Search results for: data mining techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29828

Search results for: data mining techniques

28868 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: big data, learning analytics, analytics, big data in education, Hadoop

Procedia PDF Downloads 426
28867 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section

Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert

Abstract:

Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.

Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics

Procedia PDF Downloads 258
28866 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds

Authors: Seyedehsomayeh Hosseini

Abstract:

Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.

Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential

Procedia PDF Downloads 361
28865 Effect of Relaxation Techniques in Reducing Stress Level among Mothers of Children with Autism Spectrum Disorder

Authors: R. N. Jay A. Ablog, M. N. Dyanne R. Del Carmen, Roma Rose A. Dela Cruz, Joselle Dara M. Estrada, Luke Clifferson M. Gagarin, Florence T. Lang-ay, Ma. Dayanara O. Mariñas, Maria Christina S. Nepa, Jahraine Chyle B. Ocampo, Mark Reynie Renz V. Silva, Jenny Lyn L. Soriano, Loreal Cloe M. Suva, Jackelyn R. Torres

Abstract:

Background: To date, there is dearth of literature as to the effect of relaxation techniques in lowering the stress level of mothers of children with autism spectrum disorder (ASD). Aim: To investigate the effectiveness of 4-week relaxation techniques in stress level reduction of mothers of children with ASD. Methods: Quasi experimental design. It included 25 mothers (10-experimental, 15-control) who were chosen via purposive sampling. The mothers were recruited in the different SPED centers in Baguio City and La Trinidad and in the community. Statistics used were T-test and Related T-Test. Results: The overall weighted mean score after 4-week training is 2.3, indicating that the relaxation techniques introduced were moderately effective in lowering stress level. Statistical analysis (T-test; CV=4.51>TV=2.26) shown a significant difference in the stress level reduction of mothers in the experimental group pre and post interventions. There is also a significant difference in the stress level reduction in the control and the experimental group (Related T-test; CV=2.08 >TV=2.07). The relaxation techniques introduced were favorable, cost-effective, and easy to perform interventions to decrease stress level.

Keywords: relaxation techniques, mindful eating, progressive muscle relaxation, breathing exercise, autism spectrum disorder

Procedia PDF Downloads 433
28864 A Bibliometric Analysis: An Integrative Systematic Review through the Paths of Vitiviniculture

Authors: Patricia Helena Dos Santos Martins, Mateus Atique, Lucas Oliveira Gomes Ferreira

Abstract:

There is a growing body of literature that recognizes the importance of bibliometric analysis through the evolutionary nuances of a specific field while shedding light on the emerging areas in that field. Surprisingly, its application in the manufacturing research of vitiviniculture is relatively new and, in many instances, underdeveloped. The aim of this study is to present an overview of the bibliometric methodology, with a particular focus on the Meta-Analytical Approach Theory model – TEMAC, while offering step-by-step results on the available techniques and procedures for carrying out studies about the elements associated with vitiviniculture. Where TEMAC is a method that uses metadata to generate heat maps, graphs of keyword relationships and others, with the aim of revealing relationships between authors, articles and mainly to understand how the topic has evolved over the period study and thus reveal which subthemes were worked on, main techniques and applications, helping to understand that topic under study and guide researchers in generating new research. From the studies carried out using TEMAC, it is possible to raise which are the techniques within the statistical control of processes that are most used within the wine industry and thus assist professionals in the area in the application of the best techniques. It is expected that this paper will be a useful resource for gaining insights into the available techniques and procedures for carrying out studies about vitiviniculture, the cultivation of vineyards, the production of wine, and all the ethnography connected with it.

Keywords: TEMAC, vitiviniculture, statical control of process, quality

Procedia PDF Downloads 122
28863 Adjustment and Compensation Techniques for the Rotary Axes of Five-axis CNC Machine Tools

Authors: Tung-Hui Hsu, Wen-Yuh Jywe

Abstract:

Five-axis computer numerical control (CNC) machine tools (three linear and two rotary axes) are ideally suited to the fabrication of complex work pieces, such as dies, turbo blades, and cams. The locations of the axis average line and centerline of the rotary axes strongly influence the performance of these machines; however, techniques to compensate for eccentric error in the rotary axes remain weak. This paper proposes optical (Non-Bar) techniques capable of calibrating five-axis CNC machine tools and compensating for eccentric error in the rotary axes. This approach employs the measurement path in ISO/CD 10791-6 to determine the eccentric error in two rotary axes, for which compensatory measures can be implemented. Experimental results demonstrate that the proposed techniques can improve the performance of various five-axis CNC machine tools by more than 90%. Finally, a result of the cutting test using a B-type five-axis CNC machine tool confirmed to the usefulness of this proposed compensation technique.

