Search results for: quantum MDS codes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1128

Search results for: quantum MDS codes

168 Composition Dependent Spectroscopic Studies of Sm3+-Doped Alkali Fluoro Tungsten Tellurite Glasses

Authors: K. Swapna, Sk. Mahamuda, Ch, Annapurna, A. Srinivasa Rao, G. Vijaya Prakash

Abstract:

Samarium ions doped Alkali Fluoro Tungsten Tellurite (AFTT) Glasses have been prepared by using the melt quenching technique and characterized through various spectroscopic techniques such as optical absorption, excitation, emission and decay spectral studies. From the measured absorption spectra of Sm3+ ions in AFTT glasses, the optical band gap and Urbach energies have been evaluated. The spectroscopic parameters such as oscillator strengths (f), Judd-Ofelt (J-O) intensity parameters (Ωλ), spontaneous emission probability (AR), branching ratios (βR) and radiative lifetimes (τR) of various excited levels have been determined from the absorption spectrum by using J-O analysis. A strong luminescence in the reddish-orange spectral region has been observed for all the Sm3+ ions doped AFTT glasses. It consisting four emission transitions occurring from the 4G5/2metastable state to the lower lying states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 upon exciting the sample with a 478 nm line of an argon ion laser. The stimulated emission cross-sections (σe) and branching ratios (βmeas) were estimated from the emission spectra for all emission transitions. Correlation of the radiative lifetime with the experimental lifetime measured from the day curves allows us to measure the quantum efficiency of the prepared glasses. In order to know the colour emission of the prepared glasses under near UV excitation, the emission intensities were analyzed using CIE 1931 colour chromaticity diagram. The aforementioned spectral studies carried out on Sm3+ ions doped AFTT glasses allowed us to conclude that, these glasses are best suited for orange-red visible lasers.

Keywords: fluoro tungsten tellurite glasses, judd-ofelt intensity parameters, lifetime, stimulated emission cross-section

Procedia PDF Downloads 257
167 The Sub-Optimality of the Electricity Subsidy on Tube Wells in Balochistan (Pakistan): An Analysis Based on Socio-Cultural and Policy Distortions

Authors: Rameesha Javaid

Abstract:

Agriculture is the backbone of the economy of the province of Balochistan which is known as the ‘fruit basket’ of Pakistan. Its climate zones comprising highlands and plateaus, dependent on rain water, are more suited for the production of deciduous fruit. The vagaries of weather and more so the persistent droughts prompted the government to announce flat rates of electricity bills per month irrespective of the size of the farm, quantum or water used and the category of crop group. That has, no doubt, resulted in increased cropping intensity, more production and employment but has enormously burdened the official exchequer which picks up the residual bills in certain percentages amongst the federal and provincial governments and the local electricity company. This study tests the desirability of continuing the subsidy in the present mode. Optimization of social welfare of farmers has been the focus of the study with emphasis on the contribution of positive externalities and distortions caused in terms of negative externalities. By using the optimization technique with due allowance for distortions, it has been established that the subsidy calls for limiting policy distortions as they cause sub-optimal utilization of the tube well subsidy and improved policy programming. The sensitivity analysis with changed rankings of contributing variables towards social welfare does not significantly change the result. Therefore it leads to the net findings and policy recommendations of significantly reducing the subsidy size, correcting and curtailing policy distortions and targeting the subsidy grant more towards small farmers to generate more welfare by saving a sizeable amount from the subsidy for investment in the wellbeing of the farmers in rural Balochistan.

Keywords: distortion, policy distortion, socio-cultural distortion, social welfare, subsidy

Procedia PDF Downloads 260
166 User Expectations and Opinions Related to Campus Wayfinding and Signage Design: A Case Study of Kastamonu University

Authors: Güllü Yakar, Adnan Tepecik

Abstract:

A university campus resembles an independent city that is spread over a wide area. Campuses that incorporate thousands of new domestic and international users at the beginning of every academic period also host scientific, cultural and sportive events, in addition to embodying regular users such as students and staff. Wayfinding and signage systems are necessary for the regulation of vehicular traffic, and they enable users’ to navigate without losing time or feeling anxiety. While designing the system or testing the functionality of it, opinions of existing users or likely behaviors of typical user profiles (personas) provide designers with insight. The purpose of this study is to identify the wayfinding attitudes and expectations of Kastamonu University Kuzeykent Campus users. This study applies a mixed method in which a questionnaire, developed by the researcher, constitute the quantitative phase of the study. The survey was carried out with 850 participants who filled a questionnaire form which was tested in terms of construct validity by using Exploratory Factor Analysis. While interpreting the data obtained, Chi-Square, T- Test and ANOVA analyses were applied as well as descriptive analyses such as frequency (f) and percentage (%) values. The results of this survey, which was conducted during the absence of systematic wayfinding signs in the campus, reveals the participants expectations for insertion of floor plans and wayfinding signs to indoors, maps to outdoors, symbols and color codes to the existing signs and for the adequate arrangement of those for the use of visually impaired people. The fact that there is a direct proportional relation between the length of institution membership and wayfinding competency within campus, leads to the conclusion that especially the new comers are in need of wayfinding signs. In order to determine the effectiveness of campus-wide wayfinding system implemented after the survey and in order to identify the further expectations of users in this respect, a semi-structured interview form developed by the researcher and assessments of 20 participants are compiled. Subjected to content analysis, this data constitute the qualitative dimension of the study. Research results indicate that despite the presence of the signs, the participants experienced either inability or stress while finding their way, showed tendency to receive help from others and needed outdoor maps and signs, in addition to bigger-sized texts.

