Search results for: lower semicontinuous functions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7787

Search results for: lower semicontinuous functions

7787 Proximal Method of Solving Split System of Minimization Problem

Authors: Anteneh Getachew Gebrie, Rabian Wangkeeree

Abstract:

The purpose of this paper is to introduce iterative algorithm solving split system of minimization problem given as a task of finding a common minimizer point of finite family of proper, lower semicontinuous convex functions and whose image under a bounded linear operator is also common minimizer point of another finite family of proper, lower semicontinuous convex functions. We obtain strong convergence of the sequence generated by our algorithm under some suitable conditions on the parameters. The iterative schemes are developed with a way of selecting the step sizes such that the information of operator norm is not necessary. Some applications and numerical experiment is given to analyse the efficiency of our algorithm.

Keywords: Hilbert Space, minimization problems, Moreau-Yosida approximate, split feasibility problem

Procedia PDF Downloads 105
7786 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds

Authors: Seyedehsomayeh Hosseini

Abstract:

Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.

Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential

Procedia PDF Downloads 331
7785 Geometric Properties of Some q-Bessel Functions

Authors: İbrahim Aktaş, Árpád Baricz

Abstract:

In this paper, the radii of star likeness of the Jackson and Hahn-Exton q-Bessel functions are considered, and for each of them three different normalizations is applied. By applying Euler-Rayleigh inequalities for the first positive zeros of these functions tight lower, and upper bounds for the radii of starlikeness of these functions are obtained. The Laguerre-Pólya class of real entire functions plays an important role in this study. In particular, we obtain some new bounds for the first positive zero of the derivative of the classical Bessel function of the first kind.

Keywords: bessel function, lommel function, radius of starlikeness and convexity, Struve function

Procedia PDF Downloads 247
7784 Jensen's Inequality and M-Convex Functions

Authors: Yamin Sayyari

Abstract:

In this paper, we generalized the Jensen's inequality for m-convex functions and also we present a correction of Jensen's inequality which is a better than the generalization of this inequality for m-convex functions. Finally, we have found new lower and new upper bounds for Jensen's discrete inequality.

Keywords: Jensen's inequality, m-convex function, Convex function, Inequality

Procedia PDF Downloads 117
7783 Some Results on Generalized Janowski Type Functions

Authors: Fuad Al Sarari

Abstract:

The purpose of the present paper is to study subclasses of analytic functions which generalize the classes of Janowski functions introduced by Polatoglu. We study certain convolution conditions. This leads to a study of the sufficient condition and the neighborhood results related to the functions in the class S (T; H; F ): and a study of new subclasses of analytic functions that are defined using notions of the generalized Janowski classes and -symmetrical functions. In the quotient of analytical representations of starlikeness and convexity with respect to symmetric points, certain inherent properties are pointed out.

Keywords: convolution conditions, subordination, Janowski functions, starlike functions, convex functions

Procedia PDF Downloads 40
7782 Degree of Approximation of Functions Conjugate to Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means

Authors: Smita Sonker

Abstract:

Various investigators have determined the degree of approximation of conjugate signals (functions) of functions belonging to different classes Lipα, Lip(α,p), Lip(ξ(t),p), W(Lr,ξ(t), (β ≥ 0)) by matrix summability means, lower triangular matrix operator, product means (i.e. (C,1)(E,1), (C,1)(E,q), (E,q)(C,1) (N,p,q)(E,1), and (E,q)(N,pn) of their conjugate trigonometric Fourier series. In this paper, we shall determine the degree of approximation of 2π-periodic function conjugate functions of f belonging to the function classes Lipα and W(Lr; ξ(t); (β ≥ 0)) by (C1.T) -means of their conjugate trigonometric Fourier series. On the other hand, we shall review above-mentioned work in the light of Lenski.