Keywords: calibration, compensation, rotary axis, five-axis computer numerical control (CNC) machine tools, eccentric error, optical calibration system, ISO/CD 10791-6

Procedia PDF Downloads 383
28862 Using Machine Learning as an Alternative for Predicting Exchange Rates

Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior

Abstract:

This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.

Keywords: exchage rate, prediction, machine learning, deep learning

Procedia PDF Downloads 31
28861 Modern Information Security Management and Digital Technologies: A Comprehensive Approach to Data Protection

Authors: Mahshid Arabi

Abstract:

With the rapid expansion of digital technologies and the internet, information security has become a critical priority for organizations and individuals. The widespread use of digital tools such as smartphones and internet networks facilitates the storage of vast amounts of data, but simultaneously, vulnerabilities and security threats have significantly increased. The aim of this study is to examine and analyze modern methods of information security management and to develop a comprehensive model to counteract threats and information misuse. This study employs a mixed-methods approach, including both qualitative and quantitative analyses. Initially, a systematic review of previous articles and research in the field of information security was conducted. Then, using the Delphi method, interviews with 30 information security experts were conducted to gather their insights on security challenges and solutions. Based on the results of these interviews, a comprehensive model for information security management was developed. The proposed model includes advanced encryption techniques, machine learning-based intrusion detection systems, and network security protocols. AES and RSA encryption algorithms were used for data protection, and machine learning models such as Random Forest and Neural Networks were utilized for intrusion detection. Statistical analyses were performed using SPSS software. To evaluate the effectiveness of the proposed model, T-Test and ANOVA statistical tests were employed, and results were measured using accuracy, sensitivity, and specificity indicators of the models. Additionally, multiple regression analysis was conducted to examine the impact of various variables on information security. The findings of this study indicate that the comprehensive proposed model reduced cyber-attacks by an average of 85%. Statistical analysis showed that the combined use of encryption techniques and intrusion detection systems significantly improves information security. Based on the obtained results, it is recommended that organizations continuously update their information security systems and use a combination of multiple security methods to protect their data. Additionally, educating employees and raising public awareness about information security can serve as an effective tool in reducing security risks. This research demonstrates that effective and up-to-date information security management requires a comprehensive and coordinated approach, including the development and implementation of advanced techniques and continuous training of human resources.

Keywords: data protection, digital technologies, information security, modern management

Procedia PDF Downloads 29
28860 Insights into Archaeological Human Sample Microbiome Using 16S rRNA Gene Sequencing

Authors: Alisa Kazarina, Guntis Gerhards, Elina Petersone-Gordina, Ilva Pole, Viktorija Igumnova, Janis Kimsis, Valentina Capligina, Renate Ranka

Abstract:

Human body is inhabited by a vast number of microorganisms, collectively known as the human microbiome, and there is a tremendous interest in evolutionary changes in human microbial ecology, diversity and function. The field of paleomicrobiology, study of ancient human microbiome, is powered by modern techniques of Next Generation Sequencing (NGS), which allows extracting microbial genomic data directly from archaeological sample of interest. One of the major techniques is 16S rRNA gene sequencing, by which certain 16S rRNA gene hypervariable regions are being amplified and sequenced. However, some limitations of this method exist including the taxonomic precision and efficacy of different regions used. The aim of this study was to evaluate the phylogenetic sensitivity of different 16S rRNA gene hypervariable regions for microbiome studies in the archaeological samples. Towards this aim, archaeological bone samples and corresponding soil samples from each burial environment were collected in Medieval cemeteries in Latvia. The Ion 16S™ Metagenomics Kit targeting different 16S rRNA gene hypervariable regions was used for library construction (Ion Torrent technologies). Sequenced data were analysed by using appropriate bioinformatic techniques; alignment and taxonomic representation was done using Mothur program. Sequences of most abundant genus were further aligned to E. coli 16S rRNA gene reference sequence using MEGA7 in order to identify the hypervariable region of the segment of interest. Our results showed that different hypervariable regions had different discriminatory power depending on the groups of microbes, as well as the nature of samples. On the basis of our results, we suggest that wider range of primers used can provide more accurate recapitulation of microbial communities in archaeological samples. Acknowledgements. This work was supported by the ERAF grant Nr. 1.1.1.1/16/A/101.