Keywords: environmental graphic design, environmental perception, wayfinding and signage design, wayfinding system

Procedia PDF Downloads 208
165 The Incidence of Prostate Cancer in Previous Infected E. Coli Population

Authors: Andreea Molnar, Amalia Ardeljan, Lexi Frankel, Marissa Dallara, Brittany Nagel, Omar Rashid

Abstract:

Background: Escherichia coli is a gram-negative, facultative anaerobic bacteria that belongs to the family Enterobacteriaceae and resides in the intestinal tracts of individuals. E.Coli has numerous strains grouped into serogroups and serotypes based on differences in antigens in their cell walls (somatic, or “O” antigens) and flagella (“H” antigens). More than 700 serotypes of E. coli have been identified. Although most strains of E. coli are harmless, a few strains, such as E. coli O157:H7 which produces Shiga toxin, can cause intestinal infection with symptoms of severe abdominal cramps, bloody diarrhea, and vomiting. Infection with E. Coli can lead to the development of systemic inflammation as the toxin exerts its effects. Chronic inflammation is now known to contribute to cancer development in several organs, including the prostate. The purpose of this study was to evaluate the correlation between E. Coli and the incidence of prostate cancer. Methods: Data collected in this cohort study was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to evaluate patients infected with E.Coli infection and prostate cancer using the International Classification of Disease (ICD-10 and ICD-9 codes). Permission to use the database was granted by Holy Cross Health, Fort Lauderdale for the purpose of academic research. Data analysis was conducted through the use of standard statistical methods. Results: Between January 2010 and December 2019, the query was analyzed and resulted in 81, 037 patients after matching in both infected and control groups, respectively. The two groups were matched by Age Range and CCI score. The incidence of prostate cancer was 2.07% and 1,680 patients in the E. Coli group compared to 5.19% and 4,206 patients in the control group. The difference was statistically significant by a p-value p<2.2x10-16 with an Odds Ratio of 0.53 and a 95% CI. Based on the specific treatment for E.Coli, the infected group vs control group were matched again with a result of 31,696 patients in each group. 827 out of 31,696 (2.60%) patients with a prior E.coli infection and treated with antibiotics were compared to 1634 out of 31,696 (5.15%) patients with no history of E.coli infection (control) and received antibiotic treatment. Both populations subsequently developed prostate carcinoma. Results remained statistically significant (p<2.2x10-16), Odds Ratio=0.55 (95% CI 0.51-0.59). Conclusion: This retrospective study shows a statistically significant correlation between E.Coli infection and a decreased incidence of prostate cancer. Further evaluation is needed in order to identify the impact of E.Coli infection and prostate cancer development.

Keywords: E. Coli, prostate cancer, protective, microbiology

Procedia PDF Downloads 192
164 A Digital Health Approach: Using Electronic Health Records to Evaluate the Cost Benefit of Early Diagnosis of Alpha-1 Antitrypsin Deficiency in the UK

Authors: Sneha Shankar, Orlando Buendia, Will Evans

Abstract:

Alpha-1 antitrypsin deficiency (AATD) is a rare, genetic, and multisystemic condition. Underdiagnosis is common, leading to chronic pulmonary and hepatic complications, increased resource utilization, and additional costs to the healthcare system. Currently, there is limited evidence of the direct medical costs of AATD diagnosis in the UK. This study explores the economic impact of AATD patients during the 3 years before diagnosis and to identify the major cost drivers using primary and secondary care electronic health record (EHR) data. The 3 years before diagnosis time period was chosen based on the ability of our tool to identify patients earlier. The AATD algorithm was created using published disease criteria and applied to 148 known AATD patients’ EHR found in a primary care database of 936,148 patients (413,674 Biobank and 501,188 in a single primary care locality). Among 148 patients, 9 patients were flagged earlier by the tool and, on average, could save 3 (1-6) years per patient. We analysed 101 of the 148 AATD patients’ primary care journey and 20 patients’ Hospital Episode Statistics (HES) data, all of whom had at least 3 years of clinical history in their records before diagnosis. The codes related to laboratory tests, clinical visits, referrals, hospitalization days, day case, and inpatient admissions attributable to AATD were examined in this 3-year period before diagnosis. The average cost per patient was calculated, and the direct medical costs were modelled based on the mean prevalence of 100 AATD patients in a 500,000 population. A deterministic sensitivity analysis (DSA) of 20% was performed to determine the major cost drivers. Cost data was obtained from the NHS National tariff 2020/21, National Schedule of NHS Costs 2018/19, PSSRU 2018/19, and private care tariff. The total direct medical cost of one hundred AATD patients three years before diagnosis in primary and secondary care in the UK was £3,556,489, with an average direct cost per patient of £35,565. A vast majority of this total direct cost (95%) was associated with inpatient admissions (£3,378,229). The DSA determined that the costs associated with tier-2 laboratory tests and inpatient admissions were the greatest contributors to direct costs in primary and secondary care, respectively. This retrospective study shows the role of EHRs in calculating direct medical costs and the potential benefit of new technologies for the early identification of patients with AATD to reduce the economic burden in primary and secondary care in the UK.

Keywords: alpha-1 antitrypsin deficiency, costs, digital health, early diagnosis

Procedia PDF Downloads 143
163 Thermal and Visual Comfort Assessment in Office Buildings in Relation to Space Depth

Authors: Elham Soltani Dehnavi

Abstract:

In today’s compact cities, bringing daylighting and fresh air to buildings is a significant challenge, but it also presents opportunities to reduce energy consumption in buildings by reducing the need for artificial lighting and mechanical systems. Simple adjustments to building form can contribute to their efficiency. This paper examines how the relationship between the width and depth of the rooms in office buildings affects visual and thermal comfort, and consequently energy savings. Based on these evaluations, we can determine the best location for sedentary areas in a room. We can also propose improvements to occupant experience and minimize the difference between the predicted and measured performance in buildings by changing other design parameters, such as natural ventilation strategies, glazing properties, and shading. This study investigates the condition of spatial daylighting and thermal comfort for a range of room configurations using computer simulations, then it suggests the best depth for optimizing both daylighting and thermal comfort, and consequently energy performance in each room type. The Window-to-Wall Ratio (WWR) is 40% with 0.8m window sill and 0.4m window head. Also, there are some fixed parameters chosen according to building codes and standards, and the simulations are done in Seattle, USA. The simulation results are presented as evaluation grids using the thresholds for different metrics such as Daylight Autonomy (DA), spatial Daylight Autonomy (sDA), Annual Sunlight Exposure (ASE), and Daylight Glare Probability (DGP) for visual comfort, and Predicted Mean Vote (PMV), Predicted Percentage of Dissatisfied (PPD), occupied Thermal Comfort Percentage (occTCP), over-heated percent, under-heated percent, and Standard Effective Temperature (SET) for thermal comfort that are extracted from Grasshopper scripts. The simulation tools are Grasshopper plugins such as Ladybug, Honeybee, and EnergyPlus. According to the results, some metrics do not change much along the room depth and some of them change significantly. So, we can overlap these grids in order to determine the comfort zone. The overlapped grids contain 8 metrics, and the pixels that meet all 8 mentioned metrics’ thresholds define the comfort zone. With these overlapped maps, we can determine the comfort zones inside rooms and locate sedentary areas there. Other parts can be used for other tasks that are not used permanently or need lower or higher amounts of daylight and thermal comfort is less critical to user experience. The results can be reflected in a table to be used as a guideline by designers in the early stages of the design process.