Keywords: signals, trigonometric fourier approximation, class W(L^r, \xi(t), conjugate fourier series

Procedia PDF Downloads 366
7781 The Behavior of The Zeros of Bargmann Analytic Functions for Multiple-Mode Systems

Authors: Muna Tabuni

Abstract:

The paper contains an investigation of the behavior of the Zeros of Bargmann functions for one and two-mode systems. A brief introduction to Harmonic oscillator formalism for one and two-mode is given. The Bargmann analytic representation for one and two-mode has been studied. The zeros of Bargmann analytic function for one-mode are considered. The Q Husimi functions are introduced. The Bargmann functions and the Husimi functions have the same zeros. The Bargmann functions f(z) have exactly q zeros. The evolution time of the zeros are discussed. The zeros of Bargmann analytic functions for two-mode are introduced. Various examples have been given.

Keywords: Bargmann functions, two-mode, zeros, harmonic oscillator

Procedia PDF Downloads 541
7780 Some Inequalities Related with Starlike Log-Harmonic Mappings

Authors: Melike Aydoğan, Dürdane Öztürk

Abstract:

Let H(D) be the linear space of all analytic functions defined on the open unit disc. A log-harmonic mappings is a solution of the nonlinear elliptic partial differential equation where w(z) ∈ H(D) is second dilatation such that |w(z)| < 1 for all z ∈ D. The aim of this paper is to define some inequalities of starlike logharmonic functions of order α(0 ≤ α ≤ 1).

Keywords: starlike log-harmonic functions, univalent functions, distortion theorem

Procedia PDF Downloads 494
7779 RAFU Functions in Robotics and Automation

Authors: Alicia C. Sanchez

Abstract:

This paper investigates the implementation of RAFU functions (radical functions) in robotics and automation. Specifically, the main goal is to show how these functions may be useful in lane-keeping control and the lateral control of autonomous machines, vehicles, robots or the like. From the knowledge of several points of a certain route, the RAFU functions are used to achieve the lateral control purpose and maintain the lane-keeping errors within the fixed limits. The stability that these functions provide, their ease of approaching any continuous trajectory and the control of the possible error made on the approximation may be useful in practice.

Keywords: automatic navigation control, lateral control, lane-keeping control, RAFU approximation

Procedia PDF Downloads 250
7778 The Bernstein Expansion for Exponentials in Taylor Functions: Approximation of Fixed Points

Authors: Tareq Hamadneh, Jochen Merker, Hassan Al-Zoubi

Abstract:

Bernstein's expansion for exponentials in Taylor functions provides lower and upper optimization values for the range of its original function. these values converge to the original functions if the degree is elevated or the domain subdivided. Taylor polynomial can be applied so that the exponential is a polynomial of finite degree over a given domain. Bernstein's basis has two main properties: its sum equals 1, and positive for all x 2 (0; 1). In this work, we prove the existence of fixed points for exponential functions in a given domain using the optimization values of Bernstein. The Bernstein basis of finite degree T over a domain D is defined non-negatively. Any polynomial p of degree t can be expanded into the Bernstein form of maximum degree t ≤ T, where we only need to compute the coefficients of Bernstein in order to optimize the original polynomial. The main property is that p(x) is approximated by the minimum and maximum Bernstein coefficients (Bernstein bound). If the bound is contained in the given domain, then we say that p(x) has fixed points in the same domain.

Keywords: Bernstein polynomials, Stability of control functions, numerical optimization, Taylor function

Procedia PDF Downloads 103
7777 Subclasses of Bi-Univalent Functions Associated with Hohlov Operator

Authors: Rashidah Omar, Suzeini Abdul Halim, Aini Janteng

Abstract:

The coefficients estimate problem for Taylor-Maclaurin series is still an open problem especially for a function in the subclass of bi-univalent functions. A function f ϵ A is said to be bi-univalent in the open unit disk D if both f and f-1 are univalent in D. The symbol A denotes the class of all analytic functions f in D and it is normalized by the conditions f(0) = f’(0) – 1=0. The class of bi-univalent is denoted by  The subordination concept is used in determining second and third Taylor-Maclaurin coefficients. The upper bound for second and third coefficients is estimated for functions in the subclasses of bi-univalent functions which are subordinated to the function φ. An analytic function f is subordinate to an analytic function g if there is an analytic function w defined on D with w(0) = 0 and |w(z)| < 1 satisfying f(z) = g[w(z)]. In this paper, two subclasses of bi-univalent functions associated with Hohlov operator are introduced. The bound for second and third coefficients of functions in these subclasses is determined using subordination. The findings would generalize the previous related works of several earlier authors.