Keywords: 16S rRNA gene, ancient human microbiome, archaeology, bioinformatics, genomics, microbiome, molecular biology, next-generation sequencing

Procedia PDF Downloads 190
28859 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets

Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson

Abstract:

Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.

Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime

Procedia PDF Downloads 94
28858 Blockchain’s Feasibility in Military Data Networks

Authors: Brenden M. Shutt, Lubjana Beshaj, Paul L. Goethals, Ambrose Kam

Abstract:

Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design’s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism.

Keywords: blockchain, consensus mechanism, discrete-event simulation, fog computing

Procedia PDF Downloads 138
28857 Detect Circles in Image: Using Statistical Image Analysis

Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee

Abstract:

The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.

Keywords: image processing, median filter, projection, scale-space, segmentation, threshold

Procedia PDF Downloads 432
28856 Graph-Based Semantical Extractive Text Analysis

Authors: Mina Samizadeh

Abstract:

In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them), has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. This algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as a result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework, which can be used individually or as a part of generating the summary to overcome coverage problems.

Keywords: keyword extraction, n-gram extraction, text summarization, topic clustering, semantic analysis

Procedia PDF Downloads 71
28855 Passive Solar Water Concepts for Human Comfort

Authors: Eyibo Ebengeobong Eddie

Abstract:

Taking advantage of the sun's position to design buildings to ensure human comfort has always been an important aspect in an architectural design. Using cheap and less expensive methods and systems for gaining solar energy, heating and cooling has always been a great advantage to users and occupants of a building. As the years run by, daily techniques and methods have been created and more are being discovered to help reduce the energy demands of any building. Architects have made effective use of a buildings orientation, building materials and elements to achieve less energy demand. This paper talks about the various techniques used in solar heating and passive cooling of buildings and through water techniques and concepts to achieve thermal comfort.

Keywords: comfort, passive, solar, water

Procedia PDF Downloads 460
28854 Dietary Exposure Assessment of Potentially Toxic Trace Elements in Fruits and Vegetables Grown in Akhtala, Armenia

Authors: Davit Pipoyan, Meline Beglaryan, Nicolò Merendino

Abstract:

Mining industry is one of the priority sectors of Armenian economy. Along with the solution of some socio-economic development, it brings about numerous environmental problems, especially toxic element pollution, which largely influences the safety of agricultural products. In addition, accumulation of toxic elements in agricultural products, mainly in edible parts of plants represents a direct pathway for their penetration into the human food chain. In Armenia, the share of plant origin food in overall diet is significantly high, so estimation of dietary intakes of toxic trace elements via consumption of selected fruits and vegetables are of great importance for observing the underlying health risks. Therefore, the present study was aimed to assess dietary exposure of potentially toxic trace elements through the intake of locally grown fruits and vegetables in Akhtala community (Armenia), where not only mining industry is developed, but also cultivation of fruits and vegetables. Moreover, this investigation represents one of the very first attempts to estimate human dietary exposure of potentially toxic trace elements in the study area. Samples of some commonly grown fruits and vegetables (fig, cornel, raspberry, grape, apple, plum, maize, bean, potato, cucumber, onion, greens) were randomly collected from several home gardens located near mining areas in Akhtala community. The concentration of Cu, Mo, Ni, Cr, Pb, Zn, Hg, As and Cd in samples were determined by using an atomic absorption spectrophotometer (AAS). Precision and accuracy of analyses were guaranteed by repeated analysis of samples against NIST Standard Reference Materials. For a diet study, individual-based approach was used, so the consumption of selected fruits and vegetables was investigated through food frequency questionnaire (FFQ). Combining concentration data with contamination data, the estimated daily intakes (EDI) and cumulative daily intakes were assessed and compared with health-based guidance values (HBGVs). According to the determined concentrations of the studied trace elements in fruits and vegetables, it can be stressed that some trace elements (Cu, Ni, Pb, Zn) among the majority of samples exceeded maximum allowable limits set by international organizations. Meanwhile, others (Cr, Hg, As, Cd, Mo) either did not exceed these limits or still do not have established allowable limits. The obtained results indicated that only for Cu the EDI values exceeded dietary reference intake (0.01 mg/kg/Bw/day) for some investigated fruits and vegetables in decreasing order of potato > grape > bean > raspberry > fig > greens. In contrast to this, for combined consumption of selected fruits and vegetables estimated cumulative daily intakes exceeded reference doses in the following sequence: Zn > Cu > Ni > Mo > Pb. It may be concluded that habitual and combined consumption of the above mentioned fruits and vegetables can pose a health risk to the local population. Hence, further detailed studies are needed for the overall assessment of potential health implications taking into consideration adverse health effects posed by more than one toxic trace element.