Keywords: occupant experience, office buildings, space depth, thermal comfort, visual comfort

Procedia PDF Downloads 156
162 Analysis of Reduced Mechanisms for Premixed Combustion of Methane/Hydrogen/Propane/Air Flames in Geometrically Modified Combustor and Its Effects on Flame Properties

Authors: E. Salem

Abstract:

Combustion has been used for a long time as a means of energy extraction. However, in recent years, there has been a further increase in air pollution, through pollutants such as nitrogen oxides, acid etc. In order to solve this problem, there is a need to reduce carbon and nitrogen oxides through learn burning modifying combustors and fuel dilution. A numerical investigation has been done to investigate the effectiveness of several reduced mechanisms in terms of computational time and accuracy, for the combustion of the hydrocarbons/air or diluted with hydrogen in a micro combustor. The simulations were carried out using the ANSYS Fluent 19.1. To validate the results “PREMIX and CHEMKIN” codes were used to calculate 1D premixed flame based on the temperature, composition of burned and unburned gas mixtures. Numerical calculations were carried for several hydrocarbons by changing the equivalence ratios and adding small amounts of hydrogen into the fuel blends then analyzing the flammable limit, the reduction in NOx and CO emissions, then comparing it to experimental data. By solving the conservations equations, several global reduced mechanisms (2-9-12) were obtained. These reduced mechanisms were simulated on a 2D cylindrical tube with dimensions of 40 cm in length and 2.5 cm diameter. The mesh of the model included a proper fine quad mesh, within the first 7 cm of the tube and around the walls. By developing a proper boundary layer, several simulations were performed on hydrocarbon/air blends to visualize the flame characteristics than were compared with experimental data. Once the results were within acceptable range, the geometry of the combustor was modified through changing the length, diameter, adding hydrogen by volume, and changing the equivalence ratios from lean to rich in the fuel blends, the results on flame temperature, shape, velocity and concentrations of radicals and emissions were observed. It was determined that the reduced mechanisms provided results within an acceptable range. The variation of the inlet velocity and geometry of the tube lead to an increase of the temperature and CO2 emissions, highest temperatures were obtained in lean conditions (0.5-0.9) equivalence ratio. Addition of hydrogen blends into combustor fuel blends resulted in; reduction in CO and NOx emissions, expansion of the flammable limit, under the condition of having same laminar flow, and varying equivalence ratio with hydrogen additions. The production of NO is reduced because the combustion happens in a leaner state and helps in solving environmental problems.

Keywords: combustor, equivalence-ratio, hydrogenation, premixed flames

Procedia PDF Downloads 96
161 Validity of Universe Structure Conception as Nested Vortexes

Authors: Khaled M. Nabil

Abstract:

This paper introduces the Nested Vortexes conception of the universe structure and interprets all the physical phenomena according this conception. The paper first reviews recent physics theories, either in microscopic scale or macroscopic scale, to collect evidence that the space is not empty. But, these theories describe the property of the space medium without determining its structure. Determining the structure of space medium is essential to understand the mechanism that leads to its properties. Without determining the space medium structure, many phenomena; such as electric and magnetic fields, gravity, or wave-particle duality remain uninterpreted. Thus, this paper introduces a conception about the structure of the universe. It assumes that the universe is a medium of ultra-tiny homogeneous particles which are still undiscovered. Like any medium with certain movements, possibly because of a great asymmetric explosion, vortexes have occurred. A vortex condenses the ultra-tiny particles in its center forming a bigger particle, the bigger particles, in turn, could be trapped in a bigger vortex and condense in its center forming a much bigger particle and so on. This conception describes galaxies, stars, protons as particles at different levels. Existing of the particle’s vortexes make the consistency of the speed of light postulate is not true. This conception shows that the vortex motion dynamic agrees with the motion of all the universe particles at any level. An experiment has been carried out to detect the orbiting effect of aggregated vortexes of aligned atoms of a permanent magnet. Based on the described particle’s structure, the gravity force of a particle and attraction between particles as well as charge, electric and magnetic fields and quantum mechanics characteristics are interpreted. All augmented physics phenomena are solved.

Keywords: astrophysics, cosmology, particles’ structure model, particles’ forces

Procedia PDF Downloads 101
160 Investigation on Correlation of Earthquake Intensity Parameters with Seismic Response of Reinforced Concrete Structures

Authors: Semra Sirin Kiris

Abstract:

Nonlinear dynamic analysis is permitted to be used for structures without any restrictions. The important issue is the selection of the design earthquake to conduct the analyses since quite different response may be obtained using ground motion records at the same general area even resulting from the same earthquake. In seismic design codes, the method requires scaling earthquake records based on site response spectrum to a specified hazard level. Many researches have indicated that this limitation about selection can cause a large scatter in response and other charecteristics of ground motion obtained in different manner may demonstrate better correlation with peak seismic response. For this reason influence of eleven different ground motion parameters on the peak displacement of reinforced concrete systems is examined in this paper. From conducting 7020 nonlinear time history analyses for single degree of freedom systems, the most effective earthquake parameters are given for the range of the initial periods and strength ratios of the structures. In this study, a hysteresis model for reinforced concrete called Q-hyst is used not taken into account strength and stiffness degradation. The post-yielding to elastic stiffness ratio is considered as 0.15. The range of initial period, T is from 0.1s to 0.9s with 0.1s time interval and three different strength ratios for structures are used. The magnitude of 260 earthquake records selected is higher than earthquake magnitude, M=6. The earthquake parameters related to the energy content, duration or peak values of ground motion records are PGA(Peak Ground Acceleration), PGV (Peak Ground Velocity), PGD (Peak Ground Displacement), MIV (Maximum Increamental Velocity), EPA(Effective Peak Acceleration), EPV (Effective Peak Velocity), teff (Effective Duration), A95 (Arias Intensity-based Parameter), SPGA (Significant Peak Ground Acceleration), ID (Damage Factor) and Sa (Spectral Response Spectrum).Observing the correlation coefficients between the ground motion parameters and the peak displacement of structures, different earthquake parameters play role in peak displacement demand related to the ranges formed by the different periods and the strength ratio of a reinforced concrete systems. The influence of the Sa tends to decrease for the high values of strength ratio and T=0.3s-0.6s. The ID and PGD is not evaluated as a measure of earthquake effect since high correlation with displacement demand is not observed. The influence of the A95 is high for T=0.1 but low related to the higher values of T and strength ratio. The correlation of PGA, EPA and SPGA shows the highest correlation for T=0.1s but their effectiveness decreases with high T. Considering all range of structural parameters, the MIV is the most effective parameter.