Keywords: analytic functions, bi-univalent functions, Hohlov operator, subordination

Procedia PDF Downloads 264
7776 Approximation of Analytic Functions of Several Variables by Linear K-Positive Operators in the Closed Domain

Authors: Tulin Coskun

Abstract:

We investigate the approximation of analytic functions of several variables in polydisc by the sequences of linear k-positive operators in Gadjiev sence. The approximation of analytic functions of complex variable by linear k-positive operators was tackled, and k-positive operators and formulated theorems of Korovkin's type for these operators in the space of analytic functions on the unit disc were introduced in the past. Recently, very general results on convergence of the sequences of linear k-positive operators on a simply connected bounded domain within the space of analytic functions were proved. In this presentation, we extend some of these results to the approximation of analytic functions of several complex variables by sequences of linear k-positive operators.

Keywords: analytic functions, approximation of analytic functions, Linear k-positive operators, Korovkin type theorems

Procedia PDF Downloads 312
7775 Unconventional Calculus Spreadsheet Functions

Authors: Chahid K. Ghaddar

Abstract:

The spreadsheet engine is exploited via a non-conventional mechanism to enable novel worksheet solver functions for computational calculus. The solver functions bypass inherent restrictions on built-in math and user defined functions by taking variable formulas as a new type of argument while retaining purity and recursion properties. The enabling mechanism permits integration of numerical algorithms into worksheet functions for solving virtually any computational problem that can be modelled by formulas and variables. Several examples are presented for computing integrals, derivatives, and systems of deferential-algebraic equations. Incorporation of the worksheet solver functions with the ubiquitous spreadsheet extend the utility of the latter as a powerful tool for computational mathematics.

Keywords: calculus, differential algebraic equations, solvers, spreadsheet

Procedia PDF Downloads 308
7774 Fuzzy Control and Pertinence Functions

Authors: Luiz F. J. Maia

Abstract:

This paper presents an approach to fuzzy control, with the use of new pertinence functions, applied in the case of an inverted pendulum. Appropriate definitions of pertinence functions to fuzzy sets make possible the implementation of the controller with only one control rule, resulting in a smooth control surface. The fuzzy control system can be implemented with analog devices, affording a true real-time performance.

Keywords: control surface, fuzzy control, Inverted pendulum, pertinence functions

Procedia PDF Downloads 408
7773 A New Approach for Generalized First Derivative of Nonsmooth Functions Using Optimization

Authors: Mohammad Mehdi Mazarei, Ali Asghar Behroozpoor

Abstract:

In this paper, we define an optimization problem corresponding to smooth and nonsmooth functions which its optimal solution is the first derivative of these functions in a domain. For this purpose, a linear programming problem corresponding to optimization problem is obtained. The optimal solution of this linear programming problem is the approximate generalized first derivative. In fact, we approximate generalized first derivative of nonsmooth functions as tailor series. We show the efficiency of our approach by some smooth and nonsmooth functions in some examples.