Keywords: daily intake, dietary exposure, fruits, trace elements, vegetables

Procedia PDF Downloads 300
28853 An Exploratory Study on the Integration of Neurodiverse University Students into Mainstream Learning and Their Performance: The Case of the Jones Learning Center

Authors: George Kassar, Phillip A. Cartwright

Abstract:

Based on data collected from The Jones Learning Center (JLC), University of the Ozarks, Arkansas, U.S., this study explores the impact of inclusive classroom practices on neuro-diverse college students’ and their consequent academic performance having participated in integrative therapies designed to support students who are intellectually capable of obtaining a college degree, but who require support for learning challenges owing to disabilities, AD/HD, or ASD. The purpose of this study is two-fold. The first objective is to explore the general process, special techniques, and practices of the (JLC) inclusive program. The second objective is to identify and analyze the effectiveness of the processes, techniques, and practices in supporting the academic performance of enrolled college students with learning disabilities following integration into mainstream university learning. Integrity, transparency, and confidentiality are vital in the research. All questions were shared in advance and confirmed by the concerned management at the JLC. While administering the questionnaire as well as conducted the interviews, the purpose of the study, its scope, aims, and objectives were clearly explained to all participants prior starting the questionnaire / interview. Confidentiality of all participants assured and guaranteed by using encrypted identification of individuals, thus limiting access to data to only the researcher, and storing data in a secure location. Respondents were also informed that their participation in this research is voluntary, and they may withdraw from it at any time prior to submission if they wish. Ethical consent was obtained from the participants before proceeding with videorecording of the interviews. This research uses a mixed methods approach. The research design involves collecting, analyzing, and “mixing” quantitative and qualitative methods and data to enable a research inquiry. The research process is organized based on a five-pillar approach. The first three pillars are focused on testing the first hypothesis (H1) directed toward determining the extent to the academic performance of JLC students did improve after involvement with comprehensive JLC special program. The other two pillars relate to the second hypothesis (H2), which is directed toward determining the extent to which collective and applied knowledge at JLC is distinctive from typical practices in the field. The data collected for research were obtained from three sources: 1) a set of secondary data in the form of Grade Point Average (GPA) received from the registrar, 2) a set of primary data collected throughout structured questionnaire administered to students and alumni at JLC, and 3) another set of primary data collected throughout interviews conducted with staff and educators at JLC. The significance of this study is two folds. First, it validates the effectiveness of the special program at JLC for college-level students who learn differently. Second, it identifies the distinctiveness of the mix of techniques, methods, and practices, including the special individualized and personalized one-on-one approach at JLC.

Keywords: education, neuro-diverse students, program effectiveness, Jones learning center

Procedia PDF Downloads 74
28852 Lean Construction Techniques in Construction Projects of Pakistan

Authors: Aftab Hameed Memon, Shadab Noor, Muhammad Akram Akhund

Abstract:

Lean construction is a philosophy adopted in the construction industry to increase the value of a project by reducing waste and improving construction productivity. Lean emphasizes on maximizing the value of a project with less expenditure. Globally, lean philosophy has received wider popularity in construction sector. Lean construction has supported the practitioners with several tools and techniques to implement at various stages of a construction project. Following the global trends, this study has investigated the lean practice in Pakistan. The level of implementation of different lean tools and techniques altogether with potential benefits experienced by its implementation in construction projects of Pakistan is analyzed. To achieve the targets, the opinion was sought by the practitioners involved in handling construction projects representing four stakeholders that are a client, consultant, contractors and material suppliers through a structured questionnaire. A total of 34 completed questionnaires were collected and then statistically analyzed. The findings of the analysis have highlighted that pull approach, work standardization, just in time, increase visualization tools, integrated project delivery method and fail-safe for quality are common lean techniques implemented in the local construction industry. While reduction in waste, client’s satisfaction, improved communication, visual control and proper task management are major benefits of the lean construction application.