Keywords: earthquake parameters, earthquake resistant design, nonlinear analysis, reinforced concrete

Procedia PDF Downloads 132
159 Dual Metal Organic Framework Derived N-Doped Fe3C Nanocages Decorated with Ultrathin ZnIn2S4 Nanosheets for Efficient Photocatalytic Hydrogen Generation

Authors: D. Amaranatha Reddy

Abstract:

Highly efficient and stable co-catalysts materials is of great important for boosting photo charge carrier’s separation, transportation efficiency, and accelerating the catalytic reactive sites of semiconductor photocatalysts. As a result, it is of decisive importance to fabricate low price noble metal free co-catalysts with high catalytic reactivity, but it remains very challenging. Considering this challenge here, dual metal organic frame work derived N-Doped Fe3C nanocages have been rationally designed and decorated with ultrathin ZnIn2S4 nanosheets for efficient photocatalytic hydrogen generation. The fabrication strategy precisely integrates co-catalyst nanocages with ultrathin two-dimensional (2D) semiconductor nanosheets by providing tightly interconnected nano-junctions and helps to suppress the charge carrier’s recombination rate. Furthermore, constructed highly porous hybrid structures expose ample active sites for catalytic reduction reactions and harvest visible light more effectively by light scattering. As a result, fabricated nanostructures exhibit superior solar driven hydrogen evolution rate (9600 µmol/g/h) with an apparent quantum efficiency of 3.6 %, which is relatively higher than the Pt noble metal co-catalyst systems and earlier reported ZnIn2S4 based nanohybrids. We believe that the present work promotes the application of sulfide based nanostructures in solar driven hydrogen production.

Keywords: photocatalysis, water splitting, hydrogen fuel production, solar-driven hydrogen

Procedia PDF Downloads 108
158 All-Optical Gamma-Rays and Positrons Source by Ultra-Intense Laser Irradiating an Al Cone

Authors: T. P. Yu, J. J. Liu, X. L. Zhu, Y. Yin, W. Q. Wang, J. M. Ouyang, F. Q. Shao

Abstract:

A strong electromagnetic field with E>1015V/m can be supplied by an intense laser such as ELI and HiPER in the near future. Exposing in such a strong laser field, laser-matter interaction enters into the near quantum electrodynamics (QED) regime and highly non-linear physics may occur during the laser-matter interaction. Recently, the multi-photon Breit-Wheeler (BW) process attracts increasing attention because it is capable to produce abundant positrons and it enhances the positron generation efficiency significantly. Here, we propose an all-optical scheme for bright gamma rays and dense positrons generation by irradiating a 1022 W/cm2 laser pulse onto an Al cone filled with near-critical-density plasmas. Two-dimensional (2D) QED particle-in-cell (PIC) simulations show that, the radiation damping force becomes large enough to compensate for the Lorentz force in the cone, causing radiation-reaction trapping of a dense electron bunch in the laser field. The trapped electrons oscillate in the laser electric field and emits high-energy gamma photons in two ways: (1) nonlinear Compton scattering due to the oscillation of electrons in the laser fields, and (2) Compton backwardscattering resulting from the bunch colliding with the reflected laser by the cone tip. The multi-photon Breit-Wheeler process is thus initiated and abundant electron-positron pairs are generated with a positron density ~1027m-3. The scheme is finally demonstrated by full 3D PIC simulations, which indicate the positron flux is up to 109. This compact gamma ray and positron source may have promising applications in future.

Keywords: BW process, electron-positron pairs, gamma rays emission, ultra-intense laser

Procedia PDF Downloads 240
157 Next Generation of Tunnel Field Effect Transistor: NCTFET

Authors: Naima Guenifi, Shiromani Balmukund Rahi, Amina Bechka

Abstract:

Tunnel FET is one of the most suitable alternatives FET devices for conventional CMOS technology for low-power electronics and applications. Due to its lower subthreshold swing (SS) value, it is a strong follower of low power applications. It is a quantum FET device that follows the band to band (B2B) tunneling transport phenomena of charge carriers. Due to band to band tunneling, tunnel FET is suffering from a lower switching current than conventional metal-oxide-semiconductor field-effect transistor (MOSFET). For improvement of device features and limitations, the newly invented negative capacitance concept of ferroelectric material is implemented in conventional Tunnel FET structure popularly known as NC TFET. The present research work has implemented the idea of high-k gate dielectric added with ferroelectric material on double gate Tunnel FET for implementation of negative capacitance. It has been observed that the idea of negative capacitance further improves device features like SS value. It helps to reduce power dissipation and switching energy. An extensive investigation for circularity uses for digital, analog/RF and linearity features of double gate NCTFET have been adopted here for research work. Several essential designs paraments for analog/RF and linearity parameters like transconductance(gm), transconductance generation factor (gm/IDS), its high-order derivatives (gm2, gm3), cut-off frequency (fT), gain-bandwidth product (GBW), transconductance generation factor (gm/IDS) has been investigated for low power RF applications. The VIP₂, VIP₃, IMD₃, IIP₃, distortion characteristics (HD2, HD3), 1-dB, the compression point, delay and power delay product performance have also been thoroughly studied.

Keywords: analog/digital, ferroelectric, linearity, negative capacitance, Tunnel FET, transconductance

Procedia PDF Downloads 172
156 Record Peak Current Density in AlN/GaN Double-Barrier Resonant Tunneling Diodes on Free-Standing Gan Substrates by Modulating Barrier Thickness

Authors: Fang Liu, Jia Jia Yao, Guan Lin Wu, Ren Jie Liu, Zhuang Guo

Abstract:

Leveraging plasma-assisted molecular beam epitaxy (PA-MBE) on c-plane free-standing GaN substrates, this work demonstrates high-performance AlN/GaN double-barrier resonant tunneling diodes (RTDs) featuring stable and repeatable negative differential resistance (NDR) characteristics at room temperature. By scaling down the barrier thickness of AlN and the lateral mesa size of collector, a record peak current density of 1551 kA/cm2 is achieved, accompanied by a peak-to-valley current ratio (PVCR) of 1.24. This can be attributed to the reduced resonant tunneling time under thinner AlN barrier and the suppressed external incoherent valley current by reducing the dislocation number contained in the RTD device with the smaller size of collector. Statistical analysis of the NDR performance of RTD devices with different AlN barrier thicknesses reveals that, as the AlN barrier thickness decreases from 1.5 nm to 1.25 nm, the average peak current density increases from 145.7 kA/cm2 to 1215.1 kA/cm2, while the average PVCR decreases from 1.45 to 1.1, and the peak voltage drops from 6.89 V to 5.49 V. The peak current density obtained in this work represents the highest value reported for nitride-based RTDs to date, while maintaining a high PVCR value simultaneously. This illustrates that an ultra-scaled RTD based on a vertical quantum-well structure and lateral collector size is a valuable approach for the development of nitride-based RTDs with excellent NDR characteristics, revealing their great potential applications in high-frequency oscillation sources and high-speed switch circuits.