Keywords: general derivative, linear programming, optimization problem, smooth and nonsmooth functions

Procedia PDF Downloads 523
7772 Generalization of Tsallis Entropy from a Q-Deformed Arithmetic

Authors: J. Juan Peña, J. Morales, J. García-Ravelo, J. García-Martínes

Abstract:

It is known that by introducing alternative forms of exponential and logarithmic functions, the Tsallis entropy Sq is itself a generalization of Shannon entropy S. In this work, from a deformation through a scaling function applied to the differential operator, it is possible to generate a q-deformed calculus as well as a q-deformed arithmetic, which not only allows generalizing the exponential and logarithmic functions but also any other standard function. The updated q-deformed differential operator leads to an updated integral operator under which the functions are integrated together with a weight function. For each differentiable function, it is possible to identify its q-deformed partner, which is useful to generalize other algebraic relations proper of the original functions. As an application of this proposal, in this work, a generalization of exponential and logarithmic functions is studied in such a way that their relationship with the thermodynamic functions, particularly the entropy, allows us to have a q-deformed expression of these. As a result, from a particular scaling function applied to the differential operator, a q-deformed arithmetic is obtained, leading to the generalization of the Tsallis entropy.

Keywords: q-calculus, q-deformed arithmetic, entropy, exponential functions, thermodynamic functions

Procedia PDF Downloads 25
7771 Interval Bilevel Linear Fractional Programming

Authors: F. Hamidi, N. Amiri, H. Mishmast Nehi

Abstract:

The Bilevel Programming (BP) model has been presented for a decision making process that consists of two decision makers in a hierarchical structure. In fact, BP is a model for a static two person game (the leader player in the upper level and the follower player in the lower level) wherein each player tries to optimize his/her personal objective function under dependent constraints; this game is sequential and non-cooperative. The decision making variables are divided between the two players and one’s choice affects the other’s benefit and choices. In other words, BP consists of two nested optimization problems with two objective functions (upper and lower) where the constraint region of the upper level problem is implicitly determined by the lower level problem. In real cases, the coefficients of an optimization problem may not be precise, i.e. they may be interval. In this paper we develop an algorithm for solving interval bilevel linear fractional programming problems. That is to say, bilevel problems in which both objective functions are linear fractional, the coefficients are interval and the common constraint region is a polyhedron. From the original problem, the best and the worst bilevel linear fractional problems have been derived and then, using the extended Charnes and Cooper transformation, each fractional problem can be reduced to a linear problem. Then we can find the best and the worst optimal values of the leader objective function by two algorithms.

Keywords: best and worst optimal solutions, bilevel programming, fractional, interval coefficients

Procedia PDF Downloads 415
7770 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices

Authors: Khosrow Maleknejad, Yaser Rostami

Abstract:

In this paper, semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions.

Keywords: ıntegro-differential equations, quartic B-spline wavelet, operational matrices, dual functions

Procedia PDF Downloads 423
7769 High Accuracy Analytic Approximation for Special Functions Applied to Bessel Functions J₀(x) and Its Zeros

Authors: Fernando Maass, Pablo Martin, Jorge Olivares

Abstract:

The Bessel function J₀(x) is very important in Electrodynamics and Physics, as well as its zeros. In this work, a method to obtain high accuracy approximation is presented through an application to that function. In most of the applications of this function, the values of the zeros are very important. In this work, analytic approximations for this function have been obtained valid for all positive values of the variable x, which have high accuracy for the function as well as for the zeros. The approximation is determined by the simultaneous used of the power series and asymptotic expansion. The structure of the approximation is a combination of two rational functions with elementary functions as trigonometric and fractional powers. Here us in Pade method, rational functions are used, but now there combined with elementary functions us fractional powers hyperbolic or trigonometric functions, and others. The reason of this is that now power series of the exact function are used, but together with the asymptotic expansion, which usually includes fractional powers trigonometric functions and other type of elementary functions. The approximation must be a bridge between both expansions, and this can not be accomplished using only with rational functions. In the simplest approximation using 4 parameters the maximum absolute error is less than 0.006 at x ∼ 4.9. In this case also the maximum relative error for the zeros is less than 0.003 which is for the second zero, but that value decreases rapidly for the other zeros. The same kind of behaviour happens for the relative error of the maximum and minimum of the functions. Approximations with higher accuracy and more parameters will be also shown. All the approximations are valid for any positive value of x, and they can be calculated easily.