Keywords: lean construction, lean tools and techniques, lean benefits, waste reduction, Pakistan

Procedia PDF Downloads 287
28851 Prompt Design for Code Generation in Data Analysis Using Large Language Models

Authors: Lu Song Ma Li Zhi

Abstract:

With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.

Keywords: large language models, prompt design, data analysis, code generation

Procedia PDF Downloads 39
28850 Construction of Large Scale UAVs Using Homebuilt Composite Techniques

Authors: Brian J. Kozak, Joshua D. Shipman, Peng Hao Wang, Blake Shipp

Abstract:

The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.

Keywords: composite aircraft, homebuilding, unmanned aerial system industry, UAS, unmanned aerial vehicles, UAV

Procedia PDF Downloads 138
28849 The Concentration of Natural Alpha Emitters Radionuclides in Fish and Their Contribution to the Internal Dose

Authors: Wagner Pereira, Alphonse Kelecom

Abstract:

Mining can impact the environment, and the major impact of some mining activities is the radiological impact. In human populations, such impact is well studied and regulated. For biota, this assessment always had as focus the protection of human food chain. The protection of biota itself is a new approach, still developing. In order to contribute to this new approach, fish collecting was carried out in areas of naturally occurring radioactive materials (NORM), where a uranium mine is in decommissioning phase. The activity concentrations were analyzed, in Bq/kg wet weight, for Uranium (Unat), Th-232 and Ra-226 in the lambari fish Astyanax bimaculatus L. (omnivorous fish) and in the traíra fish Hoplias malabaricus Bloch, 1794 (carnivorous fish). Seven composite samples (that is: a sufficient number of individuals to reach at least 2 kg of fresh weight) were collected every six months between 2013 and 2015. The mean activity concentrations (AC) for uranium ranged from 1.12 (lambari) to 0.60 (lungfish). For Th, variations ranged from 0.30 to 0.05 (lambari and traíra, respectively). Finally, the Ra-226 means ranged between 0.08 and 0.03. No temporal trends of accumulation could be identified. Systematically, the AC values of radionuclides were higher in omnivorous fish when compared to the carnivore ones.

Keywords: biota dose, NORM, fish, environmental protection

Procedia PDF Downloads 258
28848 The Impact of Interrelationship between Business Intelligence and Knowledge Management on Decision Making Process: An Empirical Investigation of Banking Sector in Jordan

Authors: Issa M. Shehabat, Huda F. Y. Nimri

Abstract:

This paper aims to study the relationship between knowledge management in its processes, including knowledge creation, knowledge sharing, knowledge organization, and knowledge application, and business intelligence tools, including OLAP, data mining, and data warehouse, and their impact on the decision-making process in the banking sector in Jordan. A total of 200 questionnaires were distributed to the sample of the study. The study hypotheses were tested using the statistical package SPSS. Study findings suggest that decision-making processes were positively related to knowledge management processes. Additionally, the components of business intelligence had a positive impact on decision-making. The study recommended conducting studies similar to this study in other sectors such as the industrial, telecommunications, and service sectors to contribute to enhancing understanding of the role of the knowledge management processes and business intelligence tools.

Keywords: business intelligence, knowledge management, decision making, Jordan, banking sector

Procedia PDF Downloads 144
28847 Biosorption of Gold from Chloride Media in a Simultaneous Adsorption-Reduction Process

Authors: Shafiq Alam, Yen Ning Lee

Abstract:

Conventional hydrometallurgical processing of metals involves the use of large quantities of toxic chemicals. Realizing a need to develop sustainable technologies, extensive research studies are being carried out to recover and recycle base, precious and rare earth metals from their pregnant leach solutions (PLS) using green chemicals/biomaterials prepared from biomass wastes derived from agriculture, marine and forest resources. Our innovative research showed that bio-adsorbents prepared from such biomass wastes can effectively adsorb precious metals, especially gold after conversion of their functional groups in a very simple process. The highly effective ‘Adsorption-coupled-Reduction’ phenomenon witnessed appears promising for the potential use of this gold biosorption process in the mining industry. Proper management and effective use of biomass wastes as value added green chemicals will not only reduce the volume of wastes being generated every day in our society, but will also have a high-end value to the mining and mineral processing industries as those biomaterials would be cheap, but very selective for gold recovery/recycling from low grade ore, leach residue or e-wastes.