Keywords: GaN resonant tunneling diode, peak current density, peak-to-valley current ratio, negative differential resistance

Procedia PDF Downloads 26
155 Intellectual Property Laws: Protection of Celebrities’ Identity

Authors: Soumya Chaturvedi

Abstract:

Ever since India opened its doors for the world economy to enter, there has not been a single instance of recoil. A consequence of this move by the government of India resulted in India evolving as a consumer-driven market and in order to survive in this era of extreme competition, the corporate houses have employed every possible means to reach out and hit onto the sentiments of the consumers. The most obvious way to ensure a strong perseverance towards the specific product or brand is through celebrity endorsements. In a country like India, whose film industry accounts for the largest sales and output, it is indeed appalling to acknowledge the fact that it lacks an effective mechanism of protection of the commercial exploitation of celebrities’ attributes under the ambit of law. The western half of the globe has very well accepted and recognized the rights of the celebrities to decide upon the quantum of commercial exploitation of their own attributes and earn profit out of the same. However, the eastern half seems to be a little reluctant in accepting and enforcing these views per se. A celebrity has a right to publicity over the traits of his personality which involves voice, autographs, reputation, and style, so on and so forth as it is these attributes that are responsible for huge trade profits concerning the products to which such traits are attributed to. This clearly involves the right of the celebrity to benefit himself by commercially exploiting the same and refraining the unauthorized gain to third parties. The market is making it nearly impossible to proceed further with such weak laws considering the escalating rate of celebrity endorsements in the nation. This paper discusses the lacunae in law per se to identify a right as such by a celebrity over his traits that are potentially under the circle of commercial exploitation and the need of a definite legislation that would ensure a change in the paradigm of the Courts in India. Also, it discusses the only remedy available currently for violation, which is, a suit for passing off by Indian Courts under Trademark and Copyright laws and a comparison of the same with the mechanisms adopted by the legal systems across the globe.

Keywords: celebrity, rights, intellectual property, trademark, copyrights

Procedia PDF Downloads 308
154 Application of the Material Point Method as a New Fast Simulation Technique for Textile Composites Forming and Material Handling

Authors: Amir Nazemi, Milad Ramezankhani, Marian Kӧrber, Abbas S. Milani

Abstract:

The excellent strength to weight ratio of woven fabric composites, along with their high formability, is one of the primary design parameters defining their increased use in modern manufacturing processes, including those in aerospace and automotive. However, for emerging automated preform processes under the smart manufacturing paradigm, complex geometries of finished components continue to bring several challenges to the designers to cope with manufacturing defects on site. Wrinklinge. g. is a common defectoccurring during the forming process and handling of semi-finished textile composites. One of the main reasons for this defect is the weak bending stiffness of fibers in unconsolidated state, causing excessive relative motion between them. Further challenges are represented by the automated handling of large-area fiber blanks with specialized gripper systems. For fabric composites forming simulations, the finite element (FE)method is a longstanding tool usedfor prediction and mitigation of manufacturing defects. Such simulations are predominately meant, not only to predict the onset, growth, and shape of wrinkles but also to determine the best processing condition that can yield optimized positioning of the fibers upon forming (or robot handling in the automated processes case). However, the need for use of small-time steps via explicit FE codes, facing numerical instabilities, as well as large computational time, are among notable drawbacks of the current FEtools, hindering their extensive use as fast and yet efficient digital twins in industry. This paper presents a novel woven fabric simulation technique through the application of the material point method (MPM), which enables the use of much larger time steps, facing less numerical instabilities, hence the ability to run significantly faster and efficient simulationsfor fabric materials handling and forming processes. Therefore, this method has the ability to enhance the development of automated fiber handling and preform processes by calculating the physical interactions with the MPM fiber models and rigid tool components. This enables the designers to virtually develop, test, and optimize their processes based on either algorithmicor Machine Learning applications. As a preliminary case study, forming of a hemispherical plain weave is shown, and the results are compared to theFE simulations, as well as experiments.

Keywords: material point method, woven fabric composites, forming, material handling

Procedia PDF Downloads 157
153 Generation of Roof Design Spectra Directly from Uniform Hazard Spectra

Authors: Amin Asgarian, Ghyslaine McClure

Abstract:

Proper seismic evaluation of Non-Structural Components (NSCs) mandates an accurate estimation of floor seismic demands (i.e. acceleration and displacement demands). Most of the current international codes incorporate empirical equations to calculate equivalent static seismic force for which NSCs and their anchorage system must be designed. These equations, in general, are functions of component mass and peak seismic acceleration to which NSCs are subjected to during the earthquake. However, recent studies have shown that these recommendations are suffered from several shortcomings such as neglecting the higher mode effect, tuning effect, NSCs damping effect, etc. which cause underestimation of the component seismic acceleration demand. This work is aimed to circumvent the aforementioned shortcomings of code provisions as well as improving them by proposing a simplified, practical, and yet accurate approach to generate acceleration Floor Design Spectra (FDS) directly from corresponding Uniform Hazard Spectra (UHS) (i.e. design spectra for structural components). A database of 27 Reinforced Concrete (RC) buildings in which Ambient Vibration Measurements (AVM) have been conducted. The database comprises 12 low-rise, 10 medium-rise, and 5 high-rise buildings all located in Montréal, Canada and designated as post-disaster buildings or emergency shelters. The buildings are subjected to a set of 20 compatible seismic records and Floor Response Spectra (FRS) in terms of pseudo acceleration are derived using the proposed approach for every floor of the building in both horizontal directions considering 4 different damping ratios of NSCs (i.e. 2, 5, 10, and 20% viscous damping). Several effective parameters on NSCs response are evaluated statistically. These parameters comprise NSCs damping ratios, tuning of NSCs natural period with one of the natural periods of supporting structure, higher modes of supporting structures, and location of NSCs. The entire spectral region is divided into three distinct segments namely short-period, fundamental period, and long period region. The derived roof floor response spectra for NSCs with 5% damping are compared with the 5% damping UHS and procedure are proposed to generate roof FDS for NSCs with 5% damping directly from 5% damped UHS in each spectral region. The generated FDS is a powerful, practical, and accurate tool for seismic design and assessment of acceleration-sensitive NSCs particularly in existing post-critical buildings which have to remain functional even after the earthquake and cannot tolerate any damage to NSCs.