Keywords: analytic approximations, asymptotic approximations, Bessel functions, quasirational approximations

Procedia PDF Downloads 216
7768 A Qualitative Case Study Exploring Zambian Mathematics Teachers' Content Knowledge of Functions

Authors: Priestly Malambo, Sonja Van Putten, Hanlie Botha, Gerrit Stols

Abstract:

The relevance of what is content is taught in tertiary teacher training has long been in question. This study attempts to understand how advanced mathematics courses equip student teachers to teach functions at secondary school level. This paper reports on an investigation that was conducted in an African university, where preservice teachers were purposefully selected for participation in individual semi-structured interviews after completing a test on functions as taught at secondary school. They were asked to justify their reasoning in the test and to explain functions in a way that might bring about understanding of the topic in someone who did not know how functions work. These were final year preservice mathematics teachers who had studied advanced mathematics courses for three years. More than 50% of the students were not able to explain concepts or to justify their reasoning about secondary school functions in a coherent way. The results of this study suggest that the study of advanced mathematics does not automatically enable students to teach secondary school functions, and that, although these students were able to do advanced mathematics, they were unable to explain the working of functions in a way that would allow them to teach this topic successfully.

Keywords: secondary school, mathematical reasoning, student-teachers, functions

Procedia PDF Downloads 235
7767 Analysis of Brushless DC Motor with Trapezoidal Back EMF Using Matlab

Authors: Taha Ahmed Husain

Abstract:

The dynamic characteristics such as speed and torque as well as voltages and currents of pwm brushless DC motor inverter are analyzed with a MATLAB model. The contribution of external load torque and friction torque is monitored. The switching function technique is adopted for the current control of the embedded three phase inverter that drives the brushless DC motor.In switching functions the power conversions circuits can be modeled according to their functions rather than circuit topologies. Therefore, it can achieve simplification of the overall power conversion functions. The trapezoidal type (back emf) is used in the model as ithas lower switching loss compared with sinusoidal type (back emf). Results show reliable time analysis for speed, torque, phase and line voltages and currents and the effect of current commutation is clearly observed.

Keywords: BLDC motor, brushless dc motors, pwm inverter, DC motor control, trapezoidal back emf, ripple torque in brushless DC motor

Procedia PDF Downloads 555
7766 Bernstein Type Polynomials for Solving Differential Equations and Their Applications

Authors: Yilmaz Simsek

Abstract:

In this paper, we study the Bernstein-type basis functions with their generating functions. We give various properties of these polynomials with the aid of their generating functions. These polynomials and generating functions have many valuable applications in mathematics, in probability, in statistics and also in mathematical physics. By using the Bernstein-Galerkin and the Bernstein-Petrov-Galerkin methods, we give some applications of the Bernstein-type polynomials for solving high even-order differential equations with their numerical computations. We also give Bezier-type curves related to the Bernstein-type basis functions. We investigate fundamental properties of these curves. These curves have many applications in mathematics, in computer geometric design and other related areas. Moreover, we simulate these polynomials with their plots for some selected numerical values.

Keywords: generating functions, Bernstein basis functions, Bernstein polynomials, Bezier curves, differential equations

Procedia PDF Downloads 236
7765 The Importance of Working Memory, Executive and Attention Functions in Attention Deficit Hyperactivity Disorder and Learning Disabilities Diagnostics

Authors: Dorottya Horváth, Tímea Harmath-Tánczos

Abstract:

