Tricked and Trapped” (7%). All of the forced victims were women. Crosstabs with Chi-square test (Pearson Chi-Square test significance = .002) results indicated that the male victims were all between 30 and 38 years old, while female victim ages ranged from 24 to 47. Accordingly, labor trafficking victim interventions in Poland should be age-sensitive and focus on three areas: 1) economic development for the Willing Assimilators, 2) training to identify fraudulent job postings, etc. for the Tricked and Trapped segment, and 3) training to equip potential victims to distrust certain close “loved ones” for the Enlightened Apostates.

Keywords: Poland, labor trafficking, social marketing, victim intervention marketing

Procedia PDF Downloads 187
1364 Generation Y Leaders in Radiology Nursing - Changing the Culture by Understanding the Challenges of a Multi-Generational Workforce

Authors: Amie Smith, Jodi-Lyn Benjamin

Abstract:

In 2020, there are currently four generations in the nursing workforce: The Veterans, Boomers, Generation X and Generation Y (Gen Y). Understanding each generation and their growing needs will equip the workforce for when the Boomers prepare for retirement, with majority of nursing leadership positions to be potentially replaced with Gen Y nurses. In SA Medical Imaging(SAMI), at Flinders Medical Centre (FMC), it has been proven that despite challenges in succession planning, Gen Y nurse leaders are able to overcome these obstacles and provide the leadership necessary to meet the changing needs in healthcare and across organisations. Changing the culture in radiology nursing has been seen as an obstacle due to the historical nursing practices and resistance to adapt to current/future practice. As radiology advances so does the role of the nurse in imaging, this has required resilience and strong support through leadership as we change and develop the culture to keep up with the evolution of technology and standard of patient care. As a result of supporting Gen Y nurses in leadership roles, SAMI, FMC has seen a positive change in culture by creating a healthy work environment which has allowed Gen Y nurses to make long lasting contributions to the nursing profession.

Keywords: changing culture, Generation Y, radiology, nursing, leadership

Procedia PDF Downloads 138
1363 Exploring the Relationships between Experiential Marketing, Customer Satisfaction and Customer Loyalty: An Empirical Examination in Konya

Authors: Resul Öztürk

Abstract:

Experiential marketing is one of the marketing approaches that offers an exceptional framework to integrate elements of experience and entertainment in a product or service. Experiential marketing is defined as a memorable experience that goes deeply into the customer’s mind. Besides that, customer satisfaction is defined as an emotional response to the experiences provided by and associated with particular products or services purchased. Thus, experiential marketing activities can affect the level of customer satisfaction and loyalty. In this context, the research aims to explore the relationship among experiential marketing, customer satisfaction and customer loyalty among the cosmetic products customers in Konya. The partial least squares (PLS) method is used to analyse the survey data. The present study’s findings revealed have that experiential marketing has been a significant predictor of customer satisfaction and customer loyalty, and also experiential marketing has a significantly positive effect on customer satisfaction and customer loyalty.

Keywords: experiential marketing, customer satisfaction, customer loyalty, social sciences

Procedia PDF Downloads 476
1362 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia

Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski

Abstract:

The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.

Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils

Procedia PDF Downloads 368