Keywords: biosorption, hydrometallurgy, gold, adsorption, reduction, biomass, sustainability

Procedia PDF Downloads 376
28846 Experience Modularization for New Value of Evanescent Cultural Communities: Developing Creative Tourism Services in Bangkok

Authors: Wuttigrai Ngamsirijit

Abstract:

Creative tourism is an ongoing development in many countries as an attempt to moving away from serial reproduction of culture and reviving the culture. Despite, in the destinations with diverse and potential cultural resources, creating new tourism services can be vague. This paper presents how tourism experiences are modularized and consolidated in order to form new creative tourism service offerings in evanescent cultural communities of Bangkok, Thailand. The benefits from data mining in accommodating value co-creation are discussed, and implication of experience modularization to national creative tourism policy is addressed.

Keywords: co-creation, creative tourism, new service design, experience modularization

Procedia PDF Downloads 366
28845 Mobile Application Interventions in Positive Psychology: Current Status and Recommendations for Effective App Design

Authors: Gus Salazar, Jeremy Bekker, Lauren Linford, Jared Warren

Abstract:

Positive psychology practices allow for its principles to be applied to all people, regardless of their current level of functioning. To increase the dissemination of these practices, interventions are being adapted for use with digital technology, such as mobile apps. However, the research regarding positive psychology mobile app interventions is still in its infancy. In an effort to facilitate progress in this important area, we 1) conducted a qualitative review to summarize the current state of the positive psychology mobile app literature and 2) developed research-supported recommendations for positive psychology app development to maximize behavior change. In our literature review, we found that while positive psychology apps varied widely in content and purpose, there was a near-complete lack of research supporting their effectiveness. Most apps provided no rationale for the behavioral change techniques (BCTs) they employed in their app, and most did not develop their app with specific theoretical frameworks or design models in mind. Given this problem, we recommended four steps for effective positive psychology app design. First, developers must establish their app in a research-supported theory of change. Second, researchers must select appropriate behavioral change techniques which are consistent with their app’s goals. Third, researchers must leverage effective design principles. These steps will help mobile applications use data-driven methods for encouraging behavior change in their users. Lastly, we discuss directions for future research. In particular, researchers must investigate the effectiveness of various BCTs in positive psychology interventions. Although there is some research on this point, we do not yet clearly understand the mechanisms within the apps that lead to behavior change. Additionally, app developers must also provide data on the effectiveness of their mobile apps. As developers follow these steps for effective app development and as researchers continue to investigate what makes these apps most effective, we will provide millions of people in need with access to research-based mental health resources.

Keywords: behavioral change techniques, mobile app, mobile intervention, positive psychology

Procedia PDF Downloads 224
28844 Functional and Efficient Query Interpreters: Principle, Application and Performances’ Comparison

Authors: Laurent Thiry, Michel Hassenforder

Abstract:

This paper presents a general approach to implement efficient queries’ interpreters in a functional programming language. Indeed, most of the standard tools actually available use an imperative and/or object-oriented language for the implementation (e.g. Java for Jena-Fuseki) but other paradigms are possible with, maybe, better performances. To proceed, the paper first explains how to model data structures and queries in a functional point of view. Then, it proposes a general methodology to get performances (i.e. number of computation steps to answer a query) then it explains how to integrate some optimization techniques (short-cut fusion and, more important, data transformations). It then compares the functional server proposed to a standard tool (Fuseki) demonstrating that the first one can be twice to ten times faster to answer queries.

Keywords: data transformation, functional programming, information server, optimization

Procedia PDF Downloads 157
28843 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks

Authors: Reza Sirjani, Nobosse Tafem Bolan

Abstract:

Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.

Keywords: cuckoo search algorithm, optimization, power system, var compensators, voltage stability

Procedia PDF Downloads 552
28842 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique

Authors: Reda Abdel Azim, Tariq Shehab

Abstract:

The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.

Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension

Procedia PDF Downloads 254
28841 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment

Authors: Arindam Chaudhuri

Abstract:

Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.

Keywords: FRSVM, Hadoop, MapReduce, PFRSVM

Procedia PDF Downloads 490
28840 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops

Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann

Abstract:

The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.

Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule

Procedia PDF Downloads 150
28839 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management

Procedia PDF Downloads 14