Keywords: earthquake engineering, operational and functional components (OFCs), operational modal analysis (OMA), seismic assessment and design

Procedia PDF Downloads 220
152 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor

Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles

Procedia PDF Downloads 284
151 An Energy Transfer Fluorescent Probe System for Glucose Sensor at Biomimetic Membrane Surface

Authors: Hoa Thi Hoang, Stephan Sass, Michael U. Kumke

Abstract:

Concanavalin A (conA) is a protein has been widely used in sensor system based on its specific binding to α-D-Glucose or α-D-Manose. For glucose sensor using conA, either fluoresence based techniques with intensity based or lifetime based are used. In this research, liposomes made from phospholipids were used as a biomimetic membrane system. In a first step, novel building blocks containing perylene labeled glucose units were added to the system and used to decorate the surface of the liposomes. Upon the binding between rhodamine labeled con A to the glucose units at the biomimetic membrane surface, a Förster resonance energy transfer system can be formed which combines unique fluorescence properties of perylene (e.g., high fluorescence quantum yield, no triplet formation) and its high hydrophobicity for efficient anchoring in membranes to form a novel probe for the investigation of sugar-driven binding reactions at biomimetic surfaces. Two glucose-labeled perylene derivatives were synthesized with different spacer length between the perylene and glucose unit in order to probe the binding of conA. The binding interaction was fully characterized by using high-end fluorescence techniques. Steady-state and time-resolved fluorescence techniques (e.g., fluorescence depolarization) in combination with single-molecule fluorescence spectroscopy techniques (fluorescence correlation spectroscopy, FCS) were used to monitor the interaction with conA. Base on the fluorescence depolarization, the rotational correlation times and the alteration in the diffusion coefficient (determined by FCS) the binding of the conA to the liposomes carrying the probe was studied. Moreover, single pair FRET experiments using pulsed interleaved excitation are used to characterize in detail the binding of conA to the liposome on a single molecule level avoiding averaging out effects.

Keywords: concanavalin A, FRET, sensor, biomimetic membrane

Procedia PDF Downloads 280
150 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method

Authors: Choukri Lekbir, Mira Mokhtari

Abstract:

Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.

Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster

Procedia PDF Downloads 394
149 Spectroscopic Studies of Dy³⁺ Ions in Alkaline-Earth Boro Tellurite Glasses for Optoelectronic Devices

Authors: K. Swapna

Abstract:

A Series of Alkali-Earth Boro Tellurite (AEBT) glasses doped with different concentrations of Dy³⁺ ions have been prepared by using melt quenching technique and characterized through spectroscopic techniques such as optical absorption, excitation, emission and photoluminescence decay to understand their utility in optoelectronic devices such as lasers and white light emitting diodes (w-LEDs). Raman spectrum recorded for an undoped glass is used to measure the phonon energy of the host glass and various functional groups present in the host glass (AEBT). The intensities of the electronic transitions and the ligand environment around the Dy³⁺ ions were studied by applying Judd-Ofelt (J-O) theory to the recorded absorption spectra of the glasses. The evaluated J-O parameters are subsequently used to measure various radiative parameters such as transition probability (AR), radiative branching ratio (βR) and radiative lifetimes (τR) for the prominent fluorescent levels of Dy³⁺ ions in the as-prepared glasses. The luminescence spectra recorded at 387 nm excitation show three emission transitions (⁴F9/2→⁶H15/2 (blue), ⁴F9/2→⁶H13/2 (yellow) and ⁴F9/2 → ⁶H11/2 (red)) of which the yellow transition observed at 575 nm is found to be highly intense. The experimental branching ratio (βexp) and stimulated emission crosssection (σse) were measured from luminescence spectra. The experimental lifetimes (τexp) measured from the decay spectral profiles are combined with radiative lifetimes to measure quantum efficiencies of the as-prepared glasses. The yellow to blue intensity ratios and chromaticity color coordinates are found to vary with Dy³⁺ ion concentrations. The aforementioned results reveal that these glasses are aptly suitable for w-LEDs and laser devices.

Keywords: glasses, J-O parameters, photoluminescence, I-H model

Procedia PDF Downloads 129
148 Tax System Reform in Nepal: Analysis of Contemporary Issues, Challenges, and Ways Forward

Authors: Dilliram Paudyal

Abstract:

The history of taxation in Nepal dates back to antiquity. However, the modern tax system gained its momentum after the establishment of democracy in 1951, which initially focused only land tax and tariff on foreign trade. In the due time, several taxes were introduced, such as direct taxes, indirect taxes, and non-taxes. However, the tax structure in Nepal is heavily dominated by indirect taxes that contribute more than 60 % of the total revenue. The government has been mobilizing revenues through a series of tax reforms during the Tenth Five-year Plan (2002 – 2007) and successive Three-year Interim Development Plans by introducing several tax measures. However, these reforms are regressive in nature, which does not lead the overall economy towards short-run stability as well as in the long run development. Based on the literature review and discussion among government officials and few taxpayers individually and groups, this paper aims to major issues and challenges that hinder the tax reform effective in Nepal. Additionally, this paper identifies potential way and process of tax reform in Nepal. The results of the study indicate that transparency in a major problem in Nepalese tax system in Nepal, where serious structural constraints with administrative and procedural complexities envisaged in the Income Tax Act and taxpayers are often unaware of the specific size of tax which is to comply them. Some other issues include high tax rate, limited tax base, leakages in tax collection, rigid and complex Income Tax Act, inefficient and corrupt tax administration, limited potentialities of direct taxes and negative responsiveness of land tax with higher administrative costs. In the context, modality of tax structure and mobilize additional resources is to be rectified on a greater quantum by establishing an effective, dynamic and highly power driven Autonomous Revenue Board.