Attention deficit hyperactivity disorder (ADHD) and learning disabilities are common neurocognitive disorders that can have a significant impact on a child's academic performance. ADHD is characterized by inattention, hyperactivity, and impulsivity, while learning disabilities are characterized by difficulty with specific academic skills, such as reading, writing, or math. The aim of this study was to investigate the working memory, executive, and attention functions of neurotypical children and children with ADHD and learning disabilities in order to fill the gaps in the Hungarian mean test scores of these cognitive functions in children with neurocognitive disorders. Another aim was to specify the neuropsychological differential diagnostic toolkit in terms of the relationships and peculiarities between these cognitive functions. The research question addressed in this study was: How do the working memory, executive, and attention functions of neurotypical children compare to those of children with ADHD and learning disabilities? A self-administered test battery was used as a research tool. Working memory was measured with the Non-Word Repetition Test, the Listening Span Test, the Digit Span Test, and the Reverse Digit Span Test; executive function with the Letter Fluency, Semantic Fluency, and Verb Fluency Tests; and attentional concentration with the d2-R Test. The data for this study was collected from 115 children aged 9-14 years. The children were divided into three groups: neurotypical children (n = 44), children with ADHD without learning disabilities (n = 23), and children with ADHD with learning disabilities (n = 48). The data was analyzed using a variety of statistical methods, including t-tests, ANOVAs, and correlational analyses. The results showed that the performance of children with neurocognitive involvement in working memory, executive functions, and attention was significantly lower than the performance of neurotypical children. However, the results of children with ADHD and ADHD with learning disabilities did not show a significant difference. The findings of this study are important because they provide new insights into the cognitive profiles of children with ADHD and learning disabilities and suggest that working memory, executive functions, and attention are all impaired in children with neurocognitive involvement, regardless of whether they have ADHD or learning disabilities. This information can be used to develop more effective diagnostic and treatment strategies for these disorders.

Keywords: ADHD, attention functions, executive functions, learning disabilities, working memory

Procedia PDF Downloads 50
7764 Hypergeometric Solutions to Linear Nonhomogeneous Fractional Equations with Spherical Bessel Functions of the First Kind

Authors: Pablo Martin, Jorge Olivares, Fernando Maass

Abstract:

The use of fractional derivatives to different problems in Engineering and Physics has been increasing in the last decade. For this reason, we have here considered partial derivatives when the integral is a spherical Bessel function of the first kind in both regular and modified ones simple initial conditions have been also considered. In this way, the solution has been found as a combination of hypergeometric functions. The case of a general rational value for α of the fractional derivative α has been solved in a general way for alpha between zero and two. The modified spherical Bessel functions of the first kind have been also considered and how to go from the regular case to the modified one will be also shown.

Keywords: caputo fractional derivatives, hypergeometric functions, linear differential equations, spherical Bessel functions

Procedia PDF Downloads 289
7763 Exact Formulas of the End-To-End Green’s Functions in Non-hermitian Systems

Authors: Haoshu Li, Shaolong Wan

Abstract:

The recent focus has been on directional signal amplification of a signal input at one end of a one-dimensional chain and measured at the other end. The amplification rate is given by the end-to-end Green’s functions of the system. In this work, we derive the exact formulas for the end-to-end Green's functions of non-Hermitian single-band systems. While in the bulk region, it is found that the Green's functions are displaced from the prior established integral formula by O(e⁻ᵇᴸ). The results confirm the correspondence between the signal amplification and the non-Hermitian skin effect.

Keywords: non-Hermitian, Green's function, non-Hermitian skin effect, signal amplification

Procedia PDF Downloads 108
7762 Certain Results of a New Class of Meromorphic Multivalent Functions Involving Ruscheweyh Derivative

Authors: Kassim A. Jassim

Abstract:

In the present paper, we introduce and discuss a new class Kp(λ,α) of meromorphic multivalent functions in the punctured unit disk U*={z∈¢:0<|z|<1} defined by Ruscheweyh derivative. We obtain some sufficient conditions for the functions belonging to the class Kp(λ,α).