Keywords: corrupt, development, inefficient, taxation

Procedia PDF Downloads 156
147 Factors of Self-Sustainability in Social Entrepreneurship: Case Studies of ACT Group Čakovec and Friskis and Svettis Stockholm

Authors: Filip Majetić, Dražen Šimleša, Jelena Puđak, Anita Bušljeta Tonković, Svitlana Pinchuk

Abstract:

This paper focuses on the self-sustainability aspect of social entrepreneurship (SE). We define SE as a form of entrepreneurship that is social/ecological mission oriented. It means SE organizations start and run businesses and use them to accomplish their social/ecological missions i.e. to solve social/ecological problems or fulfill social/ecological needs. Self-sustainability is defined as the capability of an SE organization to operate by relying on the money earned through trading its products in the free market. For various reasons, the achievement of self-sustainability represents a fundamental (business) challenge for many SE organizations. Those that are not able to operate using the money made through commercial activities, in order to remain active, rely on alternative, non-commercial streams of income such as grants, donations, and public subsidies. Starting from this widespread (business) challenge, we are interested in exploring elements that (could) influence the self-sustainability in SE organizations. Therefore, the research goal is to empirically investigate some of the self-sustainability factors of two notable SE organizations from different socio-economic contexts. A qualitative research, using the multiple case study approach, was conducted. ACT Group Čakovec (ACT) from Croatia was selected for the first case because it represents one of the leading and most self-sustainable SE organization in the region (in 2015 55% of the organization’s budget came from commercial activities); Friskis&Svettis Stockholm (F&S) from Sweden was selected for the second case because it is a rare example of completely self-sustainable SE organization in Europe (100% of the organization’s budget comes from commercial activities). The data collection primarily consists of conducting in-depth interviews. Additionally, the content of some of the organizations' official materials are analyzed (e.g. business reports, marketing materials). The interviewees are selected purposively and include: six highly ranked F&S members who represent five different levels in the hierarchy of their organization; five highly ranked ACT members who represent three different levels in the hierarchy of the organization. All of the interviews contain five themes: a) social values of the organization, b) organization of work, c) non-commercial income sources, d) marketing/collaborations, and e) familiarity with the industry characteristics and trends. The gathered data is thematically analyzed through the coding process for which Atlas.ti software for qualitative data analysis is used. For the purpose of creating thematic categories (codes), the open coding is used. The research results intend to provide new theoretical insights on factors of SE self-sustainability and, preferably, encourage practical improvements in the field.

Keywords: Friskis&Svettis, self-sustainability factors, social entrepreneurship, Stockholm

Procedia PDF Downloads 193
146 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor

Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis

Procedia PDF Downloads 251
145 Infrared Photodetectors Based on Nanowire Arrays: Towards Far Infrared Region

Authors: Mohammad Karimi, Magnus Heurlin, Lars Samuelson, Magnus Borgstrom, Hakan Pettersson

Abstract:

Nanowire semiconductors are promising candidates for optoelectronic applications such as solar cells, photodetectors and lasers due to their quasi-1D geometry and large surface to volume ratio. The functional wavelength range of NW-based detectors is typically limited to the visible/near-infrared region. In this work, we present electrical and optical properties of IR photodetectors based on large square millimeter ensembles (>1million) of vertically processed semiconductor heterostructure nanowires (NWs) grown on InP substrates which operate in longer wavelengths. InP NWs comprising single or multiple (20) InAs/InAsP QDics axially embedded in an n-i-n geometry, have been grown on InP substrates using metal organic vapor phase epitaxy (MOVPE). The NWs are contacted in vertical direction by atomic layer deposition (ALD) deposition of 50 nm SiO2 as an insulating layer followed by sputtering of indium tin oxide (ITO) and evaporation of Ti and Au as top contact layer. In order to extend the sensitivity range to the mid-wavelength and long-wavelength regions, the intersubband transition within conduction band of InAsP QDisc is suggested. We present first experimental indications of intersubband photocurrent in NW geometry and discuss important design parameters for realization of intersubband detectors. Key advantages with the proposed design include large degree of freedom in choice of materials compositions, possible enhanced optical resonance effects due to periodically ordered NW arrays and the compatibility with silicon substrates. We believe that the proposed detector design offers the route towards monolithic integration of compact and sensitive III-V NW long wavelength detectors with Si technology.

Keywords: intersubband photodetector, infrared, nanowire, quantum disc

Procedia PDF Downloads 350
144 Transforming the Education System for the Innovative Society: A Case Study

Authors: Mario Chiasson, Monique Boudreau

Abstract:

Problem statement: Innovation in education has become a central topic of discussion at various levels, including schools and scholarly literature, driven by the global technological advancements of Industry 4.0. This study aims to contribute to the ongoing dialogue by examining the role of innovation in transforming school culture through the reimagination of traditional structures. The study argues that such a transformation necessitates an understanding and experience of systems leadership. This paper presents the case of the Francophone South School District, where a transformative initiative created an innovative learning environment by engaging students, teachers, and community members collaboratively through eco-communities. Traditional barriers and structures in education were dismantled to facilitate this process. The research component of this paper focuses on the Intr’Appreneur project, a unique initiative launched by the district team in the New Brunswick, Canada to support a system-wide transformation towards progressive and innovative organizational models. Methods This study is part of a larger research project that focuses on the transformation of educational systems in six pilot schools involved in the Intr’Appreneur project. Due to COVID-19 restrictions, the project was downscaled to three schools, and virtual qualitative interviews were conducted with volunteer teachers and administrators. Data was collected from students, teachers, and principals regarding their perceptions of the new learning environment and experiences. The analysis process involved developing categories, establishing codes for emerging themes, and validating the findings. The study emphasizes the importance of system leadership in achieving successful transformation. Results: The findings demonstrate that school principals played a vital role in enabling system-wide change by fostering a dynamic, collaborative, and inclusive culture, coordinating and mobilizing community members, and serving as educational role models who facilitated active and personalized pedagogy among the teaching staff. These qualities align with the characteristics of Leadership 4.0 and are crucial for successful school system transformations. Conclusion: This paper emphasizes the importance of systems leadership in driving educational transformations that extend beyond pedagogical and technological advancements. The research underscores the potential impact of such a leadership approach on teaching, learning, and leading processes in Education 4.0.

Keywords: leadership, system transformation, innovation, innovative learning environment, Education 4.0, system leadership

Procedia PDF Downloads 45
143 AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS

Authors: David A. Harness

Abstract:

Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning.

Keywords: automated theorem proving, constructive quantum field theory, information theory, neural networks

Procedia PDF Downloads 153
142 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review

Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari

Abstract:

The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.

Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency

Procedia PDF Downloads 141
141 Organizational Ideologies and Their Embeddedness in Fashion Show Productions in Shanghai and London Fashion Week: International-Based-Chinese Independent Designers' Participatory Behaviors in Different Fashion Cities

Authors: Zhe Wang

Abstract:

The fashion week, as a critical international fashion event in shaping world fashion cities, is one of the most significant world events that serves as the core medium for designers to stage new collections. However, its role in bringing about and shaping design ideologies of major fashion cities have long been neglected from a fashion ecosystem perspective. With the expanding scale of international fashion weeks in terms of culture and commerce, the organizational structures of these fashion weeks are becoming more complex. In the emerging fashion city, typified by Shanghai, a newly-formed 'hodgepodge' transforming the current global fashion ecosystem. A city’s legitimate fashion institutions, typically the organizers of international fashion weeks, have cultivated various cultural characteristics via rules and regulations pertaining to international fashion weeks. Under these circumstances, designers’ participatory behaviors, specifically show design and production, are influenced by the cultural ideologies of official organizers and institutions. This research compares international based Chinese (IBC) independent designers’ participatory behavior in London and Shanghai Fashion Weeks: specifically, the way designers present their clothing and show production. both of which are found to be profoundly influenced by cultural and design ideologies of fashion weeks. They are, to a large degree, manipulated by domestic institutions and organizers. Shanghai fashion week has given rise to a multiple, mass-ended entertainment carnival design and cultural ideology in Shanghai, thereby impacting the explicit cultural codes or intangible rules that IBC designers must adhere to when designing and producing fashion shows. Therefore, influenced by various cultural characteristics in the two cities, IBC designers’ show design and productions, in turn, play an increasingly vital role in shaping the design characteristic of an international fashion week. Through researching the organizational systems and design preferences of organizers of London and Shanghai fashion weeks, this paper demonstrates the embeddedness of design systems in the forming of design ideologies under various cultural and institutional contexts. The core methodology utilized in this research is ethnography. As a crucial part of a Ph.D. project on innovations in fashion shows under a cross-cultural context run by Edinburgh College of Art, School of Design, the fashion week’s organizational culture in various cultural contexts is investigated in London and Shanghai for approximately six months respectively. Two IBC designers, Angel Chen and Xuzhi Chen were followed during their participation of London and Shanghai Fashion Weeks from September 2016 to June 2017, during which two consecutive seasons were researched in order to verify the consistency of design ideologies’ associations with organizational system and culture.

Keywords: institutional ideologies, international fashion weeks, IBC independent designers; fashion show

Procedia PDF Downloads 98
140 Flexible Design Solutions for Complex Free form Geometries Aimed to Optimize Performances and Resources Consumption

Authors: Vlad Andrei Raducanu, Mariana Lucia Angelescu, Ion Cinca, Vasile Danut Cojocaru, Doina Raducanu

Abstract:

By using smart digital tools, such as generative design (GD) and digital fabrication (DF), problems of high actuality concerning resources optimization (materials, energy, time) can be solved and applications or products of free-form type can be created. In the new digital technology materials are active, designed in response to a set of performance requirements, which impose a total rethinking of old material practices. The article presents the design procedure key steps of a free-form architectural object - a column type one with connections to get an adaptive 3D surface, by using the parametric design methodology and by exploiting the properties of conventional metallic materials. In parametric design the form of the created object or space is shaped by varying the parameters values and relationships between the forms are described by mathematical equations. Digital parametric design is based on specific procedures, as shape grammars, Lindenmayer - systems, cellular automata, genetic algorithms or swarm intelligence, each of these procedures having limitations which make them applicable only in certain cases. In the paper the design process stages and the shape grammar type algorithm are presented. The generative design process relies on two basic principles: the modeling principle and the generative principle. The generative method is based on a form finding process, by creating many 3D spatial forms, using an algorithm conceived in order to apply its generating logic onto different input geometry. Once the algorithm is realized, it can be applied repeatedly to generate the geometry for a number of different input surfaces. The generated configurations are then analyzed through a technical or aesthetic selection criterion and finally the optimal solution is selected. Endless range of generative capacity of codes and algorithms used in digital design offers various conceptual possibilities and optimal solutions for both technical and environmental increasing demands of building industry and architecture. Constructions or spaces generated by parametric design can be specifically tuned, in order to meet certain technical or aesthetical requirements. The proposed approach has direct applicability in sustainable architecture, offering important potential economic advantages, a flexible design (which can be changed until the end of the design process) and unique geometric models of high performance.

Keywords: parametric design, algorithmic procedures, free-form architectural object, sustainable architecture

Procedia PDF Downloads 349
139 Development of Composite Materials for CO2 Reduction and Organic Compound Decomposition

Authors: H. F. Shi, C. L. Zhang

Abstract:

Visible-light-responsive g-C3N4/NaNbO3 nanowires photocatalysts were fabricated by introducing polymeric g-C3N4 on NaNbO3 nanowires. The microscopic mechanisms of interface interaction, charge transfer and separation, as well as the influence on the photocatalytic activity of g-C3N4/NaNbO3 composite were systematic investigated. The HR-TEM revealed that an intimate interface between C3N4 and NaNbO3 nanowires formed in the g-C3N4/NaNbO3 heterojunctions. The photocatalytic performance of photocatalysts was evaluated for CO2 reduction under visible-light illumination. Significantly, the activity of g-C3N4/NaNbO3 composite photocatalyst for photoreduction of CO2 was higher than that of either single-phase g-C3N4 or NaNbO3. Such a remarkable enhancement of photocatalytic activity was mainly ascribed to the improved separation and transfer of photogenerated electron-hole pairs at the intimate interface of g-C3N4/NaNbO3 heterojunctions, which originated from the well-aligned overlapping band structures of C3N4 and NaNbO3. Pt loaded NaNbO3-xNx (Pt-NNON), a visible-light-sensitive photocatalyst, was synthesized by an in situ photodeposition method from H2PtCl6•6H2O onto NaNbO3-xNx (NNON) sample. Pt-NNON exhibited a much higher photocatalytic activity for gaseous 2-propanol (IPA) degradation under visible-light irradiation in contrast to NNON. The apparent quantum efficiency (AQE) of Pt-NNON sample for IPA photodegradation achieved up to 8.6% at the wavelength of 419 nm. The notably enhanced photocatalytic performance was attributed to the promoted charge separation and transfer capability in the Pt-NNON system. This work suggests that surface nanosteps possibly play an important role as an electron transfer at high way, which facilitates to the charge carrier collection onto Pt rich zones and thus suppresses recombination between photogenerated electrons and holes. This method can thus be considered as an excellent strategy to enhance photocatalytic activity of organic decomposition in addition to the commonly applied noble metal doping method.

Keywords: CO2 reduction, NaNbO3, nanowires, g-C3N4

Procedia PDF Downloads 179