Keywords: meromorphic multivalent function, Ruscheweyh derivative, hadamard product

Procedia PDF Downloads 307
7761 First Order Moment Bounds on DMRL and IMRL Classes of Life Distributions

Authors: Debasis Sengupta, Sudipta Das

Abstract:

The class of life distributions with decreasing mean residual life (DMRL) is well known in the field of reliability modeling. It contains the IFR class of distributions and is contained in the NBUE class of distributions. While upper and lower bounds of the reliability distribution function of aging classes such as IFR, IFRA, NBU, NBUE, and HNBUE have discussed in the literature for a long time, there is no analogous result available for the DMRL class. We obtain the upper and lower bounds for the reliability function of the DMRL class in terms of first order finite moment. The lower bound is obtained by showing that for any fixed time, the minimization of the reliability function over the class of all DMRL distributions with a fixed mean is equivalent to its minimization over a smaller class of distribution with a special form. Optimization over this restricted set can be made algebraically. Likewise, the maximization of the reliability function over the class of all DMRL distributions with a fixed mean turns out to be a parametric optimization problem over the class of DMRL distributions of a special form. The constructive proofs also establish that both the upper and lower bounds are sharp. Further, the DMRL upper bound coincides with the HNBUE upper bound and the lower bound coincides with the IFR lower bound. We also prove that a pair of sharp upper and lower bounds for the reliability function when the distribution is increasing mean residual life (IMRL) with a fixed mean. This result is proved in a similar way. These inequalities fill a long-standing void in the literature of the life distribution modeling.

Keywords: DMRL, IMRL, reliability bounds, hazard functions

Procedia PDF Downloads 365
7760 Nonhomogeneous Linear Fractional Differential Equations Will Bessel Functions of the First Kind Giving Hypergeometric Functions Solutions

Authors: Fernando Maass, Pablo Martin, Jorge Olivares

Abstract:

Fractional derivatives have become very important in several areas of Engineering, however, the solutions of simple differential equations are not known. Here we are considering the simplest first order nonhomogeneous differential equations with Bessel regular functions of the first kind, in this way the solutions have been found which are hypergeometric solutions for any fractional derivative of order α, where α is rational number α=m/p, between zero and one. The way to find this result is by using Laplace transform and the Caputo definitions of fractional derivatives. This method is for values longer than one. However for α entire number the hypergeometric functions are Kumer type, no integer values of alpha, the hypergeometric function is more complicated is type ₂F₃(a,b,c, t2/2). The argument of the hypergeometric changes sign when we go from the regular Bessel functions to the modified Bessel functions of the first kind, however it integer seems that using precise values of α and considering no integers values of α, a solution can be obtained in terms of two hypergeometric functions. Further research is required for future papers in order to obtain the general solution for any rational value of α.

Keywords: Caputo, fractional calculation, hypergeometric, linear differential equations

Procedia PDF Downloads 169
7759 Some Integral Inequalities of Hermite-Hadamard Type on Time Scale and Their Applications

Authors: Artion Kashuri, Rozana Liko

Abstract:

In this paper, the authors establish an integral identity using delta differentiable functions. By applying this identity, some new results via a general class of convex functions with respect to two nonnegative functions on a time scale are given. Also, for suitable choices of nonnegative functions, some special cases are deduced. Finally, in order to illustrate the efficiency of our main results, some applications to special means are obtained as well. We hope that current work using our idea and technique will attract the attention of researchers working in mathematical analysis, mathematical inequalities, numerical analysis, special functions, fractional calculus, quantum mechanics, quantum calculus, physics, probability and statistics, differential and difference equations, optimization theory, and other related fields in pure and applied sciences.

Keywords: convex functions, Hermite-Hadamard inequality, special means, time scale

Procedia PDF Downloads 120
7758 Duality in Multiobjective Nonlinear Programming under Generalized Second Order (F, b, φ, ρ, θ)− Univex Functions

Authors: Meraj Ali Khan, Falleh R. Al-Solamy

Abstract:

In the present paper, second order duality for multiobjective nonlinear programming are investigated under the second order generalized (F, b, φ, ρ, θ)− univex functions. The weak, strong and converse duality theorems are proved. Further, we also illustrated an example of (F, b, φ, ρ, θ)− univex functions. Results obtained in this paper extend some previously known results of multiobjective nonlinear programming in the literature.

Keywords: duality, multiobjective programming, univex functions, univex

Procedia PDF Downloads 321